simplify the following algebraic expressions: 1. 8x^2/12x^4 2. 24x^2y/32xy^3 3. (x+1)^3/(x+1)^5 4. (3x-2)^6/(3x-2)^4 5. (2n-3)/(3-2n) 6. 15y^2(y+3)/(20y^3(y+3)) 7. 15y(y+1)/... simplify the following algebraic expressions: 1. 8x^2/12x^4 2. 24x^2y/32xy^3 3. (x+1)^3/(x+1)^5 4. (3x-2)^6/(3x-2)^4 5. (2n-3)/(3-2n) 6. 15y^2(y+3)/(20y^3(y+3)) 7. 15y(y+1)/(45y^2(y+1)) 8. 24x^3(4-x)/(18x(4-x)) 9. 6x^3(2-x)/(12x(2-x)) 10. 12x^3(5-2x)/(18x(2-x-5)) 11. (a^2 + 6a)/(ac + 6c) 12. (x^2 + 4x)/(3x + 12) 13. (6-8x)/(4x^2-3x) 14. (x^2 + 2x - 15)/(x^2 - 10x + 21) 15. (x^2 - 2x - 3)/(x^2 - 5x - 6)

Question image

Understand the Problem

The question asks to simplify various algebraic expressions, which involves reducing them to their simplest form by factoring, canceling common terms, and simplifying fractions where applicable.

Answer

Answer for screen readers

Steps to Solve

  1. Problem 1: Simplifying the fraction

To simplify $\frac{8x^2}{12x^4}$, we can factor out the greatest common divisor (GCD) from the numerator and the denominator.

  • The GCD of $8$ and $12$ is $4$.
  • We can also cancel $x^2$ from the numerator and $x^4$:

$$ \frac{8x^2}{12x^4} = \frac{8}{12} \cdot \frac{x^2}{x^4} = \frac{2}{3} \cdot \frac{1}{x^2} = \frac{2}{3x^2} $$

  1. Problem 2: Simplifying the fraction

For $\frac{24x^2y}{32xy^3}$, we again find the GCD.

  • The GCD of $24$ and $32$ is $8$.
  • Cancel the common factors $x$ and $y$:

$$ \frac{24x^2y}{32xy^3} = \frac{24}{32} \cdot \frac{x^2}{x} \cdot \frac{1}{y^2} = \frac{3}{4} \cdot x \cdot \frac{1}{y^2} = \frac{3x}{4y^2} $$

  1. Problem 3: Simplifying the fraction

For $\frac{(x+1)^3}{(x+1)^5}$:

  • We can cancel the common factor of $(x+1)^3$:

$$ \frac{(x+1)^3}{(x+1)^5} = \frac{1}{(x+1)^{2}} $$

  1. Problem 4: Simplifying the fraction

For $\frac{(3x-2)^6}{(3x-2)^4}$:

  • Again, we cancel the common factor:

$$ \frac{(3x-2)^6}{(3x-2)^4} = (3x-2)^{2} $$

  1. Problem 5: Simplifying the fraction

For $\frac{2n-3}{3-2n}$:

  • Note that $3-2n = -(2n-3)$, so:

$$ \frac{2n-3}{3-2n} = \frac{2n-3}{-(2n-3)} = -1 $$

  1. Problem 6: Simplifying the fraction

For $\frac{15y^2(y+3)}{20y^3(y+3)}$:

  • Cancel the common factor $(y + 3)$:

$$ \frac{15y^2}{20y^3} = \frac{15}{20} \cdot \frac{1}{y} = \frac{3}{4y} $$

  1. Problem 7: Simplifying the fraction

For $\frac{15y(y+1)}{45y^2(y+1)}$:

  • Cancel the common factor $(y + 1)$:

$$ \frac{15y}{45y^2} = \frac{15}{45} \cdot \frac{1}{y} = \frac{1}{3y} $$

  1. Problem 8: Simplifying the fraction

For $\frac{24x^3(4-x)}{18x(4-x)}$:

  • Cancel the common factor $(4-x)$:

$$ \frac{24x^3}{18x} = \frac{24}{18} \cdot x^{2} = \frac{4}{3}x^{2} $$

  1. Problem 9: Simplifying the fraction

For $\frac{6x^3(2-x)}{12x(2-x)}$:

  • Cancel $(2-x)$:

$$ \frac{6x^3}{12x} = \frac{6}{12} \cdot x^{2} = \frac{1}{2}x^{2} $$

  1. Problem 10: Simplifying the fraction

For $\frac{12x^3(5-2x)}{18(2x-5)}$:

  • Note that $2x-5 = -(5-2x)$:

$$ \frac{12x^3(5-2x)}{18(2x-5)} = \frac{12x^3(5-2x)}{-18(5-2x)} = -\frac{12}{18}x^3 = -\frac{2}{3

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser