simplify the following algebraic expressions: 1. 8x^2/12x^4 2. 24x^2y/32xy^3 3. (x+1)^3/(x+1)^5 4. (3x-2)^6/(3x-2)^4 5. (2n-3)/(3-2n) 6. 15y^2(y+3)/(20y^3(y+3)) 7. 15y(y+1)/... simplify the following algebraic expressions: 1. 8x^2/12x^4 2. 24x^2y/32xy^3 3. (x+1)^3/(x+1)^5 4. (3x-2)^6/(3x-2)^4 5. (2n-3)/(3-2n) 6. 15y^2(y+3)/(20y^3(y+3)) 7. 15y(y+1)/(45y^2(y+1)) 8. 24x^3(4-x)/(18x(4-x)) 9. 6x^3(2-x)/(12x(2-x)) 10. 12x^3(5-2x)/(18x(2-x-5)) 11. (a^2 + 6a)/(ac + 6c) 12. (x^2 + 4x)/(3x + 12) 13. (6-8x)/(4x^2-3x) 14. (x^2 + 2x - 15)/(x^2 - 10x + 21) 15. (x^2 - 2x - 3)/(x^2 - 5x - 6)
Understand the Problem
The question asks to simplify various algebraic expressions, which involves reducing them to their simplest form by factoring, canceling common terms, and simplifying fractions where applicable.
Answer
Answer for screen readers
Steps to Solve
- Problem 1: Simplifying the fraction
To simplify $\frac{8x^2}{12x^4}$, we can factor out the greatest common divisor (GCD) from the numerator and the denominator.
- The GCD of $8$ and $12$ is $4$.
- We can also cancel $x^2$ from the numerator and $x^4$:
$$ \frac{8x^2}{12x^4} = \frac{8}{12} \cdot \frac{x^2}{x^4} = \frac{2}{3} \cdot \frac{1}{x^2} = \frac{2}{3x^2} $$
- Problem 2: Simplifying the fraction
For $\frac{24x^2y}{32xy^3}$, we again find the GCD.
- The GCD of $24$ and $32$ is $8$.
- Cancel the common factors $x$ and $y$:
$$ \frac{24x^2y}{32xy^3} = \frac{24}{32} \cdot \frac{x^2}{x} \cdot \frac{1}{y^2} = \frac{3}{4} \cdot x \cdot \frac{1}{y^2} = \frac{3x}{4y^2} $$
- Problem 3: Simplifying the fraction
For $\frac{(x+1)^3}{(x+1)^5}$:
- We can cancel the common factor of $(x+1)^3$:
$$ \frac{(x+1)^3}{(x+1)^5} = \frac{1}{(x+1)^{2}} $$
- Problem 4: Simplifying the fraction
For $\frac{(3x-2)^6}{(3x-2)^4}$:
- Again, we cancel the common factor:
$$ \frac{(3x-2)^6}{(3x-2)^4} = (3x-2)^{2} $$
- Problem 5: Simplifying the fraction
For $\frac{2n-3}{3-2n}$:
- Note that $3-2n = -(2n-3)$, so:
$$ \frac{2n-3}{3-2n} = \frac{2n-3}{-(2n-3)} = -1 $$
- Problem 6: Simplifying the fraction
For $\frac{15y^2(y+3)}{20y^3(y+3)}$:
- Cancel the common factor $(y + 3)$:
$$ \frac{15y^2}{20y^3} = \frac{15}{20} \cdot \frac{1}{y} = \frac{3}{4y} $$
- Problem 7: Simplifying the fraction
For $\frac{15y(y+1)}{45y^2(y+1)}$:
- Cancel the common factor $(y + 1)$:
$$ \frac{15y}{45y^2} = \frac{15}{45} \cdot \frac{1}{y} = \frac{1}{3y} $$
- Problem 8: Simplifying the fraction
For $\frac{24x^3(4-x)}{18x(4-x)}$:
- Cancel the common factor $(4-x)$:
$$ \frac{24x^3}{18x} = \frac{24}{18} \cdot x^{2} = \frac{4}{3}x^{2} $$
- Problem 9: Simplifying the fraction
For $\frac{6x^3(2-x)}{12x(2-x)}$:
- Cancel $(2-x)$:
$$ \frac{6x^3}{12x} = \frac{6}{12} \cdot x^{2} = \frac{1}{2}x^{2} $$
- Problem 10: Simplifying the fraction
For $\frac{12x^3(5-2x)}{18(2x-5)}$:
- Note that $2x-5 = -(5-2x)$:
$$ \frac{12x^3(5-2x)}{18(2x-5)} = \frac{12x^3(5-2x)}{-18(5-2x)} = -\frac{12}{18}x^3 = -\frac{2}{3
AI-generated content may contain errors. Please verify critical information