MCAT Lab Techniques Guide

Document Details

CompliantRhythm

Uploaded by CompliantRhythm

New York University Abu Dhabi

IWantAHighMCATScore

Tags

MCAT lab techniques biochemistry molecular biology

Summary

This guide provides an overview of various MCAT lab techniques, including their purposes, principles, and applications. It covers essential methods like Gel Electrophoresis and SDS-PAGE, alongside techniques like Western blotting, Chromatography, and Spectroscopy, offering a valuable resource for understanding various molecular techniques used in biological experiments.

Full Transcript

IWantAHighMCATScore’s Guide​ ​to​ ​MCAT​ ​Lab​ ​Techniques Gel​ ​Electrophoresis Purpose:​ ​Separation​ ​of​ ​proteins,​ ​DNA,​ ​or​ ​RNA​ ​based​ ​on​ ​size​ ​and/or​ ​charge Macromolecules​ ​(proteins,​ ​DNA,​ ​or​ ​RNA)​ ​of​ ​interest​ ​are​ ​placed​ ​in​ ​the​ ​lanes​ ​of​ ​a​ ​gel.​ ​For​ ​pro...

IWantAHighMCATScore’s Guide​ ​to​ ​MCAT​ ​Lab​ ​Techniques Gel​ ​Electrophoresis Purpose:​ ​Separation​ ​of​ ​proteins,​ ​DNA,​ ​or​ ​RNA​ ​based​ ​on​ ​size​ ​and/or​ ​charge Macromolecules​ ​(proteins,​ ​DNA,​ ​or​ ​RNA)​ ​of​ ​interest​ ​are​ ​placed​ ​in​ ​the​ ​lanes​ ​of​ ​a​ ​gel.​ ​For​ ​proteins​ ​and small​ ​molecules​ ​of​ ​DNA​ ​and​ ​RNA,​ ​the​ ​gel​ ​will​ ​be​ ​polyacrylamide.​ ​For​ ​larger​ ​molecules​ ​of​ ​DNA​ ​(>​ ​500​ ​bp), the​ ​gel​ ​will​ ​be​ ​agarose.​ ​An​ ​electrical​ ​charge​ ​is​ ​placed​ ​across​ ​the​ ​gel.​ ​At​ ​the​ ​bottom​ ​is​ ​the​ ​positively charged​ ​anode​​ ​and​ ​at​ ​the​ ​top​ ​is​ ​the​ ​negatively​ ​charged​ ​cathode​.​ ​Keep​ ​in​ ​mind,​ ​since​ ​a​ ​voltage​ ​source​ ​is applied​ ​to​ ​gel​ ​electrophoresis,​ ​it​ ​follows​ ​the​ ​same​ ​principles​ ​as​ ​an​ ​electrolytic​ ​cell.​ ​Negatively​ ​charged molecules​ ​will​ ​travel​ ​toward​ ​the​ ​anode.​ ​Because​ ​of​ ​the​ ​resistance​ ​of​ ​the​ ​gel,​ ​larger​ ​molecules​ ​will​ ​have​ ​a harder​ ​time​ ​moving​ ​and​ ​thus,​ ​the​ ​molecules​ ​will​ ​be​ ​separated​ ​by​ ​size​ ​with​ ​the​ ​smallest​ ​molecules toward​ ​the​ ​bottom.​ ​The​ ​gel​ ​can​ ​then​ ​be​ ​stained​ ​for​ ​visualization,​ ​typically​ ​using​ ​Coomassie​ ​Blue​ ​dye.​ ​A lane​ ​will​ ​be​ ​loaded​ ​with​ ​a​ ​collection​ ​of​ ​molecules​ ​of​ ​a​ ​known​ ​size,​ ​called​ ​a​ ​ladder,​ ​which​ ​can​ ​used​ ​to determine​ ​the​ ​size​ ​of​ ​the​ ​molecules​ ​being​ ​ran.​ ​There​ ​are​ ​several​ ​different​ ​applications​ ​of​ ​gel electrophoresis: Native-PAGE Native-PAGE​ ​is​ ​a​ ​polyacrylamide​ ​gel​ ​electrophoresis​ ​method​ ​for​ ​proteins​ ​that​ ​occurs​ ​under non-denaturing​ ​conditions.​ ​This​ ​method​ ​will​ ​separate​ ​proteins​ ​by​ ​size​ ​while​ ​retaining​ ​their​ ​structure. SDS-PAGE SDS-PAGE​ ​is​ ​a​ ​polyacrylamide​ ​gel electrophoresis​ ​method​ ​for​ ​proteins​ ​that occurs​ ​under​ ​denaturing​ ​conditions​ ​to separate​ ​proteins​ ​by​ ​mass.​ ​Negatively-charged sodium​ ​dodecyl​ ​sulfate​ ​(SDS)​ ​is​ ​added​ ​to​ ​the​ ​solution​ ​of​ ​proteins,​ ​denatures​ ​the​ ​proteins,​ ​and​ ​binds​ ​one SDS​ ​for​ ​every​ ​two​ ​amino​ ​acids,​ ​giving​ ​all​ ​proteins​ ​the​ ​same​ ​charge-to-mass​ ​ratio.​ ​Since​ ​all​ ​proteins​ ​have the​ ​same​ ​charge-to-mass​ ​ratio,​ ​they​ ​are​ ​separated​ ​solely​ ​on​ ​mass,​ ​with​ ​the​ ​smallest​ ​proteins​ ​found toward​ ​the​ ​bottom​ ​of​ ​the​ ​gel.​ ​SDS​ ​will​ ​only​ ​interrupt​ ​non-covalent​ ​bonds,​ ​so​ ​if​ ​disulfide​ ​bridges​ ​are present​ ​in​ ​the​ ​protein,​ ​they​ ​will​ ​not​ ​be​ ​broken.​ ​This​ ​is​ ​useful​ ​when​ ​analyzing​ ​proteins​ ​with​ ​multiple subunits. Reducing​ ​SDS-PAGE Reducing​ ​SDS-PAGE​ ​is​ ​exactly​ ​like​ ​SDS-PAGE,​ ​but​ ​with​ ​the​ ​addition​ ​of​ ​a​ ​reducing​ ​agent,​ ​like β-mercaptoethanol,​ ​which​ ​will​ ​reduce​ ​disulfide​ ​bridges​ ​and​ ​result​ ​in​ ​a​ ​completely​ ​denatured​ ​protein. Isoelectric​ ​Focusing Isoelectric​ ​focusing​ ​is​ ​a​ ​gel electrophoresis​ ​method​ ​that​ ​separates proteins​ ​on​ ​the​ ​basis​ ​of​ ​their​ ​relative contents​ ​of​ ​acidic​ ​and​ ​basic​ ​residues.​ ​A polyacrylamide​ ​gel​ ​with​ ​a​ ​pH​ ​gradient (low​ ​pH​ ​on​ ​one​ ​side,​ ​high​ ​pH​ ​on​ ​the other)​ ​is​ ​used.​ ​When​ ​proteins​ ​migrate through​ ​the​ ​pH​ ​gradient​ ​gel,​ ​they​ ​will travel​ ​toward​ ​the​ ​anode​ ​until​ ​the​ ​area​ ​of the​ ​gel​ ​with​ ​the​ ​pH​ ​that​ ​matches​ ​their isoelectric​ ​point​ ​(pI).​ ​When​ ​a​ ​protein​ ​is​ ​at​ ​its​ ​pI,​ ​it​ ​has​ ​a​ ​net​ ​charge​ ​of​ ​zero​ ​and​ ​will​ ​not​ ​be​ ​attracted​ ​to the​ ​positively​ ​charged​ ​anode​ ​so​ ​it​ ​will​ ​not​ ​move. Western​ ​Blotting​ ​(Protein) Purpose:​​ ​Detection​ ​of​ ​a​ ​specific​ ​protein​ ​in​ ​a​ ​sample Step​ ​1:​​ ​Proteins​ ​from​ ​a​ ​sample​ ​are​ ​loaded​ ​into​ ​an​ ​SDS-PAGE​ ​gel​ ​and​ ​separated​ ​based​ ​on​ ​size Step​ ​2:​ ​Proteins​ ​from​ ​the​ ​gel​ ​are​ ​transferred​ ​to​ ​a​ ​polymer​ ​sheet​ ​and​ ​exposed​ ​to​ ​a​ ​radiolabeled​ ​antibody (sometimes​ ​using​ ​two​ ​antibodies;​ ​one​ ​specific​ ​to​ ​the​ ​protein​ ​of​ ​interest​ ​and​ ​another​ ​radiolabeled antibody​ ​that​ ​binds​ ​to​ ​the​ ​first​ ​antibody)​ ​that​ ​is​ ​specific​ ​to​ ​our​ ​protein​ ​of​ ​interest Step​ ​3:​ ​The​ ​polymer​ ​sheet​ ​is​ ​viewed​ ​used​ ​autoradiography.​ ​The​ ​protein​ ​of​ ​interest​ ​that​ ​is​ ​bound​ ​to​ ​the radiolabeled​ ​antibody​ ​will​ ​be​ ​visible. Southern​ ​(DNA)​ ​and​ ​Northern​ ​(RNA)​ ​Blotting Purpose:​ ​Detection​ ​of​ ​a​ ​specific​ ​DNA​ ​(Southern​ ​blot)​ ​or​ ​RNA​ ​(Northern​ ​blot)​ ​sequence​ ​in​ ​a​ ​sample Step​ ​1:​ ​The​ ​DNA​ ​strand​ ​of​ ​interest​ ​is​ ​exposed​ ​to​ ​restriction​ ​enzymes​ ​that​ ​cut​ ​the​ ​DNA​ ​strand​ ​into smaller​ ​fragments Step​ ​2:​​ ​ ​The​ ​newly​ ​cleaved​ ​strands​ ​of​ ​DNA​ ​are​ ​denatured​ ​using​ ​a​ ​solution​ ​of​ ​NaOH​ ​to​ ​create​ ​ssDNA strands Step​ ​3:​​ ​The​ ​single​ ​stranded​ ​cleaved​ ​strands​ ​of​ ​DNA​ ​undergo​ ​gel​ ​electrophoresis,​ ​separating​ ​them​ ​by size.​ ​Smaller​ ​fragments​ ​will​ ​be​ ​found​ ​at​ ​the​ ​bottom​ ​of​ ​the​ ​gel.​ ​Polyacrylamide​ ​is​ ​used​ ​if​ ​the​ ​stands​ ​are less​ ​than​ ​500​ ​base​ ​pairs.​ ​Agarose​ ​is​ ​used​ ​if​ ​the​ ​strands​ ​are​ ​over​ ​500​ ​base​ ​pairs. Step​ ​4:​ ​The​ ​DNA​ ​from​ ​the​ ​gel​ ​is​ ​transferred​ ​to​ ​a​ ​sheet​ ​of​ ​nitrocellulose​ ​paper​ ​and​ ​then​ ​exposed​ ​to​ ​a​ 32​ ​ P radiolabeled​ ​DNA​ ​probe​ ​that​ ​is​ ​complementary​ ​to​ ​our​ ​DNA​ ​of​ ​interest. Step​ ​5:​ ​The​ ​nitrocellulose​ ​paper​ ​is​ ​then​ ​viewed​ ​using​ ​autoradiography​ ​to​ ​identify​ ​the​ ​strand​ ​of​ ​interest. NOTE:​ ​These​ ​methods​ ​are​ ​nearly​ ​identical​ ​for​ ​Southern​ ​and​ ​Northern​ ​blotting.​ ​The​ ​steps​ ​listed​ ​above are​ ​for​ ​Southern​ ​blotting,​ ​however,​ ​the​ ​only​ ​difference​ ​is​ ​that​ ​Northern​ ​blotting​ ​uses​ ​RNA,​ ​so​ ​steps​ ​1 and​ ​2​ ​are​ ​not​ ​done. DNA​ ​Sequencing​ ​(Sanger​ ​Dideoxynucleotide​ ​Sequencing) Purpose:​​ ​Used​ ​to​ ​determine​ ​the​ ​sequence​ ​of​ ​nucleotides​ ​in​ ​a​ ​strand​ ​of​ ​DNA Modified​ ​nucleotides,​ ​known​ ​as​ ​“dideoxynucleotides”​ ​(ddNTPs),​ ​are​ ​used​ ​in​ ​this​ ​method.​ ​ddNTPs​ ​are missing​ ​the​ ​OH​ ​group​ ​on​ ​the​ ​3’​ ​carbon,​ ​thus​ ​they​ ​are​ ​unable​ ​to​ ​create​ ​a​ ​new​ ​5’→3’​ ​phosphodiester bond.​ ​This​ ​allows​ ​us​ ​to​ ​control​ ​the​ ​termination​ ​of​ ​replication. Step​ ​1:​​ ​The​ ​DNA​ ​strand​ ​of​ ​interest​ ​is​ ​denatured​ ​using​ ​an​ ​NaOH​ ​solution​ ​to​ ​create​ ​a​ ​ssDNA​ ​strand​ ​that we​ ​can​ ​use​ ​for​ ​replication Step​ ​2:​​ ​The​ ​ssDNA​ ​strand​ ​of​ ​interest​ ​is​ ​added​ ​to​ ​a​ ​solution​ ​containing: 1. A​ ​radiolabeled​ ​DNA​ ​primer​ ​that is​ ​complementary​ ​to​ ​the​ ​gene​ ​of interest 2. DNA​ ​polymerase 3. All​ ​four​ ​dNTPs​ ​(dATP,​ ​dTTP, dCTP,​ ​dGTP) 4. A​ ​very​ ​small​ ​quantity​ ​of​ ​a​ ​single ddNTP​ ​(e.g.,​ ​ddATP) This​ ​step​ ​is​ ​done​ ​once​ ​for​ ​each​ ​of​ ​the four​ ​nucleotides​ ​in​ ​separate​ ​solutions. Step​ ​3:​ ​Each​ ​solution​ ​containing​ ​a specific​ ​dNTP​ ​and​ ​ddNTP​ ​are​ ​placed​ ​in their​ ​own​ ​lane​ ​of​ ​a​ ​gel​ ​and​ ​ran​ ​under​ ​gel electrophoresis.​ ​The​ ​gel​ ​is​ ​transferred​ ​to a​ ​polymer​ ​sheet​ ​and​ ​autoradiography​ ​is used​ ​to​ ​identify​ ​the​ ​strands​ ​in​ ​the​ ​gel. For​ ​each​ ​respective​ ​nucleotide,​ ​the​ ​insertion​ ​of​ ​a​ ​ddNTP​ ​will​ ​terminate​ ​replication​ ​and​ ​create​ ​various strands​ ​of​ ​different​ ​length​ ​that​ ​correspond​ ​to​ ​that​ ​specific​ ​nucleotide.​ ​Therefore,​ ​the​ ​gel​ ​can​ ​be​ ​read from​ ​bottom-to-top​ ​to​ ​determine​ ​the​ ​nucleotide​ ​sequence.​ ​The​ ​smaller​ ​the​ ​fragment,​ ​the​ ​further​ ​it travels​ ​in​ ​the​ ​gel. Chromatography Purpose:​ ​The​ ​separation​ ​of​ ​two​ ​or​ ​more​ ​molecules​ ​from​ ​a​ ​mixture There​ ​are​ ​several​ ​different​ ​types​ ​of​ ​chromatography​ ​that​ ​can​ ​be​ ​used​ ​for​ ​separating​ ​or​ ​analyzing​ ​a mixture​ ​of​ ​two​ ​or​ ​more​ ​molecules​ ​based​ ​on​ ​their​ ​properties.​ ​Traditionally,​ ​there​ ​are​ ​two​ ​components​ ​to chromatography;​ ​a​ ​stationary​ ​phase​,​ ​which​ ​is​ ​typically​ ​polar,​ ​and​ ​a​ ​mobile​ ​phase​,​ ​which​ ​is​ ​typically non-polar.​ ​Polar​ ​molecules​ ​are​ ​separated​ ​from​ ​a​ ​mixture​ ​by​ ​staying​ ​with​ ​the​ ​stationary​ ​phase,​ ​while non-polar​ ​molecules​ ​stay​ ​with​ ​the​ ​mobile​ ​phase.​ ​However,​ ​if​ ​reverse-phase​​ ​is​ ​specified,​ ​then​ ​the properties​ ​of​ ​the​ ​two​ ​phases​ ​are​ ​switched.​ ​This​ ​also​ ​changes​ ​based​ ​on​ ​the​ ​type​ ​of​ ​chromatography used,​ ​as​ ​some​ ​methods​ ​use​ ​ligands​ ​or​ ​gel​ ​beads. Liquid​ ​Chromatography In​ ​liquid​ ​chromatography,​ ​silica​ ​is​ ​traditionally​ ​used​ ​as​ ​the​ ​stationary​ ​phase while​ ​toluene​ ​or​ ​another​ ​non-polar​ ​liquid​ ​is​ ​used​ ​as​ ​the​ ​mobile​ ​phase. High-Performance​ ​Liquid​ ​Chromatography​ ​(HPLC) HPLC​ ​is​ ​a​ ​type​ ​of​ ​liquid​ ​chromatography​ ​that​ ​utilizes​ ​high​ ​pressures​ ​to​ ​pass the​ ​solvent​ ​phase​ ​through​ ​a​ ​more​ ​finely-ground​ ​stationary​ ​phase,​ ​which increases​ ​the​ ​interactions​ ​between​ ​the​ ​molecules​ ​and​ ​the​ ​stationary​ ​phase, giving​ ​HPLC​ ​a​ ​higher​ ​resolving​ ​power.​ ​Molecules​ ​can​ ​then​ ​be​ ​determined based​ ​on​ ​their​ ​absorbance​ ​and​ ​elution​ ​time​ ​as​ ​seen​ ​on​ ​the​ ​right. Gas​ ​Chromatography Gas​ ​chromatography​ ​(also​ ​known​ ​as​ ​gas-liquid​ ​chromatography)​ ​is​ ​used​ ​to​ ​separate​ ​and​ ​analyze molecules​ ​that​ ​can​ ​be​ ​vaporized.​ ​The​ ​mobile​ ​phase​ ​is​ ​an​ ​inert​ ​or​ ​unreactive​ ​gas,​ ​such​ ​as​ ​helium​ ​or nitrogen,​ ​while​ ​the​ ​stationary​ ​phase​ ​is​ ​a​ ​thin​ ​layer​ ​of​ ​liquid​ ​or​ ​polymer​ ​that​ ​surrounds​ ​the​ ​walls​ ​of​ ​a tube.​ ​The​ ​stationary​ ​phase​ ​allows​ ​more​ ​polar​ ​molecules​ ​to​ ​elute​ ​slower,​ ​giving​ ​them​ ​a​ ​higher​ ​retention time. Gel-Filtration​ ​(Size​ ​Exclusion)​ ​Chromatography Gel-filtration​ ​chromatography​ ​(also​ ​known​ ​as​ ​size-exclusion chromatography)​ ​is​ ​used​ ​to​ ​separate​ ​molecules​ ​by​ ​size​ ​rather​ ​than polarity.​ ​Smaller​ ​molecules​ ​can​ ​enter​ ​the​ ​porous​ ​gel​ ​beads,​ ​allowing​ ​them to​ ​elute​ ​later,​ ​while​ ​larger​ ​molecules​ ​that​ ​do​ ​not​ ​fit​ ​will​ ​elute​ ​faster.​ ​The gel​ ​beads​ ​can​ ​be​ ​viewed​ ​as​ ​the​ ​stationary​ ​phase,​ ​while​ ​the​ ​solution​ ​in​ ​the column​ ​can​ ​be​ ​viewed​ ​as​ ​the​ ​mobile​ ​phase. Ion-Exchange​ ​Chromatography Ion-exchange​ ​chromatography​ ​will​ ​separate​ ​proteins​ ​by​ ​their​ ​net​ ​charge.​ ​The column​ ​is​ ​filled​ ​with​ ​charged​ ​beads,​ ​either​ ​positive​ ​or​ ​negative.​ ​In anion-exchange,​ ​negatively-charged​ ​beads​ ​are​ ​used​ ​which​ ​attract​ ​positively charged​ ​proteins​ ​and​ ​negatively-charged​ ​proteins​ ​will​ ​elute​ ​first.​ ​In cation-exchange,​ ​positively-charged​ ​beads​ ​are​ ​used​ ​which​ ​attract negatively-charged​ ​proteins​ ​and​ ​positively-charged​ ​proteins​ ​will​ ​elute​ ​first. Affinity​ ​Chromatography Affinity​ ​chromatography​ ​will​ ​separate​ ​proteins​ ​based​ ​on​ ​their affinity​ ​for​ ​a​ ​specific​ ​ligand.​ ​Beads​ ​that​ ​are​ ​bound​ ​to​ ​a​ ​specific ligand​ ​will​ ​be​ ​used​ ​and​ ​proteins​ ​with​ ​a​ ​high​ ​affinity​ ​for​ ​that​ ​ligand will​ ​bind​ ​to​ ​the​ ​beads,​ ​allowing​ ​proteins​ ​with​ ​a​ ​low​ ​affinity​ ​to​ ​elute first.​ ​The​ ​high​ ​affinity​ ​proteins​ ​are​ ​then​ ​eluted​ ​by​ ​increasing​ ​the concentration​ ​of​ ​the​ ​free​ ​ligand​ ​in​ ​the​ ​column,​ ​which​ ​competes​ ​for the​ ​active​ ​site​ ​of​ ​the​ ​bound​ ​proteins. Thin-Layer​ ​Chromatography Thin-layer​ ​chromatography​ ​consists​ ​of​ ​a small​ ​sheet​ ​of​ ​medium​ ​that​ ​is​ ​coated​ ​in​ ​an adsorbent​ ​material,​ ​such​ ​as​ ​silica​ ​gel.​ ​The polar​ ​silica​ ​is​ ​the​ ​stationary​ ​phase.​ ​The molecules​ ​of​ ​interest​ ​are​ ​added​ ​to​ ​the bottom​ ​of​ ​the​ ​sheet​ ​and​ ​the​ ​sheet​ ​is​ ​placed in​ ​a​ ​non-polar​ ​liquid,​ ​such​ ​as​ ​heptane,​ ​until​ ​it reaches​ ​the​ ​origin.​ ​The​ ​mobile​ ​phase​ ​then travels​ ​up​ ​the​ ​plate​ ​using​ ​capillary​ ​action, allowing​ ​the​ ​molecules​ ​to​ ​move​ ​with​ ​it​ ​if they​ ​are​ ​relatively​ ​non-polar.​ ​The​ ​spots​ ​are then​ ​visualized​ ​using​ ​UV​ ​light. The​ ​relative​ ​distances​ ​traveled​ ​between​ ​the molecules​ ​is​ ​represented​ ​by​ ​the​ ​R​f​​ ​value,​ ​which​ ​is​ ​measured​ ​as​ ​the​ ​ratio​ ​of​ ​the​ ​distance​ ​the​ ​molecule traveled​ ​from​ ​the​ ​origin​ ​to​ ​the​ ​distance​ ​the​ ​solvent​ ​front​ ​traveled​ ​from​ ​the​ ​origin. Distillation Purpose:​ ​Used​ ​to​ ​separate​ ​two​ ​or​ ​more​ ​molecules​ ​from​ ​a​ ​solution Simple​ ​Distillation Simple​ ​distillation​ ​is​ ​used​ ​to​ ​separate​ ​two​ ​molecules​ ​from​ ​a​ ​solution​ ​when​ ​their​ ​boiling​ ​points​ ​differ​ ​by 25​o​​ ​C​ ​or​ ​greater. Fractional​ ​Distillation Fractional​ ​distillation​ ​is​ ​used​ ​to​ ​separate​ ​two​ ​molecules​ ​from​ ​a​ ​solution​ ​when​ ​their​ ​boiling​ ​points​ ​differ by​ ​less​ ​than​ ​25​o​​ ​C. Vacuum​ ​Distillation Vacuum​ ​distillation​ ​is​ ​used​ ​to​ ​separate​ ​two​ ​molecules​ ​from​ ​a​ ​solution​ ​when​ ​their​ ​boiling​ ​points​ ​are​ ​high and​ ​risk​ ​changing​ ​chemically. Polymerase​ ​Chain​ ​Reaction Purpose:​​ ​Used​ ​to​ ​amplify​ ​a​ ​small​ ​quantity​ ​of​ ​DNA​ ​by​ ​several​ ​orders of​ ​magnitude Step​ ​1:​​ ​DNA​ ​strands​ ​and​ ​complementary​ ​DNA​ ​primers​ ​are​ ​heated to​ ​95​o​​ ​C​ ​for​ ​15​ ​seconds​ ​to​ ​separate​ ​the​ ​strands. Step​ ​2:​​ ​The​ ​solution​ ​is​ ​abruptly​ ​cooled​ ​to​ ​54​o​​ ​C​ ​to​ ​allow​ ​the​ ​primers to​ ​anneal​ ​to​ ​each​ ​ssDNA. Step​ ​3:​ ​The​ ​solution​ ​is​ ​heated​ ​to​ ​72​o​​ ​C​ ​and​ ​new​ ​complementary strands​ ​are​ ​synthesized​ ​using​ ​Taq​ ​DNA​ ​polymerase. Step​ ​4:​​ ​The​ ​cycle​ ​is​ ​repeated​ ​until​ ​the​ ​desired​ ​quantity​ ​of​ ​DNA​ ​is synthesized. Spectroscopy Purpose:​ ​Used​ ​for​ ​structural​ ​determination​ ​of​ ​molecules H-NMR​ ​Spectroscopy 1​ The​ ​application​ ​of​ ​nuclear​ ​magnetic resonance​ ​regarding​ ​the​ 1​​ H​ ​isotope​ ​within the​ ​molecules​ ​of​ ​a​ ​substance. Chemical​ ​shift​:​ ​The​ ​chemical​ ​shift​ ​on​ ​the x-axis​ ​(δppm)​ ​represents​ ​the​ ​amount​ ​of deshielding​ ​of​ ​electrons​ ​that​ ​is​ ​caused​ ​by an​ ​adjacent​ ​heteroatom​ ​or​ ​pi​ ​bond. - 0​ ​-​ ​5​ ​ppm​ ​→​ ​Alkane​ ​region - 3​ ​-​ ​5​ ​ppm​ ​→​ ​Alkane​ ​with​ ​a heteroatom​ ​region - 5​ ​-​ ​7​ ​ppm​ ​→​ ​Alkene​ ​region - 6​ ​-​ ​8​ ​ppm​ ​→​ ​Aromatic​ ​region - 9​ ​-​ ​10​ ​ppm​ ​→​ ​Aldehyde​ ​region - 10​ ​-​ ​13​ ​ppm​ ​→​ ​Carboxylic​ ​acid region Integration:​ ​The​ ​integration​ ​of​ ​the​ ​peak​ ​determines​ ​the​ ​number​ ​of​ ​equivalent​ ​hydrogens​ ​a​ ​signal represents. Neighbors:​ ​The​ ​number​ ​of​ ​peaks​ ​determines​ ​the​ ​number​ ​of​ ​neighboring​ ​hydrogens​ ​that​ ​are​ ​≤​ ​3​ ​bonds away.​ ​The​ ​number​ ​of​ ​peaks​ ​equals​ ​the​ ​number​ ​of​ ​neighbors​ ​+​ ​1. - Singlet​ ​→​ ​No​ ​neighboring​ ​hydrogens - Doublet​ ​→​ ​One​ ​neighboring​ ​hydrogen - Triplet​ ​→​ ​Two​ ​neighboring​ ​hydrogens - Quartet​ ​→​ ​Three​ ​neighboring​ ​hydrogens - Quintet​ ​→​ ​Four​ ​neighboring​ ​hydrogens - Sextet​ ​→​ ​Five​ ​neighboring​ ​hydrogens - Septet​ ​→​ ​Six​ ​neighboring​ ​hydrogens - Multiplet​ ​→​ ​Seven​ ​or​ ​more​ ​neighboring​ ​hydrogens C-NMR​ ​spectroscopy 13​ The​ ​application​ ​of​ ​nuclear​ ​magnetic​ ​resonance​ ​regarding​ ​the​ 13​ ​ C​ ​isotope​ ​within​ ​the​ ​molecules​ ​of​ ​a substance Chemical​ ​shift​:​ ​The​ ​chemical​ ​shift​ ​on​ ​the​ ​x-axis​ ​(δppm)​ ​represents​ ​the​ ​amount​ ​of​ ​deshielding​ ​of electrons​ ​that​ ​is​ ​caused​ ​by​ ​an​ ​adjacent​ ​heteroatom​ ​or​ ​pi​ ​bond. - 0​ ​-​ ​70​ ​ppm​ ​→​ ​Alkane​ ​region - 90​ ​-​ ​120​ ​ppm​ ​→​ ​Alkene​ ​region - 110​ ​-​ ​160​ ​ppm​ ​→​ ​Aromatic​ ​region - 160​ ​-​ ​200​ ​ppm​ ​→​ ​Carbonyl​ ​region IR​ ​Spectroscopy IR​ ​spectroscopy​ ​is​ ​a​ ​method​ ​that​ ​is used​ ​to​ ​identify​ ​certain​ ​functional groups​ ​within​ ​a​ ​molecule.​ ​Only molecules​ ​that​ ​have​ ​a​ ​dipole moment​ ​will​ ​show​ ​absorbance.​ ​The x-axis​ ​is​ ​reported​ ​in​ ​wavenumbers (reciprocal​ ​centimeters)​ ​and​ ​the y-axis​ ​is​ ​reported​ ​in​ ​percent absorbance. Important​ ​regions: - 1700​ ​-​ ​1750​ ​→​ ​Carbonyls (sharp​ ​peak) - 1720​ ​-​ ​1740​ ​→​ ​Aldehydes - 1700​ ​-​ ​1725​ ​→​ ​Ketones - 1735​ ​-​ ​1750​ ​→​ ​Esters - 1700​ ​-​ ​1725​ ​→​ ​Carboxylic​ ​acids - 3200​ ​-​ ​3600​ ​→​ ​OH​ ​groups​ ​(broad​ ​peak) - 3300​ ​-​ ​3400​ ​→​ ​Amines - The​ ​number​ ​of​ ​peaks​ ​are​ ​relative​ ​to​ ​the​ ​number​ ​of​ ​hydrogens​ ​on​ ​the​ ​amine​ ​(e.g.,​ ​1o​ amines​ ​will​ ​have​ ​two​ ​peaks,​ ​2o​​ ​ ​amines​ ​will​ ​have​ ​one​ ​peak) UV-Vis​ ​Spectroscopy As​ ​the​ ​number​ ​of​ ​conjugated​ ​pi​ ​bonds​ ​increase,​ ​the energy​ ​gap​ ​between​ ​the​ ​highest​ ​occupied​ ​molecular orbital​ ​(HOMO)​ ​and​ ​lowest​ ​unoccupied​ ​molecular​ ​orbital (LUMO)​ ​decreases,​ ​which​ ​means​ ​that​ ​light​ ​of​ ​a​ ​lower energy​ ​is​ ​absorbed.​ ​This​ ​results​ ​in​ ​light​ ​with​ ​a​ ​longer wavelength​ ​to​ ​be​ ​emitted​ ​(as​ ​seen​ ​on​ ​the​ ​right).​ ​If​ ​a molecule​ ​absorbs​ ​green​ ​light,​ ​we​ ​see​ ​it​ ​as​ ​red. Autoradiography Purpose:​ ​To​ ​visualize​ ​the​ ​location​ ​of​ ​a​ ​radioactive​ ​substance​ ​in​ ​a​ ​molecule​ ​or​ ​structure In​ ​the​ ​scope​ ​of​ ​the​ ​MCAT,​ ​autoradiography​ ​is​ ​used​ ​primarily​ ​as​ ​an​ ​imaging​ ​technique​ ​to​ ​identify radiolabeled​ ​atoms​ ​that​ ​are​ ​in​ ​a​ ​molecule,​ ​often​ ​as​ ​part​ ​of​ ​a​ ​Southern,​ ​Northern,​ ​or​ ​Western​ ​blot.​ ​The radiolabeled​ ​substance​ ​is​ ​placed​ ​in​ ​contact​ ​with​ ​a​ ​photographic​ ​emulsion​ ​containing​ ​silver​ ​halide crystals.​ ​The​ ​radiation​ ​of​ ​the​ ​radiolabeled​ ​substance​ ​converts​ ​the​ ​silver​ ​halide​ ​crystals​ ​into​ ​metallic silver,​ ​producing​ ​an​ ​image. X-Ray​ ​Crystallography Purpose:​​ ​To​ ​visualize​ ​the​ ​structure​ ​of​ ​a​ ​molecule,​ ​used​ ​often​ ​with​ ​proteins In​ ​x-ray​ ​crystallography,​ ​a​ ​crystalline​ ​molecule​ ​causes​ ​a​ ​beam​ ​of​ ​incident​ ​x-rays​ ​to​ ​diffract​ ​into​ ​many specific​ ​directions.​ ​A​ ​three-dimensional​ ​image​ ​can​ ​be​ ​constructed​ ​by​ ​measuring​ ​the​ ​different​ ​angles​ ​and intensities​ ​of​ ​the​ ​diffracted​ ​rays. Immunoprecipitation Purpose:​​ ​Used​ ​to​ ​purify​ ​proteins​ ​from​ ​a​ ​solution In​ ​immunoprecipitation,​ ​a​ ​protein​ ​of​ ​interest​ ​can​ ​be​ ​precipitated​ ​from​ ​a​ ​solution​ ​by​ ​adding bead-conjugated​ ​antibody​ ​that​ ​is​ ​specific​ ​to​ ​the​ ​protein​ ​of​ ​interest.​ ​The​ ​antibody​ ​is​ ​bound​ ​to​ ​some​ ​sort of​ ​solid​ ​bead,​ ​which​ ​can​ ​be​ ​used​ ​for​ ​either​ ​extraction​ ​with​ ​a​ ​magnetic​ ​or​ ​by​ ​centrifuge. Radioimmunoassay Purpose​:​ ​Used​ ​to​ ​determine​ ​the​ ​concentration​ ​of​ ​a​ ​protein​ ​of​ ​interest​ ​in​ ​a​ ​given​ ​sample Similar​ ​to​ ​ELISA,​ ​the​ ​wells​ ​of​ ​a​ ​plate​ ​are​ ​coated​ ​with​ ​the​ ​primary​ ​antibody​ ​that​ ​is​ ​specific​ ​to​ ​our​ ​protein of​ ​interest.​ ​Next,​ ​the​ ​radiolabeled​ ​protein,​ ​typically​ ​containing​ ​a​ ​tyrosine​ ​residue​ ​labeled​ ​with​ 125​ ​ I,​ ​is added​ ​to​ ​the​ ​wells​ ​and​ ​binds​ ​to​ ​the​ ​primary​ ​antibody.​ ​The​ ​concentration​ ​of​ ​that​ ​radiolabeled​ ​protein​ ​is determined​ ​by​ ​counting​ ​the​ ​gamma​ ​emission.​ ​Next,​ ​a​ ​sample​ ​of​ ​the​ ​protein​ ​of​ ​interest​ ​in​ ​an​ ​unknown concentration​ ​is​ ​added​ ​to​ ​the​ ​wells,​ ​where​ ​it​ ​competes​ ​for​ ​the​ ​active​ ​site​ ​on​ ​the​ ​primary​ ​antibody, displacing​ ​an​ ​amount​ ​of​ ​the​ ​radiolabeled​ ​protein.​ ​The​ ​concentration​ ​of​ ​the​ ​radiolabeled​ ​protein​ ​is determined​ ​again​ ​by​ ​counting​ ​the​ ​gamma​ ​emission.​ ​The​ ​difference​ ​in​ ​concentrations​ ​provides​ ​the concentration​ ​of​ ​the​ ​protein​ ​of​ ​interest. Mass​ ​Spectrometry Purpose:​ ​Used​ ​to​ ​determine​ ​the​ ​molecular​ ​weight​ ​of​ ​a​ ​compound​ ​and​ ​aid​ ​in​ ​determining​ ​the​ ​molecular structure In​ ​mass​ ​spectrometry,​ ​the​ ​sample​ ​is vaporized​ ​and​ ​subjected​ ​to​ ​ionizing conditions.​ ​The​ ​charged​ ​molecule collides​ ​with​ ​an​ ​electron,​ ​resulting​ ​in the​ ​ejection​ ​of​ ​an​ ​electron​ ​from​ ​the molecule,​ ​making​ ​it​ ​a​ ​radical.​ ​The charged​ ​radical​ ​can​ ​undergo fragmentation​ ​or​ ​being​ ​detected.​ ​The x-axis​ ​represents​ ​the​ ​mass/charge ratio​ ​(m/z),​ ​which​ ​essentially​ ​just means​ ​the​ ​molecules​ ​mass​ ​using​ ​only the​ ​lowest​ ​isotopes​ ​of​ ​the​ ​atoms involved​ ​(e.g.,​ 12​ ​ C,​ 1​​ H,​ 35​ ​ Cl).​ ​The​ ​y-axis represents​ ​the​ ​intensity,​ ​or​ ​relative​ ​abundance​ ​of​ ​the​ ​molecule,​ ​usually​ ​given​ ​as​ ​a​ ​percentage. Base​ ​peak:​​ ​The​ ​tallest​ ​peak.​ ​This​ ​does​ ​not​ ​always​ ​represent​ ​the​ ​actual​ ​intact​ ​molecule,​ ​as​ ​it​ ​may sometimes​ ​be​ ​a​ ​fragment​ ​of​ ​the​ ​molecule​ ​that​ ​is​ ​found​ ​in​ ​higher​ ​abundance. Molecular​ ​ion​ ​peak​ ​(M):​​ ​The​ ​peak​ ​that​ ​represents​ ​the​ ​molecule.​ ​The​ ​m/z​ ​value​ ​of​ ​this​ ​peak​ ​represents the​ ​molecular​ ​weight​ ​of​ ​the​ ​molecule. M+1​ ​peak:​​ ​The​ ​relative​ ​abundance​ ​of​ 13​ ​ C​ ​in​ ​the​ ​molecule.​ ​Found​ ​in​ ​a​ ​relative​ ​abundance​ ​of​ ​1.1%.​ ​So​ ​if there​ ​is​ ​a​ ​M+1​ ​with​ ​a​ ​m/z​ ​value​ ​of​ ​4.4,​ ​it​ ​means​ ​that​ ​there​ ​are​ ​4​ ​carbons​ ​present​ ​(4.4/1.1​ ​=​ ​4). M+2​ ​peak:​​ ​The​ ​relative​ ​abundance​ ​of​ ​either​ 37​ ​ Cl​ ​or​ 81​ ​ Br​ ​in​ ​the​ ​molecule.​ 37​ ​ Cl​ ​will​ ​be​ ​found​ ​in​ ​a​ ​3:1​ ​ratio relative​ ​to​ ​the​ ​M​ ​peak​ ​(e.g.,​ ​if​ ​the​ ​M​ ​peak​ ​has​ ​a​ ​relative​ ​abundance​ ​of​ ​90%,​ ​if​ ​the​ ​M+2​ ​peak​ ​is​ ​at​ ​30%,​ ​it means​ ​there​ ​is​ ​chlorine​ ​present​ ​in​ ​the​ ​molecule).​ 81​ ​ Br​ ​will​ ​be​ ​found​ ​in​ ​a​ ​1:1​ ​ratio​ ​relative​ ​to​ ​the​ ​M​ ​peak (e.g.,​ ​if​ ​the​ ​M​ ​peak​ ​has​ ​a​ ​relative​ ​abundance​ ​of​ ​90%,​ ​if​ ​the​ ​M+2​ ​peak​ ​is​ ​also​ ​at​ ​90%,​ ​it​ ​means​ ​there​ ​is bromine​ ​present​ ​in​ ​the​ ​molecule). Fragments​:​ ​There​ ​are​ ​three​ ​types​ ​of​ ​fragmentation​ ​that​ ​can​ ​occur,​ ​which​ ​can​ ​help​ ​identify​ ​the​ ​structure of​ ​the​ ​molecule.​ ​1)​ ​Alkane​ ​fragmentation,​ ​2)​ ​alcohol​ ​dehydration,​ ​and​ ​3)​ ​alpha​ ​cleavage.​ ​These​ ​are​ ​most likely​ ​beyond​ ​the​ ​scope​ ​of​ ​the​ ​MCAT. Enzyme-Linked​ ​Immunosorbent​ ​Assay​ ​(ELISA) Purpose:​​ ​Used​ ​to​ ​identify​ ​the​ ​concentration​ ​of​ ​a​ ​molecule​ ​of​ ​interest​ ​in​ ​a​ ​given​ ​sample ELISA​ ​is​ ​an​ ​assay​ ​that​ ​uses​ ​primary antibodies​ ​that​ ​are​ ​specific​ ​to​ ​a​ ​molecule​ ​of interest​ ​and​ ​secondary​ ​antibodies​ ​that​ ​are specific​ ​to​ ​primary​ ​antibodies​ ​and​ ​are conjugated​ ​with​ ​a​ ​fluorophore,​ ​so​ ​their presence​ ​can​ ​be​ ​measured​ ​via spectrophotometry.​ ​There​ ​are​ ​two​ ​different methods​ ​of​ ​ELISAs​ ​that​ ​are​ ​used. Indirect​ ​ELISA The​ ​molecule​ ​of​ ​interest​ ​(in​ ​this​ ​case,​ ​considered​ ​an​ ​antigen)​ ​is​ ​coated​ ​to​ ​the​ ​wells​ ​of​ ​a​ ​plate.​ ​A​ ​primary antibody​ ​that​ ​is​ ​specific​ ​for​ ​that​ ​antigen​ ​is​ ​added​ ​and​ ​washed​ ​to​ ​remove​ ​any​ ​unbound​ ​antibodies.​ ​Next, the​ ​secondary​ ​antibody​ ​is​ ​added.​ ​The​ ​secondary​ ​antibody​ ​is​ ​linked​ ​to​ ​an​ ​enzyme,​ ​often​ ​horseradish peroxidase​ ​(HRP),​ ​that​ ​will​ ​be​ ​converted​ ​into​ ​a​ ​fluorophore​ ​when​ ​reacted​ ​with​ ​an​ ​oxidizing​ ​agent,​ ​such as​ ​hydrogen​ ​peroxide.​ ​This​ ​will​ ​cause​ ​a​ ​change​ ​in​ ​color,​ ​which​ ​can​ ​be​ ​detected​ ​using photospectrometry.​ ​The​ ​absorbance​ ​of​ ​the​ ​well​ ​is​ ​compared​ ​against​ ​a​ ​serial-diluted​ ​standard​ ​of​ ​known concentration,​ ​and​ ​based​ ​on​ ​a​ ​determined​ ​curve​ ​using​ ​the​ ​standards,​ ​the​ ​concentration​ ​of​ ​the​ ​molecule in​ ​the​ ​well​ ​can​ ​be​ ​determined. Sandwich​ ​ELISA The​ ​primary​ ​antibody​ ​that​ ​is​ ​specific​ ​to​ ​our​ ​molecule​ ​of​ ​interest​ ​is​ ​coated​ ​to​ ​the​ ​wells​ ​of​ ​a​ ​plate.​ ​Next, the​ ​molecule​ ​of​ ​interest​ ​is​ ​added​ ​to​ ​the​ ​wells​ ​and​ ​then​ ​washed​ ​to​ ​remove​ ​any​ ​unbound​ ​molecules. Next,​ ​the​ ​secondary​ ​antibody​ ​is​ ​added.​ ​The​ ​secondary​ ​antibody​ ​is​ ​linked​ ​to​ ​an​ ​enzyme,​ ​often horseradish​ ​peroxidase​ ​(HRP),​ ​that​ ​will​ ​be​ ​converted​ ​into​ ​a​ ​fluorophore​ ​when​ ​reacted​ ​with​ ​an​ ​oxidizing agent,​ ​such​ ​as​ ​hydrogen​ ​peroxide.​ ​This​ ​will​ ​cause​ ​a​ ​change​ ​in​ ​color,​ ​which​ ​can​ ​be​ ​detected​ ​using photospectrometry.​ ​The​ ​absorbance​ ​of​ ​the​ ​well​ ​is​ ​compared​ ​against​ ​a​ ​serial-diluted​ ​standard​ ​of​ ​known concentration,​ ​and​ ​based​ ​on​ ​a​ ​determined​ ​curve​ ​using​ ​the​ ​standards,​ ​the​ ​concentration​ ​of​ ​the​ ​molecule in​ ​the​ ​well​ ​can​ ​be​ ​determined. Edman​ ​Degradation Purpose:​​ ​Used​ ​to​ ​sequence​ ​the​ ​amino​ ​acid​ ​residues​ ​in​ ​a​ ​protein Edman​ ​Degradation​ ​is​ ​conducted​ ​by​ ​removing​ ​one amino​ ​acid​ ​residue​ ​at​ ​a​ ​time​ ​from​ ​the​ ​N-terminus of​ ​the​ ​peptide.​ ​Phenyl​ ​isothiocyanate​ ​is​ ​added​ ​to the​ ​N-terminus​ ​of​ ​a​ ​polypeptide,​ ​which​ ​then cyclizes​ ​and​ ​breaks​ ​off,​ ​leaving​ ​an​ ​intact polypeptide​ ​that​ ​is​ ​shortened​ ​by​ ​one​ ​residue.​ ​The PTH-amino​ ​acid​ ​hybrid​ ​can​ ​then​ ​be​ ​analyzed​ ​using chromatographic​ ​techniques​ ​to​ ​identify​ ​the​ ​amino acid.​ ​This​ ​can​ ​be​ ​repeated​ ​until​ ​every​ ​amino​ ​acid residue​ ​in​ ​the​ ​polypeptide​ ​is​ ​identified.​ ​This method​ ​is​ ​limited​ ​in​ ​the​ ​fact​ ​that​ ​it​ ​can​ ​only accurately​ ​identify​ ​polypeptides​ ​less​ ​than​ ​50 residues. Gram​ ​Staining Purpose:​ ​Used​ ​to​ ​differentiate​ ​bacteria​ ​into​ ​two​ ​groups,​ ​gram-positive​ ​or​ ​gram-negative,​ ​based​ ​on​ ​the content​ ​of​ ​their​ ​cell​ ​wall The​ ​sample​ ​of​ ​bacteria​ ​is​ ​heat-fixed​ ​to​ ​a​ ​slide​ ​and​ ​crystal​ ​violet​ ​dye​ ​is​ ​added.​ ​Iodide​ ​is​ ​added​ ​to​ ​the bacteria,​ ​which​ ​binds​ ​to​ ​the​ ​crystal​ ​violet​ ​dye​ ​and​ ​traps​ ​it​ ​in​ ​the​ ​bacterial​ ​cell.​ ​The​ ​bacteria​ ​is​ ​then washed​ ​with​ ​alcohol​ ​to​ ​remove​ ​any​ ​dye​ ​that​ ​was​ ​not​ ​taken​ ​up​ ​by​ ​the​ ​bacteria.​ ​Safranin​ ​is​ ​added​ ​as​ ​a counterstain,​ ​so​ ​that​ ​the​ ​bacteria​ ​that​ ​did​ ​not​ ​stain​ ​with​ ​crystal​ ​violet​ ​can​ ​be​ ​visualized. Gram-positive​ ​bacteria:​​ ​Appears​ ​purple​ ​on​ ​the​ ​slide.​ ​Contains​ ​a​ ​thick​ ​peptidoglycan​ ​layer​ ​that​ ​takes​ ​up the​ ​stain. Gram-negative​ ​bacteria:​​ ​Appears​ ​pink​ ​on​ ​the​ ​slide.​ ​Contains​ ​a​ ​thin​ ​peptidoglycan​ ​layer​ ​sandwiched between​ ​two​ ​lipid​ ​bilayers​ ​that​ ​take​ ​up​ ​the​ ​safranin​ ​stain. Restriction​ ​Fragment​ ​Length​ ​Polymorphism​ ​(RFLP) Purpose:​​ ​Used​ ​to​ ​identify​ ​differences​ ​in​ ​homologous​ ​DNA​ ​sequences​ ​based​ ​on the​ ​length​ ​of​ ​fragments​ ​caused​ ​by​ ​restriction​ ​enzymes RFLP​ ​allows​ ​us​ ​to​ ​determine​ ​differences​ ​in​ ​two​ ​or​ ​more​ ​DNA​ ​sequences​ ​of​ ​the same​ ​gene.​ ​Most​ ​often,​ ​this​ ​will​ ​be​ ​comparing​ ​a​ ​wild​ ​type​ ​(WT)​ ​gene​ ​with​ ​a mutated​ ​version​ ​of​ ​the​ ​gene.​ ​The​ ​DNA​ ​strand​ ​is​ ​exposed​ ​to​ ​a​ ​restriction​ ​enzyme, also​ ​called​ ​a​ ​restriction​ ​endonuclease.​ ​Restriction​ ​enzymes​ ​recognize​ ​a​ ​specific palindromic​ ​sequence​ ​(the​ ​sequence​ ​is​ ​the​ ​same​ ​in​ ​the​ ​5’​ ​→​ ​3’​ ​direction​ ​in​ ​both strands)​ ​in​ ​the​ ​DNA​ ​and​ ​cleave​ ​both​ ​strands.​ ​Once​ ​the​ ​DNA​ ​sequence​ ​is​ ​cleaved with​ ​the​ ​restriction​ ​enzymes,​ ​it​ ​can​ ​be​ ​ran​ ​through​ ​gel​ ​electrophoresis.​ ​If​ ​a mutation​ ​has​ ​occurred,​ ​there​ ​may​ ​be​ ​a​ ​difference​ ​in​ ​the​ ​number​ ​and​ ​length​ ​of strands​ ​between​ ​the​ ​WT​ ​and​ ​mutant​ ​genes,​ ​as​ ​the​ ​restriction​ ​points​ ​may​ ​differ. Salting​ ​Out​ ​and​ ​Dialysis Purpose:​​ ​Purification​ ​of​ ​proteins​ ​in​ ​a​ ​solution Adding​ ​salt​ ​to​ ​a​ ​solution​ ​containing​ ​proteins can​ ​allow​ ​you​ ​to​ ​selectively​ ​precipitate​ ​out proteins.​ ​Salting​ ​out​ ​is​ ​due​ ​to​ ​the competition​ ​between​ ​the​ ​salt​ ​ions​ ​and​ ​the protein​ ​for​ ​water​ ​to​ ​keep​ ​the​ ​protein​ ​in solution.​ ​The​ ​salt​ ​concentration​ ​at​ ​which​ ​a protein​ ​will​ ​precipitate​ ​varies​ ​for​ ​each protein. After​ ​a​ ​protein​ ​has​ ​been​ ​precipitated,​ ​the salt​ ​can​ ​be​ ​removed​ ​via​ ​dialysis.​ ​The solution​ ​is​ ​placed​ ​in​ ​a​ ​dialysis​ ​bag​ ​and​ ​then added​ ​to​ ​a​ ​hypotonic​ ​solution.​ ​The​ ​ions​ ​will pass​ ​through​ ​the​ ​semipermeable​ ​membrane of​ ​the​ ​dialysis​ ​bag,​ ​while​ ​the​ ​protein​ ​of interest​ ​is​ ​left​ ​inside. Reducing​ ​Sugar​ ​Tests Purpose:​​ ​Used​ ​to​ ​identify​ ​the​ ​presence​ ​of​ ​a​ ​reducing​ ​sugar​ ​in​ ​a​ ​solution A​ ​reducing​ ​sugar​ ​is​ ​any​ ​sugar​ ​that​ ​is​ ​capable​ ​of​ ​acting​ ​as​ ​a​ ​reducing agent​ ​due​ ​to​ ​the​ ​presence​ ​of​ ​a​ ​free​ ​aldehyde​ ​or​ ​ketone​ ​functional group.​ ​All​ ​monosaccharides​ ​are​ ​reducing​ ​sugars,​ ​since​ ​they​ ​are capable​ ​of​ ​mutarotation,​ ​and​ ​therefore,​ ​will​ ​be​ ​found​ ​in​ ​the open-chain​ ​form​ ​to​ ​some​ ​degree.​ ​However,​ ​not​ ​all​ ​disaccharides, oligosaccharides,​ ​or​ ​polysaccharides​ ​are​ ​reducing​ ​sugars,​ ​since​ ​some glycosidic​ ​bonds​ ​are​ ​between​ ​two​ ​anomeric​ ​carbons​ ​(classified​ ​as​ ​a 1→2​ ​bond),​ ​preventing​ ​mutarotation.​ ​Sucrose​ ​is​ ​an​ ​example​ ​of​ ​a non-reducing​ ​disaccharide​ ​while​ ​maltose​ ​is​ ​an​ ​example​ ​of​ ​a reducing​ ​disaccharide​ ​(as​ ​seen​ ​in​ ​the​ ​figure​ ​on​ ​the​ ​right).​ ​Certain reagents​ ​can​ ​test​ ​for​ ​the​ ​presence​ ​of​ ​a​ ​free​ ​aldehyde​ ​or​ ​ketone group​ ​in​ ​order​ ​to​ ​identify​ ​the​ ​presence​ ​of​ ​a​ ​reducing​ ​sugar. Tollen’s​ ​Test Tollen’s​ ​reagent​ ​tests​ ​for​ ​the​ ​presence​ ​of​ ​an​ ​aldehyde​ ​and​ ​can​ ​distinguish​ ​between​ ​aldoses​ ​and​ ​ketoses. Ketones​ ​do​ ​not​ ​react​ ​unless​ ​they​ ​are​ ​α-hydroxy-ketones.​ ​A​ ​positive​ ​Tollen’s​ ​test​ ​is​ ​characterized​ ​by​ ​the precipitation​ ​of​ ​elemental​ ​silver. Tollen’s​ ​reagent​ ​consists​ ​of​ ​[Ag(NH​3​)​2​]NO​3​. Benedict’s​ ​Test Benedict’s​ ​reagent​ ​tests​ ​for​ ​the​ ​presence​ ​of​ ​an​ ​aldehyde.​ ​Ketones​ ​do​ ​not​ ​react​ ​unless​ ​they​ ​are α-hydroxy-ketones.​ ​A​ ​positive​ ​Benedict’s​ ​test​ ​is​ ​characterized​ ​by​ ​a​ ​change​ ​in​ ​color​ ​from​ ​clear​ ​blue​ ​to brick-red​ ​with​ ​the​ ​formation​ ​of​ ​a​ ​precipitate. Benedict’s​ ​reagent​ ​consists​ ​of​ ​a​ ​mixture​ ​of​ ​sodium​ ​carbonate,​ ​sodium​ ​citrate,​ ​and​ ​copper​ ​(II)​ ​sulfate pentahydrate. Fehling’s​ ​Test Fehling’s​ ​solution​ ​tests​ ​for​ ​the​ ​presence​ ​of​ ​an​ ​aldehyde.​ ​Ketones​ ​do​ ​not​ ​react​ ​unless​ ​they​ ​are α-hydroxy-ketones.​ ​A​ ​positive​ ​Fehling’s​ ​test​ ​is​ ​characterized​ ​by​ ​a​ ​change​ ​in​ ​color​ ​from​ ​clear​ ​blue​ ​to brick-red​ ​with​ ​the​ ​formation​ ​of​ ​a​ ​precipitate. Fehling’s​ ​solution​ ​consists​ ​of​ ​two​ ​parts;​ ​Fehling’s​ ​A​ ​and​ ​Fehling’s​ ​B.​ ​Fehling’s​ ​A​ ​consists​ ​of​ ​aqueous copper​ ​(II)​ ​sulfate.​ ​Fehling’s​ ​B​ ​consists​ ​of​ ​potassium​ ​sodium​ ​tartrate​ ​and​ ​sodium​ ​hydroxide. cDNA​ ​Libraries Purpose:​​ ​Used​ ​to​ ​create​ ​and​ ​house​ ​complimentary​ ​DNA​ ​(cDNA)​ ​strands​ ​that​ ​can​ ​be​ ​expressed​ ​in bacterial​ ​vectors In​ ​order​ ​to​ ​synthesize​ ​proteins​ ​for​ ​things​ ​like​ ​medication,​ ​such​ ​as​ ​insulin,​ ​we​ ​must​ ​clone​ ​the​ ​DNA sequence​ ​for​ ​that​ ​protein​ ​in​ ​a​ ​bacterial​ ​vector.​ ​However,​ ​eukaryotes​ ​have​ ​the​ ​ability​ ​to​ ​undergo post-transcriptional​ ​modification​ ​of​ ​hnRNA​ ​to​ ​create​ ​mRNA​ ​while​ ​prokaryotes​ ​do​ ​not.​ ​Therefore,​ ​we​ ​can not​ ​insert​ ​eukaryotic​ ​DNA​ ​directly​ ​into​ ​a​ ​bacterial​ ​vector​ ​since​ ​it​ ​still​ ​contains​ ​introns.​ ​Instead,​ ​we​ ​must synthesize​ ​a​ ​strand​ ​of​ ​cDNA​ ​from​ ​the​ ​protein​ ​of​ ​interest’s​ ​respective​ ​mRNA. The​ ​mRNA​ ​transcript​ ​of​ ​the​ ​protein​ ​of​ ​interest​ ​is​ ​isolated​ ​and​ ​a​ ​complementary​ ​DNA​ ​primer​ ​containing many​ ​thymine​ ​repeats​ ​and​ ​a​ ​free​ ​3’-OH​ ​group​ ​is​ ​added,​ ​which​ ​anneals​ ​to​ ​the​ ​poly-A​ ​tail​ ​of​ ​the​ ​mRNA. Next,​ ​the​ ​mRNA​ ​is​ ​exposed​ ​to​ ​reverse​ ​transcriptase​ ​and​ ​an​ ​excess​ ​of​ ​the​ ​four​ ​dNTPs​ ​so​ ​a complementary​ ​cDNA​ ​strand​ ​can​ ​be​ ​synthesized,​ ​creating​ ​a​ ​cDNA-mRNA​ ​hybrid.​ ​The​ ​hybrid​ ​strand​ ​is hydrolyzed​ ​using​ ​an​ ​alkaline​ ​solution.​ ​A​ ​primer​ ​is​ ​added​ ​to​ ​the​ ​new​ ​single-stranded​ ​cDNA​ ​and​ ​the complementary​ ​strand​ ​is​ ​synthesized​ ​by​ ​DNA​ ​polymerase.​ ​The​ ​new​ ​double-stranded​ ​cDNA​ ​can​ ​be inserted​ ​into​ ​a​ ​bacterial​ ​plasmid​ ​vector​ ​by​ ​using​ ​restriction​ ​enzymes​ ​and​ ​the​ ​bacteria​ ​will​ ​synthesize​ ​the protein​ ​of​ ​interest.

Use Quizgecko on...
Browser
Browser