Metal Structure Repair Chapter 4 PDF

Summary

This document details techniques and tools for metal structure repair, focusing on shaping aluminum and steel. It includes step-by-step instructions and diagrams, explaining various methods and supporting notes related to the processes.

Full Transcript

pressure setting. Steel or aluminum can be shaped by pushing the metal back and forth between the wheels. Very little pressure is needed to shape the panel, which is stretched or raised to the desired shape. It is important to work slowly and gradually curve the metal into the desired shape. Monitor...

pressure setting. Steel or aluminum can be shaped by pushing the metal back and forth between the wheels. Very little pressure is needed to shape the panel, which is stretched or raised to the desired shape. It is important to work slowly and gradually curve the metal into the desired shape. Monitor the curvature with frequent references to the template. The English wheel is used for shaping low crowns on large panels and polishing or planishing (to smooth the surface of a metal by rolling or hammering it) parts that have been formed with power hammers or hammer and shot bag. Piccolo Former The Piccolo former is used for cold forming and rolling sheet metal and other profile sections (extrusions). [Figure 4-65] The position of the ram is adjustable in height by means of either a handwheel or a foot pedal that permits control of the working pressure. Be sure to utilize the adjusting ring situated in the machine head to control the maximum working pressure. The forming tools are located in the moving ram and the lower tool holder. Depending on the variety of forming tools included, the operator can perform such procedures as forming edges, bending profiles, removing wrinkles, spot shrinking to remove buckles and dents, or expanding dome sheet metal. Available in either fiberglass (to prevent marring the surface) or steel (for working harder materials) faces, the tools are the quickchange type. Shrinking & Stretching Tools Shrinking Tools Shrinking dies repeatedly clamp down on the metal, then shift inward. [Figure 4-66] This compresses the material between the dies, which actually slightly increases the thickness of the metal. Strain hardening takes place during this process, so it is best to set the working pressure high enough to complete the shape rather quickly (eight passes could be considered excessive). Caution: Avoid striking a die on the radius itself when forming a curved flange. This damages the metal in the radius Figure 4-66. Shrinking and stretching tools. and decreases the angle of bend. Stretching Tools Stretching dies repeatedly clamp down on the surface and then shift outward. This stretches the metal between the dies, which decreases the thickness in the stretched area. Striking the same point too many times weakens and eventually cracks the part. It is advantageous to deburr or even polish the edges of a flange that must undergo even moderate stretching to avoid crack formation. Forming flanges with existing holes causes the holes to distort and possibly crack or substantially weaken the flange. Manual Foot-Operated Sheet Metal Shrinker The manual foot-operated sheet metal shrinker operates very similarly to the Piccolo former though it only has two primary functions: shrinking and stretching. The only dies available are steel faced and therefore tend to mar the surface of the metal. When used on aluminum, it is necessary to gently blend out the surface irregularities (primarily in the cladding), then treat and paint the part. Since this is a manual machine, it relies on leg power, as the operator repeatedly steps on the foot pedal. The more force is applied, the more stresses are concentrated at that single point. It yields a better part with a series of smaller stretches (or shrinks) than with a few intense ones. Squeezing the dies over the radius damages the metal and flattens out some of the bend. It may be useful to tape a thick piece of plastic or micarta to the opposite leg to shim the radius of the angle away from the clamping area of the dies. Note: Watch the part change shape while slowly applying pressure. A number of small stretches works more effectively than one large one. If applying too much pressure, the metal has the tendency to buckle. Figure 4-65. Piccolo former. 4-26 Hand-Operated Shrinker & Stretcher The hand-operated shrinker and stretcher is similar to the manual foot-operated unit, except a handle is used to apply force to shrinking and stretching blocks. The dies are all metal and leave marks on aluminum that need to be blended out after the shrinking or stretching operation. [Figure 4-67] Dollies & Stakes Sheet metal is often formed or finished (planished) over anvils, available in a variety of shapes and sizes, called dollies and stakes. These are used for forming small, oddshaped parts, or for putting on finishing touches for which a large machine may not be suited. Dollies are meant to be held in the hand, whereas stakes are designed to be supported by a flat cast iron bench plate fastened to the workbench. [Figure 4-68] Most stakes have machined, polished surfaces that have been hardened. Use of stakes to back up material when chiseling, or when using any similar cutting tool, defaces the surface of the stake and makes it useless for finish work. Hardwood Form Blocks Hardwood form blocks can be constructed to duplicate practically any aircraft structural or nonstructural part. The wooden block or form is shaped to the exact dimensions and contour of the part to be formed. V-Blocks V-blocks made of hardwood are widely used in airframe metalwork for shrinking and stretching metal, particularly angles and flanges. The size of the block depends on the work being done and on personal preference. Although any type of hardwood is suitable, maple and ash are recommended for best results when working with aluminum alloys. Figure 4-68. Dollies and stakes. Shrinking Blocks A shrinking block consists of two metal blocks and some device for clamping them together. One block forms the base and the other is cut away to provide space where the crimped material can be hammered. The legs of the upper jaw clamp the material to the base block on each side of the crimp to prevent the material from creeping away, but remains stationary while the crimp is hammered flat (being shrunk). This type of crimping block is designed to be held in a bench vise. Shrinking blocks can be made to fit any specific need. The basic form and principle remain the same, even though the blocks may vary considerably in size and shape. Sandbags A sandbag is generally used as a support during the bumping process. A serviceable bag can be made by sewing heavy canvas or soft leather to form a bag of the desired size, and filling it with sand which has been sifted through a fine mesh screen. Figure 4-67. Hand-operated shrinker and stretcher unit. Before filling canvas bags with sand, use a brush to coat the inside of the bag with softened paraffin or beeswax, which forms a sealing layer and prevents the sand from working 4-27 through the pores of the canvas. Bags can also be filled with shot as an alternative to sand. Sheet Metal Hammers & Mallets The sheet metal hammer and the mallet are metal fabrication hand tools used for bending and forming sheet metal without marring or indenting the metal. The hammer head is usually made of high carbon, heat-treated steel, while the head of the mallet, which is usually larger than that of the hammer, is made of rubber, plastic, wood, or leather. In combination with a sandbag, V-blocks, and dies, sheet metal body hammers and mallets are used to form annealed metal. [Figure 4-69] Sheet Metal Holding Devices In order to work with sheet metal during the fabrication process, the aviation technician uses a variety of holding devices, such as clamps, vises, and fasteners to hold the work together. The type of operation being performed and the type of metal being used determine what type of the holding device is needed. Clamps & Vises Clamps and vises hold materials in place when it is not possible to handle a tool and the workpiece at the same time. A clamp is a fastening device with movable jaws that has opposing, often adjustable, sides or parts. An essential fastening device, it holds objects tightly together to prevent movement or separation. Clamps can be either temporary or permanent. Temporary clamps, such as the carriage clamp (commonly called the C-clamp), are used to position components while fixing them together. C-Clamps The C-clamp is shaped like a large C and has three main parts: threaded screw, jaw, and swivel head. [Figure 4-70] The swivel plate or flat end of the screw prevents the end from turning directly against the material being clamped. C-clamp Figure 4-70. C-clamps. size is measured by the dimension of the largest object the frame can accommodate with the screw fully extended. The distance from the center line of the screw to the inside edge of the frame or the depth of throat is also an important consideration when using this clamp. C-clamps vary in size from two inches upward. Since C-clamps can leave marks on aluminum, protect the aircraft covering with masking tape at the places where the C-clamp is used. Vises Vises are another clamping device that hold the workpiece in place and allow work to be done on it with tools such as saws and drills. The vise consists of two fixed or adjustable jaws that are opened or closed by a screw or a lever. The size of a vise is measured by both the jaw width and the capacity of the vise when the jaws are fully open. Vises also depend on a screw to apply pressure, but their textured jaws enhance gripping ability beyond that of a clamp. Two of the most commonly used vises are the machinist’s vise and the utility vise. [Figure 4-71] The machinist’s vise has flat jaws and usually a swivel base, whereas the utility bench vise has scored, removable jaws and an anvil-faced back jaw. This vise holds heavier material than the machinist’s vise and also grips pipe or rod firmly. The back jaw can be used as an anvil if the work being done is light. To avoid marring metal in the vise jaws, add some type of padding, such as a ready-made rubber jaw pad. Reusable Sheet Metal Fasteners Reusable sheet metal fasteners temporarily hold drilled sheet metal parts accurately in position for riveting or drilling. If sheet metal parts are not held tightly together, they separate while being riveted or drilled. The Cleco (also spelled Cleko) fastener is the most commonly used sheet metal holder. [Figure 4-72] Figure 4-69. Sheet metal mallet and hammers. 4-28 Figure 4-73. Hex nut fastener. Figure 4-71. A utility vise with swivel base and anvil. a consistent clamping force from 0 to 300 pounds, but the aircraft technician can turn and tighten these fasteners by hand. Cleco hex nut fasteners are identical to Cleco wing nut fasteners, but the Cleco hex nut can be used with pneumatic Cleco installers. Aluminum Alloys Aluminum alloys are the most frequently encountered type of sheet metal in aircraft repair. AC 43.13-1 Chapter 4, Metal Structure, Welding, and Brazing; Section 1, Identification of Metals (as revised) provides an in-depth discussion of all metal types. This section describes the aluminum alloys used in the forming processes discussed in the remainder of the chapter. Figure 4-72. Cleco fastener. Cleco Fasteners The Cleco fastener consists of a steel cylinder body with a plunger on the top, a spring, a pair of step-cut locks, and a spreader bar. These fasteners come in six different sizes: 3⁄32, 1 ⁄8, 5⁄32, 3⁄16, 1⁄4, and 3⁄8-inch in diameter with the size stamped on the fastener. Color coding allows for easy size recognition. A special type of plier fits the six different sizes. When installed correctly, the reusable Cleco fastener keeps the holes in the separate sheets aligned. Hex Nut & Wing Nut Temporary Sheet Fasteners Hex nut and wing nut fasteners are used to temporarily fasten sheets of metal when higher clamp up pressure is required. [Figure 4-73] Hex nut fasteners provide up to 300 pounds of clamping force with the advantage of quick installation and removal with a hex nut runner. Wing nut sheet metal fasteners, characterized by wing shaped protrusions, not only provide In its pure state, aluminum is lightweight, lustrous, and corrosion resistant. The thermal conductivity of aluminum is very high. It is ductile, malleable, and nonmagnetic. When combined with various percentages of other metals (generally copper, manganese, and magnesium), aluminum alloys that are used in aircraft construction are formed. Aluminum alloys are lightweight and strong. They do not possess the corrosion resistance of pure aluminum and are usually treated to prevent deterioration. Alclad™ aluminum is an aluminum alloy with a protective cladding of aluminum to improve its corrosion resistance. To provide a visual means for identifying the various grades of aluminum and aluminum alloys, aluminum stock is usually marked with symbols such as a Government Specification Number, the temper or condition furnished, or the commercial code marking. Plate and sheet are usually marked with specification numbers or code markings in rows approximately five inches apart. Tubes, bars, rods, and extruded shapes are marked with specification numbers or code markings at intervals of three to five feet along the length of each piece. The commercial code marking consists of a number that identifies the particular composition of the alloy. Additionally, 4-29 letter suffixes designate the basic temper designations and subdivisions of aluminum alloys. The aluminum and various aluminum alloys used in aircraft repair and construction are as follows: Aluminum designated by the symbol 1100 is used where strength is not an important factor, but where weight economy and corrosion resistance are desired. This aluminum is used for fuel tanks, cowlings, and oil tanks. It is also used for repairing wingtips and tanks. This material is weldable. Alloy 3003 is similar to 1100 and is generally used for the same purposes. It contains a small percentage of magnesium and is stronger and harder than 1100 aluminum. Alloy 2014 is used for heavy-duty forgings, plates, extrusions for aircraft fittings, wheels, and major structural components. This alloy is often used for applications requiring high strength and hardness, as well as for service at elevated temperatures. Alloy 2017 is used for rivets. This material is now in limited use. Alloy 2024, with or without Alclad™ coating, is used for aircraft structures, rivets, hardware, machine screw products, and other miscellaneous structural applications. In addition, this alloy is commonly used for heat-treated parts, airfoil and fuselage skins, extrusions, and fittings. Alloy 2025 is used extensively for propeller blades. Alloy 2219 is used for fuel tanks, aircraft skin, and structural components. This material has high fracture toughness and is readily weldable. Alloy 2219 is also highly resistant to stress corrosion cracking. Alloy 5052 is used where good workability, very good corrosion resistance, high fatigue strength, weldability, and moderate static strength are desired. This alloy is used for fuel, hydraulic, and oil lines. Alloy 5056 is used for making rivets and cable sheeting and in applications where aluminum comes into contact with magnesium alloys. Alloy 5056 is generally resistant to the most common forms of corrosion. Cast aluminum alloys are used for cylinder heads, crankcases, fuel injectors, carburetors, and landing wheels. Various alloys, including 3003, 5052, and 1100 aluminum, are hardened by cold working rather than by heat treatment. Other alloys, including 2017 and 2024, are hardened by heat treatment, cold working, or a combination of the two. Various casting alloys are hardened by heat treatment. Alloy 6061 is generally weldable by all commercial procedures and methods. It also maintains acceptable toughness in many cryogenic applications. Alloy 6061 is easily extruded and is commonly used for hydraulic and pneumatic tubing. Although higher in strength than 2024, alloy 7075 has a lower fracture toughness and is generally used in tension applications where fatigue is not critical. The T6 temper of 7075 should be avoided in corrosive environments. However, the T7351 temper of 7075 has excellent stress corrosion resistance and better fracture toughness than the T6 temper. The T76 temper is often used to improve the resistance of 7075 to exfoliate corrosion. Structural Fasteners Structural fasteners, used to join sheet metal structures securely, come in thousands of shapes and sizes with many of them specialized and specific to certain aircraft. Since some structural fasteners are common to all aircraft, this section focuses on the more frequently used fasteners. For the purposes of this discussion, fasteners are divided into two main groups: solid shank rivets and special purpose fasteners that include blind rivets. Solid Shank Rivet The solid shank rivet is the most common type of rivet used in aircraft construction. Used to join aircraft structures, solid shank rivets are one of the oldest and most reliable types of fastener. Widely used in the aircraft manufacturing industry, solid shank rivets are relatively low-cost, permanently installed fasteners. They are faster to install than bolts and nuts since they adapt well to automatic, high-speed installation tools. Rivets should not be used in thick materials or in tensile applications, as their tensile strengths are quite low relative to their shear strength. The longer the total grip length (the total thickness of sheets being joined), the more difficult it becomes to lock the rivet. Riveted joints are neither airtight nor watertight unless special seals or coatings are used. Since rivets are permanently installed, they must be removed by drilling them out, a laborious task. Description Before installation, the rivet consists of a smooth cylindrical shaft with a factory head on one end. The opposite end is called the bucktail. To secure two or more pieces of sheet metal together, the rivet is placed into a hole cut just a bit larger in diameter than the rivet itself. Once placed in this predrilled hole, the bucktail is upset or deformed by any of 4-30 several methods from hand-held hammers to pneumatically driven squeezing tools. This action causes the rivet to expand about 11⁄2 times the original shaft diameter, forming a second head that firmly holds the material in place. Rivet Head Shape Solid rivets are available in several head shapes, but the universal (also known as protruding head) and the 100° countersunk head are the most commonly used in aircraft structures. Universal head rivets were developed specifically for the aircraft industry and designed as a replacement for both the round and brazier head rivets. These rivets replaced all protruding head rivets and are used primarily where the protruding head has no aerodynamic significance. They have a flat area on the head, a head diameter twice the shank diameter, and a head height approximately 42.5 percent of the shank diameter. [Figure 4-74] The countersunk head angle can vary from 60° to 120°, but the 100° has been adopted as standard because this head style provides the best possible compromise between tension/ shear strength and flushness requirements. This rivet is used where flushness is required because the rivet is flat-topped and undercut to allow the head to fit into a countersunk or dimpled hole. The countersunk rivet is primarily intended for use when aerodynamics smoothness is critical, such as on the external surface of a high-speed aircraft. Typically, rivets are fabricated from aluminum alloys, such as 2017-T4, 2024-T4, 2117-T4, 7050, and 5056. Titanium, nickel-based alloys, such as Monel® (corrosion-resistant steel), mild steel or iron, and copper rivets are also used for rivets in certain cases. Rivets are available in a wide variety of alloys, head shapes, and sizes and have a wide variety of uses in aircraft structure. Rivets that are satisfactory for one part of the aircraft are often unsatisfactory for another part. Therefore, it is important that an aircraft technician know the strength and driving properties of the various types of rivets and how to identify them, as well as how to drive or install them. Solid rivets are classified by their head shape, by the material from which they are manufactured, and by their size. Identification codes used are derived from a combination of the Military Standard (MS) and National Aerospace Standard (NAS) systems, as well as an older classification system known as AN for Army/Navy. For example, the prefix MS identifies hardware that conforms to written military standards. A letter or letters following the head-shaped code identify the material or alloy from which the rivet was made. The alloy code is followed by two numbers separated by a dash. The first number is the numerator of a fraction, which specifies the shank diameter in thirty-seconds of an inch. The second number is the numerator of a fraction in sixteenths of an inch and identifies the length of the rivet. Rivet head shapes and their identifying code numbers are shown in Figure 4-75. The most frequently used repair rivet is the AD rivet because it can be installed in the received condition. Some rivet alloys, such as DD rivets (alloy 2024-T4), are too hard to drive in the received condition and must be annealed before they can be installed. Typically, these rivets are annealed and stored in a freezer to retard hardening, which has led to the nickname “ice box rivets.” They are removed from the freezer just prior to use. Most DD rivets have been replaced by E-type rivets which can be installed in the received condition. The head type, size, and strength required in a rivet are governed by such factors as the kind of forces present at the point riveted, the kind and thickness of the material to be riveted, and the location of the part on the aircraft. The type of head needed for a particular job is determined by where it is to be installed. Countersunk head rivets should be used where a smooth aerodynamic surface is required. Universal head rivets may be used in most other areas. The size (or diameter) of the selected rivet shank should correspond in general to the thickness of the material being riveted. If an excessively large rivet is used in a thin material, the force necessary to drive the rivet properly causes an undesirable bulging around the rivet head. On the other hand, MS 20 426 AD 5 - 8 Length in sixteenths of an inch Diameter in thirty-seconds of an inch Material or alloy (2117-T4) Head shape (countersunk) Countersunk head Figure 4-74. Solid shank rivet styles. Universal head Specification (Military standard) Figure 4-75. Rivet head shapes and their identifying code numbers. 4-31 if an excessively small rivet diameter is selected for thick material, the shear strength of the rivet is not great enough to carry the load of the joint. As a general rule, the rivet diameter should be at least two and a half to three times the thickness of the thicker sheet. Rivets most commonly chosen in the assembly and repair of aircraft range from 3⁄32-inch to 3 ⁄8-inch in diameter. Ordinarily, rivets smaller than 3⁄32-inch in diameter are never used on any structural parts that carry stresses. The proper sized rivets to use for any repair can also be determined by referring to the rivets (used by the manufacturer) in the next parallel row inboard on the wing or forward on the fuselage. Another method of determining the size of rivets to be used is to multiply the skin’s thickness by 3 and use the next larger size rivet corresponding to that figure. For example, if the skin is 0.040 inch thick, multiply 0.040 inch by 3 to get 0.120 inch and use the next larger size of rivet, 1⁄8-inch (0.125 inch). When rivets are to pass completely through tubular members, select a rivet diameter equivalent to at least 1⁄8 the outside diameter of the tube. If one tube sleeves or fits over another, take the outside diameter of the outside tube and use oneeighth of that distance as the minimum rivet diameter. A good practice is to calculate the minimum rivet diameter and then use the next larger size rivet. Whenever possible, select rivets of the same alloy number as the material being riveted. For example, use 1100 and 3003 rivets on parts fabricated from 1100 and 3003 alloys, and 2117-1 and 2017-T rivets on parts fabricated from 2017 and 2024 alloys. The properly formed shop head equals one and a half times the diameter of the rivet shank. Where A is total rivet length, B is grip length, and C is the length of the material needed to form a shop head, this formula can be represented as A = B + C. [Figure 4-76] Rivet Strength For structural applications, the strength of the replacement rivets is of primary importance. [Figure 4-77] Replace rivets with those of the same size and strength whenever possible. If the rivet hole becomes enlarged, deformed, or otherwise damaged; drill or ream the hole for the next larger size rivet. However, make sure that the edge distance and spacing is not less than minimums listed in the next paragraph. Rivets may not be replaced by a type having lower strength properties, unless the lower strength is adequately compensated by an increase in size or a greater number of rivets. For example, it is acceptable to replace 2017 rivets of 3/16 inch diameter or less, and 2024 rivets of 5/32 inch diameter or less with 2117 rivets for general repairs, provided the replacement rivets are 1/32 inch greater in diameter than the rivets they replace. The 2117-T rivet is used for general repair work, since it requires no heat treatment, is fairly soft and strong, and is highly corrosion resistant when used with most types of alloys. Always consult the maintenance manual for correct rivet type and material. The type of rivet head to select for a particular repair job can be determined by referring to the Driven Rivet Standards A, AD, B, DD Rivets The size of the formed head is the visual standard of a proper rivet installation. The minimum and maximum sizes, as well as the ideal size, are shown in Figure 4-76. Installation of Rivets Repair Layout Repair layout involves determining the number of rivets required, the proper size and style of rivets to be used, their material, temper condition and strength, the size of the holes, the distances between the holes, and the distance between the holes and the edges of the patch. Distances are measured in terms of rivet diameter. Rivet Length To determine the total length of a rivet to be installed, the combined thickness of the materials to be joined must first be known. This measurement is known as the grip length. The total length of the rivet equals the grip length plus the amount of rivet shank needed to form a proper shop head. 1.33 d Formed head dimension 1.5 d Predrive protrusion.66 d 1.25 d.5 d 1.5 d Minimum.33 d 1.66 d Preferred Maximum D, E, (KE), M Rivets 1.25 d Formed head dimension 1.33 d Predrive protrusion.66 d.6 d 1.25 d 1.4 d Minimum Preferred.5 d 1.5 d Maximum Figure 4-76. Rivet formed head dimensions. 4-32 Standard Rivet Alloy Code Markings Alloy code—A Alloy—1100 or 3003 aluminum Head marking—None Shear strength—10 kilopounds per square inch (KSI) Alloy code—B Alloy—5056 aluminum Head marking—raised cross Shear strength—28 KSI Nonstructural uses only Alloy code—AD Alloy—2117 aluminum Head marking—Dimple Alloy code—D Alloy—2017 aluminum Head marking—Raised dot Shear strength—30 KSI Shear strength—38 KSI 38 KSI When driven as received 34 KSI When re-heat treated Alloy code—DD Alloy—2024 aluminum Head marking—Two bars (raised) Alloy code—E, [KE*] *Boeing code Alloy—7050 aluminum Head marking—Raised ring Shear strength—41 KSI Shear strength—43 KSI Must be driven in “W” condition (Ice-Box) Replacement for DD rivet to be driven in “T” condition Figure 4-77. Rivet alloy strength. type used within the surrounding area by the manufacturer. A general rule to follow on a flush-riveted aircraft is to apply flush rivets on the upper surface of the wing and stabilizers, on the lower leading edge back to the spar, and on the fuselage back to the high point of the wing. Use universal head rivets in all other surface areas. Whenever possible, select rivets of the same alloy number as the material being riveted. Stresses Applied to Rivets Shear is one of the two stresses applied to rivets. The shear strength is the amount of force required to cut a rivet that holds two or more sheets of material together. If the rivet holds two parts, it is under single shear; if it holds three sheets or parts, it is under double shear. To determine the shear strength, the diameter of the rivet to be used must be found by multiplying the thickness of the skin material by 3. For example, a material thickness of 0.040 inch multiplied by 3 equals 0.120 inch. In this case, the rivet diameter selected would be 1⁄8 (0.125) inch. Tension is the other stress applied to rivets. The resistance to tension is called bearing strength and is the amount of tension required to pull a rivet through the edge of two sheets riveted together or to elongate the hole. Rivet Spacing Rivet spacing is measured between the centerlines of rivets in the same row. The minimum spacing between protruding head rivets shall not be less than 31⁄2 times the rivet diameter. The minimum spacing between flush head rivets shall not be less than 4 times the diameter of the rivet. These dimensions may be used as the minimum spacing except when specified differently in a specific repair procedure or when replacing existing rivets. On most repairs, the general practice is to use the same rivet spacing and edge distance (distance from the center of the hole to the edge of the material) that the manufacturer used in the area surrounding the damage. The SRM for the particular aircraft may also be consulted. Aside from this fundamental rule, there is no specific set of rules that governs spacing of rivets in all cases. However, there are certain minimum requirements that must be observed. When possible, rivet edge distance, rivet spacing, and distance between rows should be the same as that of the original installation. When new sections are to be added, the edge distance measured from the center of the rivet should never be less than 2 times the diameter of the shank; the distance between rivets or pitch should be at least 3 times the diameter; and the distance between rivet rows should never be less than 21⁄2 times the diameter. Figure 4-78 illustrates acceptable ways of laying out a rivet pattern for a repair. Edge Distance Edge distance, also called edge margin by some manufacturers, is the distance from the center of the first rivet to the edge of the sheet. It should not be less than 2 or more than 4 rivet diameters and the recommended edge distance is about 21⁄2 rivet diameters. The minimum edge distance for universal rivets is 2 times the diameter of the rivet; the minimum edge distance for countersunk rivets is 21⁄2 times the diameter of the 4-33 Two methods for obtaining edge distance: The rivet diameter of a protruding head rivet is 3⁄32inch. Multiply 2 times 3⁄32-inch to obtain the minimum edge distance, 3⁄16-inch, add 1⁄16-inch to yield the preferred edge distance of 1⁄4-inch. The rivet diameter of a protruding head rivet is 3⁄32-inch. Select the next size of rivet, which is 1⁄8-inch. Calculate the edge distance by multiplying 2 times 1⁄8-inch to get 1 ⁄4-inch. Rivet Spacing Rivet Spacing Rivet Spacing 6D Distance Between 6D Distance Between 4D Distance Between Rows 6D Rows 3D Rows 4D Figure 4-78. Acceptable rivet patterns. rivet. If rivets are placed too close to the edge of the sheet, the sheet may crack or pull away from the rivets. If they are spaced too far from the edge, the sheet is likely to turn up at the edges. [Figure 4-79] It is good practice to lay out the rivets a little further from the edge so that the rivet holes can be oversized without violating the edge distance minimums. Add 1⁄16-inch to the minimum edge distance or determine the edge distance using the next size of rivet diameter. E E Section A-A D D Incorrect - too close to edge Correct E = 2D E = 1½D A A Resultant crack Safe Edge Distance/Edge Margin Minimum Edge Distance Preferred Edge Distance Protruding head rivets 2D 2 D + 1/16˝ Countersunk rivets 2½ D 2½ D + 1/16˝ Figure 4-79. Minimum edge distance. Rivet Spacing Rivet Pitch Rivet pitch is the distance between the centers of neighboring rivets in the same row. The smallest allowable rivet pitch is 3 rivet diameters. The average rivet pitch usually ranges from 4 to 6 rivet diameters, although in some instances rivet pitch could be as large as 10 rivet diameters. Rivet spacing on parts that are subjected to bending moments is often closer to the minimum spacing to prevent buckling of the skin between the rivets. The minimum pitch also depends on the number of rows of rivets. One-and three-row layouts have a minimum pitch of 3 rivet diameters, a two-row layout has a minimum pitch of 4 rivet diameters. The pitch for countersunk rivets is larger than for universal head rivets. If the rivet spacing is made at least 1⁄16-inch larger than the minimum, the rivet hole can be oversized without violating the minimum rivet spacing requirement. [Figure 4-80] Transverse Pitch Transverse pitch is the perpendicular distance between rivet rows. It is usually 75 percent of the rivet pitch. The smallest allowable transverse pitch is 21⁄2 rivet diameters. The smallest allowable transverse pitch is 21⁄2 rivet diameters. Rivet pitch and transverse pitch often have the same dimension and are simply called rivet spacing. Rivet Layout Example The general rules for rivet spacing, as it is applied to a straight-row layout, are quite simple. In a one-row layout, find the edge distance at each end of the row and then lay off the rivet pitch (distance between rivets), as shown in Figure 4-81. In a two-row layout, lay off the first row, place the second row a distance equal to the transverse pitch from the first row, and then lay off rivet spots in the second row so that they fall midway between those in the first row. In the Minimum Spacing Preferred Spacing 1 and 3 rows protruding head rivet layout 3D 3D + 1/16" 2 row protruding head rivet layout 4D 4D + 1/16" 1 and 3 rows countersunk head rivet layout 3/1/2D 3/1/2D + 1/16" 2 row countersunk head rivet layout 4/1/2D 4/1/2D + 1/16" Figure 4-80. Rivet spacing. 4-34 Rivet pitch (6 to 8 diameters) Edge distance (2 to 21/2 diameters) Single-row layout Transverse pitch (75 percent of rivet pitch) Two-row layout Three-row layout Figure 4-81. Rivet layout. three-row layout, first lay off the first and third rows, then use a straightedge to determine the second row rivet spots. When splicing a damaged tube, and the rivets pass completely through the tube, space the rivets four to seven rivet diameters apart if adjacent rivets are at right angles to each other, and space them five to seven rivet diameters apart if the rivets are parallel to each other. The first rivet on each side of the joint should be no less than 21⁄2 rivet diameters from the end of the sleeve. driving and upsetting rivets. They include rivet cutters, bucking bars, hand riveters, countersinks, and dimpling tools. Rivet Cutter The rivet cutter is used to trim rivets when rivets of the required length are unavailable. [Figure 4-82] To use the rotary rivet cutter, insert the rivet in the correct hole, place the required number of shims under the rivet head, and squeeze the cutter as if it were a pair of pliers. Rotation of the discs cuts the rivet to give the right length, which is determined by the number of shims inserted under the head. When using a large rivet cutter, place it in a vise, insert the rivet in the proper hole, and cut by pulling the handle, which shears off the rivet. If regular rivet cutters are not available, diagonal cutting pliers can be used as a substitute cutter. Bucking Bar The bucking bar, sometimes called a dolly, bucking iron, or bucking block, is a heavy chunk of steel whose countervibration during installation contributes to proper rivet installation. They come in a variety of shapes and sizes, and their weights ranges from a few ounces to 8 or 10 pounds, depending upon the nature of the work. Bucking bars are most often made from low-carbon steel that has been case hardened or alloy bar stock. Those made of better grades of steel last longer and require less reconditioning. Bucking faces must be hard enough to resist indentation and remain smooth, but not hard enough to shatter. Sometimes, the more complicated bars must be forged or built up by welding. The bar usually has a concave face to conform to the shape of the shop head to be made. When selecting a bucking bar, the first consideration is shape. [Figure 4-83] If the bar does not have the correct shape, it deforms the rivet head; if the bar is too light, it does not give the necessary bucking weight, and the material may become bulged toward the shop head. If the bar is too heavy, its weight and the bucking force may cause the material to bulge away from the shop head. Rivet Installation Tools The various tools needed in the normal course of driving and upsetting rivets include drills, reamers, rivet cutters or nippers, bucking bars, riveting hammers, draw sets, dimpling dies or other types of countersinking equipment, rivet guns, and squeeze riveters. C-clamps, vises, and other fasteners used to hold sheets together when riveting were discussed earlier in the chapter. Other tools and equipment needed in the installation of rivets are discussed in the following paragraphs. Hand Tools A variety of hand tools are used in the normal course of Figure 4-82. Rivet cutters. 4-35 Special draw sets are used to draw up the sheets to eliminate any opening between them before the rivet is bucked. Each draw set has a hole 1⁄32-inch larger than the diameter of the rivet shank for which it is made. Occasionally, the draw set and rivet header are incorporated into one tool. The header part consists of a hole shallow enough for the set to expand the rivet and head when struck with a hammer. Figure 4-83. Bucking bars. This tool is used by holding it against the shank end of a rivet while the shop head is being formed. Always hold the face of the bucking bar at right angles to the rivet shank. Failure to do so causes the rivet shank to bend with the first blows of the rivet gun and causes the material to become marred with the final blows. The bucker must hold the bucking bar in place until the rivet is completely driven. If the bucking bar is removed while the gun is in operation, the rivet set may be driven through the material. Allow the weight of the bucking bar to do most of the work and do not bear down too heavily on the shank of the rivet. The operator’s hands merely guide the bar and supply the necessary tension and rebound action. Coordinated bucking allows the bucking bar to vibrate in unison with the gun set. With experience, a high degree of skill can be developed. Countersinking Tool The countersink is a tool that cuts a cone-shaped depression around the rivet hole to allow the rivet to set flush with the surface of the skin. Countersinks are made with angles to correspond with the various angles of countersunk rivet heads. The standard countersink has a 100º angle, as shown in Figure 4-84. Special microstop countersinks (commonly called stop countersinks) are available that can be adjusted to any desired depth and have cutters to allow interchangeable holes with various countersunk angles to be made. [Figure 4-85] Some stop countersinks also have a micrometer set mechanism, in 0.001-inch increments, for adjusting their cutting depths. Dimpling Dies Dimpling is done with a male and female die (punch and die set). The male die has a guide the size of the rivet hole and with the same degree of countersink as the rivet. The female die has a hole with a corresponding degree of countersink into which the male guide fits. Defective rivet heads can be caused by lack of proper vibrating action, the use of a bucking bar that is too light or too heavy, and failure to hold the bucking bar at right angles to the rivet. The bars must be kept clean, smooth, and well polished. Their edges should be slightly rounded to prevent marring the material surrounding the riveting operation. Hand Rivet Set A hand rivet set is a tool equipped with a die for driving a particular type rivet. Rivet sets are available to fit every size and shape of rivet head. The ordinary set is made of 1⁄2-inch carbon tool steel about 6 inches in length and is knurled to prevent slipping in the hand. Only the face of the set is hardened and polished. Sets for universal rivets are recessed (or cupped) to fit the rivet head. In selecting the correct set, be sure it provides the proper clearance between the set and the sides of the rivet head and between the surfaces of the metal and the set. Flush or flat sets are used for countersunk and flathead rivets. To seat flush rivets properly, be sure that the flush sets are at least 1 inch in diameter. 100° 82° Figure 4-84. Countersinks. Micro-sleeve Skirt Locking ring Pilot Cutter Figure 4-85. Microstop countersink. 4-36 in many sizes and types. [Figure 4-86] The manufacturer’s recommended capacity for each gun is usually stamped on the barrel. Pneumatic guns operate on air pressure of 90 to 100 pounds per square inch and are used in conjunction with interchangeable rivet sets. Each set is designed to fit the specific type of rivet and the location of the work. The shank of the set is designed to fit into the rivet gun. An airdriven hammer inside the barrel of the gun supplies force to buck the rivet. Figure 4-86. Rivet guns. Power Tools The most common power tools used in riveting are the pneumatic rivet gun, rivet squeezers, and the microshaver. Pneumatic Rivet Gun The pneumatic rivet gun is the most common rivet upsetting tool used in airframe repair work. It is available Sliding valve Slow hitting rivet guns that strike from 900 to 2,500 blows per minute are the most common type. [Figure 4-87] These blows are slow enough to be easily controlled and heavy enough to do the job. These guns are sized by the largest rivet size continuously driven with size often based on the Chicago Pneumatic Company’s old “X” series. A 4X gun (dash 8 or 1⁄4 rivet) is used for normal work. The less powerful 3X gun is used for smaller rivets in thinner structure. 7X guns are used for large rivets in thicker structures. A rivet gun should upset a rivet in 1 to 3 seconds. With practice, an aircraft technician learns the length of time needed to hold down the trigger. A rivet gun with the correct header (rivet set) must be held snugly against the rivet head and perpendicular to the surface Piston Exhaust deflector Set sleeve Cylinder Blank rivet set Beehive spring set retainer Throttle, trigger Throttle lever Throttle valve Throttle tube Bushing Regulator adjustment screw Air path Movement of air during forward stroke Movement of air during rearward stroke Figure 4-87. Components of a rivet gun. 4-37 while a bucking bar of the proper weight is held against the opposite end. The force of the gun must be absorbed by the bucking bar and not the structure being riveted. When the gun is triggered, the rivet is driven. Always make sure the correct rivet header and the retaining spring are installed. Test the rivet gun on a piece of wood and adjust the air valve to a setting that is comfortable for the operator. The driving force of the rivet gun is adjusted by a needle valve on the handle. Adjustments should never be tested against anything harder than a wooden block to avoid header damage. If the adjustment fails to provide the best driving force, a different sized gun is needed. A gun that is too powerful is hard to control and may damage the work. On the other hand, if the gun is too light, it may work to harden the rivet before the head can be fully formed. The riveting action should start slowly and be one continued burst. If the riveting starts too fast, the rivet header might slip off the rivet and damage the rivet (smiley) or damage the skin (eyebrow). Try to drive the rivets within 3 seconds, because the rivet will work harden if the driving process takes too long. The dynamic of the driving process has the gun hitting, or vibrating, the rivet and material, which causes the bar to bounce, or countervibrate. These opposing blows (low frequency vibrations) squeeze the rivet, causing it to swell and then form the upset head. Some precautions to be observed when using a rivet gun are: 1. Never point a rivet gun at anyone at any time. A rivet gun should be used for one purpose only: to drive or install rivets. 2. Never depress the trigger mechanism unless the set is held tightly against a block of wood or a rivet. 3. Always disconnect the air hose from the rivet gun when it is not in use for any appreciable length of time. While traditional tooling has changed little in the past 60 years, significant changes have been made in rivet gun ergonomics. Reduced vibration rivet guns and bucking bars have been developed to reduce the incidence of carpal tunnel syndrome and enhance operator comfort. Rivet Sets/Headers Pneumatic guns are used in conjunction with interchangeable rivet sets or headers. Each is designed to fit the type of rivet and location of the work. The shank of the rivet header is designed to fit into the rivet gun. An appropriate header must be a correct match for the rivet being driven. The working face of a header should be properly designed and smoothly polished. They are made of forged steel, heat treated to be tough but not too brittle. Flush headers come in various sizes. Smaller ones concentrate the driving force in a small area for maximum efficiency. Larger ones spread the driving force over a larger area and are used for the riveting of thin skins. Nonflush headers should fit to contact about the center twothirds of the rivet head. They must be shallow enough to allow slight upsetting of the head in driving and some misalignment without eyebrowing the riveted surface. Care must be taken to match the size of the rivet. A header that is too small marks the rivet; while one too large marks the material. Rivet headers are made in a variety of styles. [Figure 4-88] The short, straight header is best when the gun can be brought close to the work. Offset headers may be used to reach rivets in obstructed places. Long headers are sometimes necessary when the gun cannot be brought close to the work due to structural interference. Rivet headers should be kept clean. Compression Riveting Compression riveting (squeezing) is of limited value because this method of riveting can be used only over the edges of sheets or assemblies where conditions permit, and where the reach of the rivet squeezer is deep enough. The three types of rivet squeezers—hand, pneumatic, and pneudraulic— operate on the same principles. In the hand rivet squeezer, compression is supplied by hand pressure; in the pneumatic rivet squeezer, by air pressure; and in the pneudraulic, by a combination of air and hydraulic pressure. One jaw is stationary and serves as a bucking bar, the other jaw is movable and does the upsetting. Riveting with a squeezer is a quick method and requires only one operator. These riveters are equipped with either a C-yoke or an alligator yoke in various sizes to accommodate any size of rivet. The working capacity of a yoke is measured by its gap and its reach. The gap is the distance between the movable jaw and the stationary jaw; the reach is the inside length of the throat measured from the center of the end sets. End Figure 4-88. Rivet headers. 4-38 sets for rivet squeezers serve the same purpose as rivet sets for pneumatic rivet guns and are available with the same type heads, which are interchangeable to suit any type of rivet head. One part of each set is inserted in the stationary jaw, while the other part is placed in the movable jaws. The manufactured head end set is placed on the stationary jaw whenever possible. During some operations, it may be necessary to reverse the end sets, placing the manufactured head end set on the movable jaw. Microshavers A microshaver is used if the smoothness of the material (such as skin) requires that all countersunk rivets be driven within a specific tolerance. [Figure 4-89] This tool has a cutter, a stop, and two legs or stabilizers. The cutting portion of the microshaver is inside the stop. The depth of the cut can be adjusted by pulling outward on the stop and turning it in either direction (clockwise for deeper cuts). The marks on the stop permit adjustments of 0.001 inch. If the microshaver is adjusted and held correctly, it can cut the head of a countersunk rivet to within 0.002 inch without damaging the surrounding material. Adjustments should always be made first on scrap material. When correctly adjusted, the microshaver leaves a small round dot about the size of a pinhead on the microshaved rivet. It may occasionally be necessary to shave rivets, normally restricted to MS20426 head rivets, after driving to obtain the required flushness. Shear head rivets should never be shaved. Riveting Procedure The riveting procedure consists of transferring and preparing the hole, drilling, and driving the rivets. Hole Transfer Accomplish transfer of holes from a drilled part to another part by placing the second part over first and using established holes as a guide. Using an alternate method, scribe hole location through from drilled part onto part to be drilled, spot with a center punch, and drill. Hole Preparation It is very important that the rivet hole be of the correct size and shape and free from burrs. If the hole is too small, the protective coating is scratched from the rivet when the rivet is driven through the hole. If the hole is too large, the rivet does not fill the hole completely. When it is bucked, the joint does not develop its full strength, and structural failure may occur at that spot. If countersinking is required, consider the thickness of the metal and adopt the countersinking method recommended for that thickness. If dimpling is required, keep hammer blows or dimpling pressures to a minimum so that no undue work hardening occurs in the surrounding area. Drilling Rivet holes in repair may be drilled with either a light power drill or a hand drill. The standard shank twist drill is most commonly used. Drill bit sizes for rivet holes should be the smallest size that permits easy insertion of the rivet, approximately 0.003-inch greater than the largest tolerance of the shank diameter. The recommended clearance drill bits for the common rivet diameters are shown in Figure 4-90. Hole sizes for other fasteners are normally found on work documents, prints, or in manuals. Before drilling, center punch all rivet locations. The center punch mark should be large enough to prevent the drill from slipping out of position, yet it must not dent the surface surrounding the center punch mark. Place a bucking bar behind the metal during punching to help prevent denting. To make a rivet hole the correct size, first drill a slightly undersized hole (pilot hole). Ream the pilot hole with a twist drill of the appropriate size to obtain the required dimension. To drill, proceed as follows: 1. Ensure the drill bit is the correct size and shape. Rivet Diameter (in) Figure 4-89. Microshaver. Drill Size Pilot Final 3/32 3/32 (0.0937) #40 (0.098) 1/8 1/8 (0.125) #30 (0.1285) 5/32 5/32 (0.1562) #21 (0.159) 3/16 3/16 (0.1875) #11 (0.191) 1/4 1/4 (0.250) F (0.257) Figure 4-90. Drill sizes for standard rivets. 4-39 2. Place the drill in the center-punched mark. When using a power drill, rotate the bit a few turns before starting the motor. 3. While drilling, always hold the drill at a 90º angle to the work or the curvature of the material. 4. Avoid excessive pressure, let the drill bit do the cutting, and never push the drill bit through stock. 5. Remove all burrs with a metal countersink or a file. 6. Clean away all drill chips. When holes are drilled through sheet metal, small burrs are formed around the edge of the hole. This is especially true when using a hand drill because the drill speed is slow and there is a tendency to apply more pressure per drill revolution. Remove all burrs with a burr remover or larger size drill bit before riveting. Driving the Rivet Although riveting equipment can be either stationary or portable, portable riveting equipment is the most common type of riveting equipment used to drive solid shank rivets in airframe repair work. Before driving any rivets into the sheet metal parts, be sure all holes line up perfectly, all shavings and burrs have been removed, and the parts to be riveted are securely fastened with temporary fasteners. Depending on the job, the riveting process may require one or two people. In solo riveting, the riveter holds a bucking bar with one hand and operates a riveting gun with the other. If the job requires two aircraft technicians, a shooter, or gunner, and a bucker work together as a team to install rivets. An important component of team riveting is an efficient signaling system that communicates the status of the riveting process. This signaling system usually consists of tapping the bucking bar against the work and is often called the tap code. One tap may mean not fully seated, hit it again, while two taps may mean good rivet, and three taps may mean bad rivet, remove and drive another. Radio sets are also available for communication between the technicians. Once the rivet is installed, there should be no evidence of rotation of rivets or looseness of riveted parts. After the trimming operation, examine for tightness. Apply a force of 10 pounds to the trimmed stem. A tight stem is one indication of an acceptable rivet installation. Any degree of looseness indicates an oversize hole and requires replacement of the rivet with an oversize shank diameter rivet. A rivet installation is assumed satisfactory when the rivet head is seated snugly against the item to be retained (0.005-inch feeler gauge should not go under rivet head for more than one-half the circumference) and the stem is proved tight. Countersunk Rivets An improperly made countersink reduces the strength of a flush-riveted joint and may even cause failure of the sheet or the rivet head. The two methods of countersinking commonly used for flush riveting in aircraft construction and repair are: Machine or drill countersinking. Dimpling or press countersinking. The proper method for any particular application depends on the thickness of the parts to be riveted, the height and angle of the countersunk head, the tools available, and accessibility. Countersinking When using countersunk rivets, it is necessary to make a conical recess in the skin for the head. The type of countersink required depends upon the relation of the thickness of the sheets to the depth of the rivet head. Use the proper degree and diameter countersink and cut only deep enough for the rivet head and metal to form a flush surface. Countersinking is an important factor in the design of fastener patterns, as the removal of material in the countersinking process necessitates an increase in the number of fasteners to assure the required load-transfer strength. If countersinking is done on metal below a certain thickness, a knife edge with less than the minimum bearing surface or actual enlarging of the hole may result. The edge distance required when using countersunk fasteners is greater than when universal head fasteners are used. The general rule for countersinking and flush fastener installation procedures has been reevaluated in recent years because countersunk holes have been responsible for fatigue cracks in aircraft pressurized skin. In the past, the general rule for countersinking held that the fastener head must be contained within the outer sheet. A combination of countersinks too deep (creating a knife edge), number of pressurization cycles, fatigue, deterioration of bonding materials, and working fasteners caused a high stress concentration that resulted in skin cracks and fastener failures. In primary structure and pressurized skin repairs, some manufacturers are currently recommending the countersink depth be no more than 2⁄3 the outer sheet thickness or down to 0.020-inch minimum fastener shank depth, whichever is greater. Dimple the skin if it is too thin for machine countersinking. [Figure 4-91] Keep the rivet high before driving to ensure the force of riveting is applied to the rivet and not to the skin. If the rivet is driven while it is flush or too deep, the surrounding skin is work hardened. 4-40 cutter centered in the hole. The pilot should be approximately 0.002-inch smaller than the hole size. It is recommended to test adjustments on a piece of scrap material before countersinking repair or replacement parts. Preferred countersinking Freehand countersinking is needed where a microstop countersink cannot fit. This method should be practiced on scrap material to develop the required skill. Holding the drill motor steady and perpendicular is as critical during this operation as when drilling. Permissible countersinking Unacceptable countersinking Figure 4-91. Countersinking dimensions. Countersinking Tools While there are many types of countersink tools, the most commonly used has an included angle of 100°. Sometimes types of 82° or 120° are used to form countersunk wells. [Figure 4-84] A six-fluted countersink works best in aluminum. There are also four- and three-fluted countersinks, but those are harder to control from a chatter standpoint. A single-flute type, such as those manufactured by the Weldon Tool Company®, works best for corrosion-resistant steel. [Figure 4-92] The microstop countersink is the preferred countersinking tool. [Figure 4-85] It has an adjustable-sleeve cage that functions as a limit stop and holds the revolving countersink in a vertical position. Its threaded and replaceable cutters may have either a removable or an integral pilot that keeps the Figure 4-92. Single-flute countersink. Chattering is the most common problem encountered when countersinking. Some precautions that may eliminate or minimize chatter include: Use sharp tooling. Use a slow speed and steady firm pressure. Use a piloted countersink with a pilot approximately 0.002-inch smaller than the hole. Use back-up material to hold the pilot steady when countersinking thin sheet material. Use a cutter with a different number of flutes. Pilot drill an undersized hole, countersink, and then enlarge the hole to final size. Dimpling Dimpling is the process of making an indentation or a dimple around a rivet hole to make the top of the head of a countersunk rivet flush with the surface of the metal. Dimpling is done with a male and female die, or forms, often called punch and die set. The male die has a guide the size of the rivet hole and is beveled to correspond to the degree of countersink of the rivet head. The female die has a hole into which the male guide fits and is beveled to a corresponding degree of countersink. When dimpling, rest the female die on a solid surface. Then, place the material to be dimpled on the female die. Insert the male die in the hole to be dimpled and, with a hammer, strike the male die until the dimple is formed. Two or three solid hammer blows should be sufficient. A separate set of dies is necessary for each size of rivet and shape of rivet head. An alternate method is to use a countersunk head rivet instead of the regular male punch die, and a draw set instead of the female die, and hammer the rivet until the dimple is formed. Dimpling dies for light work can be used in portable pneumatic or hand squeezers. [Figure 4-93] If the dies are used with a squeezer, they must be adjusted accurately to the thickness of the sheet being dimpled. A table riveter is also used for dimpling thin skin material and installing rivets. [Figure 4-94] 4-41 dimpling operation is accomplished. Since the metal stretches during the dimpling operation, the hole becomes enlarged and the rivet must be swelled slightly before driving to produce a close fit. Because the rivet head causes slight distortions in the recess, and these are characteristic only to that particular rivet head, it is wise to drive the same rivet that was used as the male die during the dimpling process. Do not substitute another rivet, either of the same size or a size larger. Radius Dimpling Radius dimpling uses special die sets that have a radius and are often used with stationary or portable squeezers. Dimpling removes no metal and, due to the nestling effect, gives a stronger joint than the non-flush type. A dimpled joint reduces the shear loading on the rivet and places more load on the riveted sheets. Note: Dimpling is also done for flush bolts and other flush fasteners. Figure 4-93. Hand squeezers. Dimpling is required for sheets that are thinner than the minimum specified thickness for countersinking. However, dimpling is not limited to thin materials. Heavier parts may be dimpled without cracking by specialized hot dimpling equipment. The temper of the material, rivet size, and available equipment are all factors to be considered in dimpling. [Figure 4-95] Hot Dimpling Hot dimpling is the process that uses heated dimpling dies to Male die Hole Dimpled hole Female die Figure 4-94. Table riveter. 1 2 3 Bucking bar Coin Dimpling The coin dimpling, or coin pressing, method uses a countersink rivet as the male dimpling die. Place the female die in the usual position and back it with a bucking bar. Place the rivet of the required type into the hole and strike the rivet with a pneumatic riveting hammer. Coin dimpling should be used only when the regular male die is broken or not available. Coin pressing has the distinct disadvantage of the rivet hole needing to be drilled to correct rivet size before the Gun draw tool Flat gun die Figure 4-95. Dimpling techniques. 4-42 ensure the metal flows better during the dimpling process. Hot dimpling is often performed with large stationary equipment available in a sheet metal shop. The metal being used is an important factor because each metal presents different dimpling problems. For example, 2024-T3 aluminum alloy can be satisfactorily dimpled either hot or cold, but may crack in the vicinity of the dimple after cold dimpling because of hard spots in the metal. Hot dimpling prevents such cracking. 7075-T6 aluminum alloys are always hot dimpled. Magnesium alloys also must be hot dimpled because, like 7075-T6, they have low formability qualities. Titanium is another metal that must be hot dimpled because it is tough and resists forming. The same temperature and dwell time used to hot dimple 7075-T6 is used for titanium. 100° Combination Predimple & Countersink Method Metals of different thicknesses are sometimes joined by a combination of dimpling and countersinking. [Figure 4-96] A countersink well made to receive a dimple is called a subcountersink. These are most often seen where a thin web is attached to heavy structure. It is also used on thin gap seals, wear strips, and repairs for worn countersinks. Dimpling Inspection To determine the quality of a dimple, it is necessary to make a close visual inspection. Several features must be checked. The rivet head should fit flush and there should be a sharp break from the surface into the dimple. The sharpness of the break is affected by dimpling pressure and metal thickness. Selected dimples should be checked by inserting a fastener to make sure that the flushness requirements are met. Cracked dimples are caused by poor dies, rough holes, or improper heating. Two types of cracks may form during dimpling: Radial cracks—start at the edge and spread outward as the metal within the dimple stretches. They are most common in 2024-T3. A rough hole or a dimple that is too deep causes such cracks. A small tolerance is usually allowed for radial cracks. Circumferential cracks—downward bending into the This top sheet is dimpled Thick bottom material is countersunk Figure 4-96. Predimple and countersink method. draw die causes tension stresses in the upper portion of the metal. Under some conditions, a crack may be created that runs around the edge of the dimple. Such cracks do not always show since they may be underneath the cladding. When found, they are cause for rejection. These cracks are most common in hotdimpled 7075 T6 aluminum alloy material. The usual cause is insufficient dimpling heat. Evaluating the Rivet To obtain high structural efficiency in the manufacture and repair of aircraft, an inspection must be made of all rivets before the part is put in service. This inspection consists of examining both the shop and manufactured heads and the surrounding skin and structural parts for deformities. A scale or rivet gauge can be used to check the condition of the upset rivet head to see that it conforms to the proper requirements. Deformities in the manufactured head can be detected by the trained eye alone. [Figure 4-97] Some common causes of unsatisfactory riveting are improper bucking, rivet set slipping off or being held at the wrong angle, and rivet holes or rivets of the wrong size. Additional causes for unsatisfactory riveting are countersunk rivets not flush with the well, work not properly fastened together during riveting, the presence of burrs, rivets too hard, too much or too little driving, and rivets out of line. Occasionally, during an aircraft structural repair, it is wise to examine adjacent parts to determine the true condition of neighboring rivets. In doing so, it may be necessary to remove the paint. The presence of chipped or cracked paint around the heads may indicate shifted or loose rivets. Look for tipped or loose rivet heads. If the heads are tipped or if rivets are loose, they show up in groups of several consecutive rivets and probably tipped in the same direction. If heads that appear to be tipped are not in groups and are not tipped in the same direction, tipping may have occurred during some previous installation. Inspect rivets known to have been critically loaded, but that show no visible distortion, by drilling off the head and carefully punching out the shank. If, upon examination, the shank appears joggled and the holes in the sheet misaligned, the rivet has failed in shear. In that case, try to determine what is causing the shearing stress and take the necessary corrective action. Flush rivets that show head slippage within the countersink or dimple, indicating either sheet bearing failure or rivet shear failure, must be removed for inspection and replacement. Joggles in removed rivet shanks indicate partial shear failure. Replace these rivets with the next larger size. Also, if the rivet 4-43 B. Unsteady tool Top view A. Driven correctly C. Driven excessively D. Separation of sheets E. Unsteady rivet set F. Excessive shank length Side view Damaged head Swelled shank Bottom view Cracks Sloping head Buckled shank Imperfection Cause Remedy Action A None None None None B Cut head Improperly held tools Hold riveting tools firmly against work Replace rivet C Excessively flat head, resultant head cracks Excessive driving, too much pressure on bucking bar Improve riveting technique Replace rivet D Sheet separation Work not held firmly together and rivet shank swelled Fasten work firmly together to prevent slipping Replace rivet E Sloping head a. Bucking bar not held firmly b. Bucking bar permitted to slide and bounce over the rivet Hold bucking bar firmly without too much pressure Replace rivet F Buckled shank Improper rivet length, and E above E above and rivet of proper length Replace rivet Figure 4-97. Rivet defects. holes show elongation, replace the rivets with the next larger size. Sheet failures such as tear-outs, cracks between rivets, and the like usually indicate damaged rivets. The complete repair of the joint may require replacement of the rivets with the next larger size. The general practice of replacing a rivet with the next larger size (1⁄32-inch greater diameter) is necessary to obtain the proper joint strength of rivet and sheet when the original rivet hole is enlarged. If the rivet in an elongated hole is replaced by a rivet of the same size, its ability to carry its share of the shear load is impaired and joint weakness results. around it. To remove rivets, use hand tools, a power drill, or a combination of both. The procedure for universal or protruding head rivet removal is as follows: 1. Note: On thin metal, back up the rivet on the upset head when center punching to avoid depressing the metal. 2. Removal of Rivets When a rivet has to be replaced, remove it carefully to retain the rivet hole’s original size and shape. If removed correctly, the rivet does not need to be replaced with one of the next larger size. Also, if the rivet is not removed properly, the strength of the joint may be weakened and the replacement of rivets made more difficult. When removing a rivet, work on the manufactured head. It is more symmetrical about the shank than the shop head, and there is less chance of damaging the rivet hole or the material File a flat area on the head of the rivet and center punch the flat surface for drilling. Use a drill bit one size smaller than the rivet shank to drill out the rivet head. Note: When using a power drill, set the drill on the rivet and rotate the chuck several revolutions by hand before turning on the power. This procedure helps the drill cut a good starting spot and eliminates the chance of the drill slipping off and tracking across the metal. 3. Drill the rivet to the depth of its head, while holding the drill at a 90° angle. Do not drill too deeply, as the rivet shank will then turn with the drill and tear the surrounding metal. Note: The rivet head often breaks away and climbs 4-44 the drill, which is a signal to withdraw the drill. 4. If the rivet head does not come loose of its own accord, insert a drift punch into the hole and twist slightly to either side until the head comes off. 5. Drive the remaining rivet shank out with a drift punch slightly smaller than the shank diameter. On thin metal or unsupported structures, support the sheet with a bucking bar while driving out the shank. If the shank is unusually tight after the rivet head is removed, drill the rivet about two-thirds through the thickness of the material and then drive the rest of it out with a drift punch. Figure 4-98 shows the preferred procedure for removing universal rivets. The procedure for the removal of countersunk rivets is the same as described above except no filing is necessary. Be careful to avoid elongation of the dimpled or the countersunk holes. The rivet head should be drilled to approximately onehalf the thickness of the top sheet. The dimple in 2117–T rivets usually eliminates the necessity of filing and center punching the rivet head. To remove a countersunk or flush head rivet, you must: 1. Select a drill about 0.003-inch smaller than the rivet shank diameter. 2. Drill into the exact center of the rivet head to the approximate depth of the head. 3. Remove the head by breaking it off. Use a punch as a lever. 4. Punch out the shank. Use a suitable backup, preferably wood (or equivalent), or a dedicated backup block. If the shank does not come out easily, use a small drill and drill through the shank. Be careful not to elongate the hole. Replacing Rivets Replace rivets with those of the same size and strength whenever possible. If the rivet hole becomes enlarged, deformed, or otherwise damaged, drill or ream the hole for the next larger size rivet. Do not replace a rivet with a type having lower strength properties, unless the lower strength is adequately compensated by an increase in size or a greater number of rivets. It is acceptable to replace 2017 rivets of 3 ⁄16-inch diameter or less, and 2024 rivets of 5⁄32-inch diameter or less with 2117 rivets for general repairs, provided the replacement rivets are 1⁄32-inch greater in diameter than the rivets they replace. National Advisory Committee for Aeronautics (NACA) Method of Double Flush Riveting A rivet installation technique known as the National Advisory Committee for Aeronautics (NACA) method has primary applications in fuel tank areas. [Figure 4-99] To make a NACA rivet installation, the shank is upset into a 82° countersink. In driving, the gun may be used on either the head or shank side. The upsetting is started with light blows, then the force increased and the gun or bar moved on the shank end so as to form a head inside the countersink well. If desired, the upset head may be shaved flush after driving. If utilizing this method, it is important to reference the manufacturer’s instructions for repair or replacement. Special Purpose Fasteners Special purpose fasteners are designed for applications in which fastener strength, ease of installation, or temperature properties of the fastener require consideration. Solid shank rivets have been the preferred construction method for metal aircraft for many years because they fill up the hole, which results in good load transfer, but they are not always ideal. For example, the attachment of many nonstructural parts (aircraft interior furnishings, flooring, deicing boots, etc.) do not need the full strength of solid shank rivets. To install solid shank rivets, the aircraft technician must have access to both sides of a riveted structure or structural part. There are many places on an aircraft where this access is impossible or where limited space does not permit the use of a bucking bar. In these instances, it is not possible to use solid shank rivets, and special fasteners have been designed that can be bucked from the front. [Figure 4-100] There are also areas of high loads, high fatigue, and bending on aircraft. Although the shear loads of riveted joints are very good, the tension, or clamp-up, loads are less than ideal. Special purpose fasteners are sometimes lighter than solid shank rivets, yet strong enough for their intended use. These fasteners are manufactured by several corporations and have unique characteristics that require special installation tools, special installation procedures, and special removal procedures. Because these fasteners are often inserted in locations where one head, usually the shop head, cannot be seen, they are called blind rivets or blind fasteners. Typically, the locking characteristics of a blind rivet are not as good as a driven rivet. Therefore, blind rivets are usually not used when driven rivets can be installed. Blind rivets shall not be used: 1. In fluid-tight areas. 2. On aircraft in air intake areas where rivet parts may be ingested by the engine. 3. On aircraft control surfaces, hinges, hinge brackets, flight control actuating systems, wing attachment fittings, landing gear fittings, on floats or amphibian 4-45 Rivet Removal Remove rivets by drilling off the head and punching out the shank as illustrated. 1. File a flat area on the manufactured head of non-flush rivets. 2. Place a block of wood or a bucking bar under both flush and nonflush rivets when center punching the manufactured head. 3. Use a drill that is 1/32 (0.0312) inch smaller than the rivet shank to drill through the head of the rivet. Ensure the drilling operation does not damage the skin or cut the sides of the rivet hole. 4. Insert a drift punch into the hole drilled in the rivet and tilt the punch to break off the rivet head. 5. Using a drift punch and hammer, drive out the rivet shank. Support the opposite side of the structure to prevent structural damage. 1. File a flat area on manufactured head 2. Center punch flat 5. Punch out rivet with machine punch 3. Drill through head using drill one size smaller than rivet shank 4. Remove weakened head with machine punch Figure 4-98. Rivet removal. Shop head formed in countersink Rivet factory head Figure 4-99. NACA riveting method. Figure 4-100. Assorted fasteners. 4-46 hulls below the water level, or other heavily stressed locations on the aircraft. Note: For metal repairs to the airframe, the use of blind rivets must be specifically authorized by the airframe manufacturer or approved by a representative of the Federal Aviation Administration (FAA). Blind Rivets The first blind fasteners were introduced in 1940 by the Cherry Rivet Company (now Cherry® Aerospace), and the aviation industry quickly adopted them. The past decades have seen a proliferation of blind fastening systems based on the original concept, which consists of a tubular rivet with a fixed head and a hollow sleeve. Inserted within the rivet’s core is a stem that is enlarged or serrated on its exposed end when activated by a pulling-type rivet gun. The lower end of the stem extends beyond the inner sheet of metal. This portion contains a tapered joining portion and a blind head that has a larger diameter than the stem or the sleeve of the tubular rivet. When the pulling force of the rivet gun forces the blind head upward into the sleeve, its stem upsets or expands the lower end of the sleeve into a tail. This presses the inner sheet upward and closes any space that might have existed between it and the outer sheet. Since the exposed head of the rivet is held tightly against the outer sheet by the rivet gun, the sheets of metal are clamped, or clinched, together. Note: Fastener manufacturers use different terminology to describe the parts of the blind rivet. The terms “mandrel,” “spindle,” and “stem” are often used interchangeably. For clarity, the word “stem” is used in this handbook and refers to the piece that is inserted into the hollow sleeve. the mechanical-lock, or stem-lock, type of blind fasteners. However, some types, such as the Cherry SPR® 3⁄32-inch Self-Plugging Rivet, are ideal for securing nutplates located in inaccessible and hard-to-reach areas where bucking or squeezing of solid rivets is unacceptable. [Figure 4-101] Friction-lock blind rivets are less expensive than mechanicallock blind rivets and are sometimes used for nonstructural applications. Inspection of friction-lock blind rivets is visual. A more detailed discussion on how to inspect riveted joints can be found later in this chapter. Removal of friction-lock blind rivets consists of punching out the friction-lock stem and then treating it like any other rivet. Mechanical-Lock Blind Rivets The self-plugging, mechanical-lock blind rivet was developed to prevent the problem of losing the center stem due to vibration. This rivet has a device on the puller or rivet head that locks the center stem into place when installed. Bulbed, self-plugging, mechanically-locked blind rivets form a large, blind head that provides higher strength in thin sheets when installed. They may be used in applications where the blind head is formed against a dimpled sheet. Manufacturers such as Cherry® Aerospace (CherryMAX®, CherryLOCK®, Cherry SST®) and Alcoa Fastening Systems (Huck-Clinch ® , HuckMax ® , Unimatic ® ) make many variations of this of blind rivet. While similar in design, the tooling for these rivets is often not interchangeable. The CherryMAX® Bulbed blind rivet is one of the earlier types of mechanical-lock blind rivets developed. Their main Friction-Locked Blind Rivets Standard self-plugging blind rivets consist of a hollow sleeve and a stem with increased diameter in the plug section. The blind head is formed as the stem is pulled into the sleeve. Friction-locked blind rivets have a multiple-piece construction and rely on friction to lock the stem to the sleeve. As the stem is drawn up into the rivet shank, the stem portion upsets the shank on the blind side, forming a plug in the hollow center of the rivet. The excess portion of the stem breaks off at a groove due to the continued pulling action of the rivet gun. Metals used for these rivets are 2117T4 and 5056-F aluminum alloy. Monel® is used for special applications. Many friction-locked blind rivet center stems fall out due to vibration, which greatly reduces its shear strength. To combat that problem, most friction-lock blind rivets are replaced by Figure 4-101. Friction-lock blind rivet. 4-47 advantage is the ability to replace a solid shank rivet size for size. The CherryMAX® Bulbed blind rivet consists of four parts: 1. A fully serrated stem with break notch, shear ring, and integral grip adjustment cone. 2. A driving anvil to ensure a visible mechanical lock with each fastener installation. 3. A separate, visible, and inspectable locking collar that mechanically locks the stem to the rivet sleeve. 4. A rivet sleeve with recess in the head to receive the locking collar. It is called a bulbed fastener due to its large blind side bearing surface, developed during the installation process. These rivets are used in thin sheet applications and for use in materials that may be damaged by other types of blind rivets. This rivet features a safe-lock locking collar for more reliable joint integrity. The rough end of the retained stem in the center on the manufactured head must never be filed smooth because it weakens the strength of the lockring, and the center stem could fall out. CherryMAX® bulbed rivets are available in three head styles: universal, 100° countersunk, and 100° reduced shear head styles. Their lengths are measured in increments of 1⁄16 inch. It is important to select a rivet with a length related to the grip length of the metal being joined. This blind rivet can be installed using either the Cherry® G750A or the newly 1 The CherryMAX® rivet is inserted into the prepared hole. The pulling head (installation tool) is slipped over the rivet’s stem. Applying a firm, steady pressure, which seats the rivet head, the installation tool is then actuated. 2 The pulling head holds the rivet sleeve in place as it begins to pull the rivet stem into the rivet sleeve. This pulling action causes the stem shear ring to upset the rivet sleeve and form the bulbed blind head. released Cherry® G800 hand riveters, or either the pneumatichydraulic G704B or G747 CherryMAX® power tools. For installation, please refer to Figure 4-102. The CherryMAX® mechanical-lock blind rivet is popular with general aviation repair shops because it features the one tool concept to install three standard rivet diameters and their oversize counterparts. [Figure 4-103] CherryMAX® rivets are available in four nominal diameters: 1⁄8, 5⁄32, 3⁄16, and 1 ⁄4-inch and three oversized diameters and four head styles: universal, 100° flush head, 120° flush head, and NAS1097 flush head. This rivet consists of a blind header, hollow rivet shell, locking (foil) collar, driving anvil, and pulling stem complete with wrapped locking collar. The rivet sleeve and the driving washer blind bulbed header takes up the extended shank and forms the bucktail. The stem and rivet sleeve work as an assembly to provide radial expansion and a large bearing footprint on the blind side of the fastened surface. The lock collar ensures that the stem and sleeve remain assembled during joint loading and unloading. Rivet sleeves are made from 5056 aluminum, Monel® and INCO 600. The stems are made from alloy steel, CRES, and INCO® X-750. CherryMAX® rivets have an ultimate shear strength ranging from 50 KSI to 75 KSI. Removal of Mechanically-Locked Blind Rivets Mechanically-locked blind rivets are a challenge to remove because they are made from strong, hard metals. Lack of 3 The continued pulling action of the installation tool causes the stem shear ring to shear from the main body of the stem as the stem continues to move through the rivet sleeve. This action allows the fastener to accommodate a minimum of 1/16" variation in structure thickness. The locking collar then contacts the driving anvil. As the stem continues to be pulled by the action of the installation tool, the Safe-Lock locking collar deforms into the rivet sleeve head recess. 4 The safe-lock locking collar fills the rivet sleeve head recess, locking the stem and rivet sleeve securely together. Continued pulling by the installation tool causes the stem to fracture at the break notch, providing a flush, burr-free, inspectable installation. Figure 4-102. CherryMAX® installation procedure. 4-48 Driving anvil Safe-lock locking collar Pulling stem Rivet sleeve Bulbed blind head Figure 4-103. CherryMAX® rivet. access poses yet another problem for the aviation technician. Designed for and used in difficult to reach locations means there is often no access to the blind side of the rivet or any way to provide support for the sheet metal surrounding the rivet’s location when the aviation technician attempts removal. The stem is mechanically locked by a small lock ring that needs to be removed first. Use a small center drill to provide a guide for a larger drill on top of the rivet stem and drill away the upper portion of the stem to destroy the lock. Try to remove the lock ring or use a prick punch or center punch to drive the stem down a little and remove the lock ring. After the lock ring is removed, the stem can be driven out with a drive punch. After the stem is removed, the rivet can be drilled out in the same way as a solid rivet. If possible, support the back side of the rivet with a backup block to prevent damage to the aircraft skin. Installation of High-Shear Fasteners Prepare holes for pin rivets with the same care as for other close tolerance rivets or bolts. At times, it may be necessary to spot-face the area under the head of the pin to ensure the head of the rivet fits tightly against the material. The spot-faced area should be 1⁄16-inch larger in diameter than the head diameter. Pin rivets may be driven from either end. Procedures for driving a pin rivet from the collar end are: 1. Insert the rivet in the hole. 2. Place a bucking bar against the rivet head. 3. Slip the collar over the protruding rivet end. 4. Place previously selected rivet set and gun over the collar. Align the gun until it is perpendicular to the material. 5. Depress the trigger on the gun, applying pressure to the rivet collar. This action causes the rivet collar to swage into the groove on the rivet end. 6. Continue the driving action until the collar is properly formed and excess collar material is trimmed off. Pin Fastening Systems (High-Shear Fasteners) A pin fastening system, or high-shear pin rivet, is a two-piece fastener that consists of a threaded pin and a collar. The metal collar is swaged onto the grooved end, effecting a firm tight fit. They are essentially threadless bolts. High-shear rivets are installed with standard bucking bars and pneumatic riveting hammers. They require the use of a special gun set that incorporates collar swaging and trimming and a discharge port through which excess collar material is discharged. A separate size set is required for each shank diameter. Procedures for driving a pin rivet from the head end are: 1. Insert the rivet in the hole. 2. Slip the collar over the protruding end of rivet. 3. Insert the correct size gun rivet set in a bucking bar and place the set against the collar of the rivet. 4. Apply pressure against the rivet head with a flush rivet set and pneumatic riveting hammer. 4-49 5. Continue applying pressure until the collar is formed in the groove and excess collar material is trimmed off. Inspection Pin rivets should be inspected on both sides of the material. The head of the rivet should not be marred and should fit tightly against the material. Removal of Pin Rivets The conventional method of removing rivets by drilling off the head may be utilized on either end of the pin rivet. Center punching is recommended prior to applying drilling pressure. In some cases, alternate methods may be needed: Grind a chisel edge on a small pin punch to a blade width of 1⁄8-inch. Place this tool at right angles to the collar and drive with a hammer to split the collar down one side. Repeat the operation on the opposite side. Then, with the chisel blade, pry the collar from the rivet. Tap the rivet out of the hole. Use a special hollow punch having one or more blades placed to split the collar. Pry the collar from the groove and tap out the rivet. Sharpen the cutting blades of a pair of nippers. Cut the collar in two pieces or use nippers at right angles to the rivet and cut through the small neck. A hollow-mill collar cutter can be used in a power hand drill to cut away enough collar material to permit the rivet to be tapped out of the work. The high-shear pin rivet family includes fasteners, such as the Hi-Lok®, Hi-Tigue®, and Hi-Lite® made by Hi-Shear Corporation and the CherryBUCK® 95 KSI One-Piece Shear Pin and Cherry E-Z Buck® Shear Pin made by Cherry® Aerospace. Hi-Lok® Fastening System The threaded end of the Hi-Lok® two-piece fastener contains a hexagonal shaped recess. [Figure 4-104] The hex tip of an Allen wrench engages the recess to prevent rotation of the pin while the collar is being installed. The pin is designed in two basic head styles. For shear applications, the pin is made in countersunk style and in a compact protruding head style. For tension applications, the MS24694 countersunk and regular protruding head styles are available. The self-locking, threaded Hi-Lok® collar has an internal counterbore at the base to accommodate variations in material thickness. At the opposite end of the collar is a wrenching device that is torqued by the driving tool until it shears off during installation, leaving the lower portion of the collar Figure 4-104. Hi-Lok®. seated with the proper torque without additional torque inspection. This shear-off point occurs when a predetermined preload or clamp-up is attained in the fastener during installation. The advantages of Hi-Lok® two-piece fastener include its lightweight, high fatigue resistance, high strength, and its inability to be overtorqued. The pins, made from alloy steel, corrosion-resistant steel, or titanium alloy, come in many standard and oversized shank diameters. The collars are made of aluminum alloy, corrosion-resistant steel, or alloy steel. The collars have wrenching flats, fracture point, threads, and a recess. The wrenching flats are used to install the collar. The fracture point has been designed to allow the wrenching flats to shear when the proper torque has been reached. The threads match the threads of the pins and have been formed into an ellipse that is distorted to provide the locking action. The recess serves as a built-in washer. This area contains a portion of the shank and the transition area of the fastener. The hole shall be prepared so that the maximum interference fit does not exceed 0.002-inch. This avoids build up of excessive internal stresses in the work adjacent to the hole. The Hi-Lok® pin has a slight radius under its head to increase fatigue life. After drilling, deburr the edge of the hole to allow the head to seat fully in the hole. The Hi-Lok® is installed in interference fit holes for aluminum structure and a clearance fit for steel, titanium, and composite materials. Hi-Tigue® Fastening System The Hi-Tigue® fastener offers all of the benefits of the HiLok® fastening system along with a unique bead design that enhances the fatigue performance of the structure making it ideal for situations that require a controlled interference fit. The Hi-Tigue® fastener assembly consists of a pin and collar. These pin rivets have a radius at the transition area. During installation in an interference fit hole, the radius area will “cold work” the hole. These fastening systems can be easily confused, and visual reference should not be used for 4-50

Use Quizgecko on...
Browser
Browser