Find the missing side and angle measures of triangle XYZ.
Understand the Problem
The question asks to find the missing side and angle measures of triangle XYZ, where two angles and one side length are provided. It involves applying trigonometric principles to solve for the unknown values.
Answer
- $m\angle Z \approx 31^\circ$, $x \approx 7.38$ units, $y \approx 17.5$ units.
Answer for screen readers
- $m\angle Z \approx 31^\circ$
- $x \approx 7.38$ units
- $y \approx 17.5$ units
Steps to Solve
-
Find the missing angle
To find angle $Z$, we can use the fact that the sum of angles in a triangle is $180^\circ$. We know angles $Y$ and $X$, so we calculate:
$$ m\angle Z = 180^\circ - (m\angle Y + m\angle X) $$
Substituting the known values:
$$ m\angle Z = 180^\circ - (130^\circ + 19^\circ) = 180^\circ - 149^\circ = 31^\circ $$ -
Use the Law of Sines to find side $y$
Now that we have all angles, we can apply the Law of Sines:
$$ \frac{y}{\sin Y} = \frac{11.6}{\sin Z} $$
Substituting the known values:
$$ \frac{y}{\sin(130^\circ)} = \frac{11.6}{\sin(31^\circ)} $$ -
Calculate sin values and solve for $y$
Using a calculator, we find:
$$ \sin(130^\circ) \approx 0.766 $$
$$ \sin(31^\circ) \approx 0.515 $$
Now we substitute these values in:
$$ \frac{y}{0.766} = \frac{11.6}{0.515} $$
Cross-multiplying gives:
$$ y = 11.6 \cdot \frac{0.766}{0.515} $$
Calculating, we find:
$$ y \approx 17.5 $$ -
Use the Law of Sines to find side $x$
Next, we will find side $x$ using the same Law of Sines formula:
$$ \frac{x}{\sin X} = \frac{11.6}{\sin Z} $$
Substituting the known values:
$$ \frac{x}{\sin(19^\circ)} = \frac{11.6}{\sin(31^\circ)} $$
Using value for $\sin(31^\circ) \approx 0.515$, we can find $\sin(19^\circ) \approx 0.325$. -
Calculate $x$ using the values
$$ \frac{x}{0.325} = \frac{11.6}{0.515} $$
Cross-multiplying gives:
$$ x = 11.6 \cdot \frac{0.325}{0.515} $$
Calculating, we find:
$$ x \approx 7.38 $$
- $m\angle Z \approx 31^\circ$
- $x \approx 7.38$ units
- $y \approx 17.5$ units
More Information
In this triangle, we found the missing angle and both side lengths using trigonometric principles, specifically the Law of Sines. Understanding these relationships is key in solving triangles where not all values are known.
Tips
- Forgetting to find the missing angle before using the Laws of Sines.
- Miscalculating sine values with a calculator.
- Mixing up which side corresponds to which angle in the Law of Sines formula.
AI-generated content may contain errors. Please verify critical information