V13 Electrochemical and Electrical Impedance Spectroscopy (EIS) WS 23 PDF
Document Details
Uploaded by DauntlessLotus
RWTH Aachen University
Uwe Schnakenberg
Tags
Related
Summary
This document presents lecture notes on electrochemical and electrical impedance spectroscopy (EIS). It covers microelectrode principles, electrolyte-electrode interfaces, including the Nernst and Butler-Volmer equations, and different EIS applications. The notes also detail the working principle, different types and equivalent electrical circuits involved in EIS.
Full Transcript
V13 V 13 Electrochemical and Electrical Impedance Spectroscopy < EIS > Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 1 Contents V13 Contents 13.1 Microelectrodes 13.2 Electrolyte-Electrode Interface Nern...
V13 V 13 Electrochemical and Electrical Impedance Spectroscopy < EIS > Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 1 Contents V13 Contents 13.1 Microelectrodes 13.2 Electrolyte-Electrode Interface Nernst equation Butler-Volmer equation Mass transport at microelectrodes 13.3 EIS 13.3.1 Electrochemical Impedance Spectroscopy 13.3.2 Electrical Impedance Spectroscopy Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 2 Learning targets V13 Learning targets Electrode-electrolyte interface EIS Equivalent electric circuitry: Randles model Difference between electrical and electrochemical impedance spectroscopy EIS sensing applications Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 3 V13 13.1 Microelectrodes Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 4 13.1 Microelectrodes V13 Microelectrodes in Microfluidic Systems Sensors Temperature pH value Electrochemical interactions at surfaces (binding events and binding kinetics) Recording of nerve signals Recording dielectric properties between electrodes Actuators Heating, cooling Electrokinetics (→ V09 - V11) Electrowetting (→ V07) Surface acoustic waves (→ V12) Stimulation of nerve cells Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 5 13.1 Microelectrodes Substrate (Glass, Si, Flex) V13 6 Deposition of metal layer Metal layer (Au) Lithography, Electroplating, photo resist strip, metal layer etch Electroplated Au Contact pad If necessary: Deposition of electrode top layer, lithography, lift-off Electrode layer Deposition of passivation layer, lithography Passivation layer Cross section Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Top view 13.1 Microelectrodes V13 Examples of Microelectrodes doi:10.1016/j.snb.2009.12.015 idw-online.de/ de/news60068 http://arcade.stanford.edu/ journals/occasion/node/24 http://inhabitat.com/ Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 www.labo.de/ 7 V13 13.2 Electrolyte-Electrode Interface Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 8 13.2 Electrolyte – Electrode Interface Metal Electrode - Electrolyte Interface Electrode surface is charged when in contact with an electrolyte (fluid) Formation of an electrical double layer (EDL) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 9 13.2 Electrolyte – Electrode Interface Metal Working Electrode V13 10 Potential @ Metal Electrode Reference electrode (in equilibrium = without current) Is the result of the electromotive force (charge separation) of an electrochemical cell built of two electrodes Appears at the interface between an electrode and electrolyte due to Specific adsorption of ions at the interface Specific adsorption/orientation of polar molecules, including those of the High resistive voltage meter solvent Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface V13 11 Potential Eeq @ Metal Electrode Metal Working Electrode Reference electrode (in equilibrium = without current) High resistive voltage meter Is given with respect to a reference electrode when the potential of reference electrode E0 to solution is known Nernst equation (1889) COx RT Eeq E ln ( ) nF C Red 0 Eeq Equilibrium potential E0 Standard potential of reference electrode: normal hydrogen electrode NHE (E0= 0 V) or Ag/AgCl electrode (E0 = 208 mV @ pH 7 and 298 K) R … Ideal gas constant n … Number of transferred electrons F … Faraday constant C … Concentration of oxidized and reduced forms of a molecule Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface V13 12 Metal Working Electrode Reference electrode Nernst Equation Eeq ;25C COx 0.059 E ln ( ) n C Red 0 Walter Nernst (1864 - 1941) Equilibrium electrode potential depends on the concentrations of oxidized and reduced forms of a molecule High resistive voltage meter Ox n e Red Oxidation … Electron delivery Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Reduction... Electron acceptance 13.2 Electrolyte – Electrode Interface Eeq Is called Equilibrium potential Eeq Open circuit potential OCP Rest potential Is the potential at which there is no current flow through the interface Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 13 13.2 Electrolyte – Electrode Interface V13 14 Metal Electrode - Electrolyte Interface When an additional electric potential is applied to a metallic electrode submerged in an electrolyte Current is generated across the interface Electric current is converted to ionic current and vice versa Electrochemical transducer which exchanges electrons with ions Without energy supply from outside no charge transfer across interface is possible Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface V13 15 Application of an External Potential at the Working Electrode Results in a Current through the Interface Working Electrode Ox + ne- ↔ Red @ Negative poled electrode: cathodic current Positive ions are attracted to the electrode Electrons will be delivered from the electrode (cathode, (-) pole) to the medium Dissolved ions take over the electrons Ions are reduced @ Positive poled electrode: anodic current Negative ions are attracted to the electrode Electrons will be collected by the electrode (anode, (+) pole) Dissolved ions release electrons Ions are oxidized Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface V13 16 Butler-Volmer equation nitum.wordpress.com Current Density at Metal Electrode nF (U U equ ) (1RT)nF (U U equ ) RT j j0 e e Describes the change of current density with change of applied voltage at the working electrode John A.V. Butler (1899 – 1977) de.wikipedia.org At metal electrode-electrolyte interface U = RI j … Electrode current density [A/m2] j0.. Exchange current density [A/m2] n … Number of electrons involved in the reaction F … Faraday constant α … Symmetry coefficient U …... Applied electrode potential [V] Uequ … Equilibrium potential [V] R … Universal gas constant T … Absolute Temperature [K] Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Max Volmer (1885-1965) 13.2 Electrolyte – Electrode Interface V13 17 Current Density at Metal Electrode Butler-Volmer equation nF (U U equ ) (1RT)nF (U U equ ) RT j j0 e e Valid for: Fast, reversible reactions No diffusion effects of species to and away from electrode No polarization effects* at electrodes * Polarization is a collective term for certain mechanical side-effects (of an electrochemical process) by which isolating barriers develop at the interface between electrode and electrolyte Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface Butler-Volmer equation V13 18 nF (U U equ ) (1RT)nF (U U equ ) RT j j0 e e Symmetry factor α α < 0.5 α = 0.5 α > 0.5 Cathodic current No Anodic current preferred Preference preferred Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface V13 19 Anodic Current Butler-Volmer equation α = 1 α = 0,75 α = 0,5 Cathodic current chemie.uni-erlangen.de α = 0,25 α=0 E Eeq Overvoltage Butler-Volmer equation is valid only for specific conditions. In most real electrochemical systems diffusion processes of ions are involved. Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.2 Electrolyte – Electrode Interface V13 20 Rs Solution / Electrolyte resistance Electrode-Electrolyte Interface Randles Model (1947) EDL Rs www.gamry.com Depends on Ion concentration Type of ion Temperature Area of cell Cdl Electric Double-layer Capacitance Depends on Electrode potential Temperature Ionic concentrations Type of ions Electrode roughness Adsorption of impurities Rct Charge transfer resistance Depends on Kind of reaction Temperature Concentration of reaction products Applied potentials J.E.B. Randles: Disc. Faraday Soc. 1 11-19 (1947) EDL Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 21 13.3 EIS 13.3.1 Electrochemical 13.3.2 Electrical Impedance Spectroscopy Impedance Spectroscopy Measures current-voltage dependencies Measures current-voltage dependencies at an electrode between two electrodes Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 22 13.3.1 Electrochemical Impedance Spectroscopy (EIS) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 23 Electrochemical Impedance Spectroscopy (EIS) Objectives ► To measure current-voltage dependencies at an electrode ► To calculate Rs, Rct, Cdl Apply a sinusoidal potential to an electrochemical cell Measure the current through the cell Analyze the frequency-dependent complex electrical resistance, called electrochemical impedance H.S. Magar et al.: Sensors 21 6578 (2021) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 24 Working Principle U Excitation signal U (t ) U 0 sin t t Typically applied Response signal I (t ) I 0 sin(t ) Amplitude: 1 - 10 mV I Frequency: 10-2 - 107 Hz t 2 f Phase shift depends on frequency Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 25 Attention ! Ohm’s law is not valid in chemie.uni-erlangen.de Butler-Volmer equation α = 1 α = 0,75 α = 0,5 electrochemical cells Double voltage ≠ Double current α = 0,25 α=0 Impedance analysis of linear systems is much easier When small AC signals (1-10 mV) are applied, electrochemical cells become pseudo-linear Typically, experiments are carried out at Vbias = OCP = Eeq Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy DC signals U R I AC signals Z U (t ) U 0 sin t sin t Z0 I (t ) I 0 sin(t ) sin(t ) Ohm‘s law Impedance Euler‘s relationship V13 26 Impedance Z U (t ) U 0 sin t sin t Z0 I (t ) I 0 sin(t ) sin(t ) e j cos j sin U (t ) U 0e jt Z ( ) I (t ) I 0e j (t ) U (t ) Z 0 e j Z 0 (cos j sin ) I (t ) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Re Z j Im Z 13.3.1 Electrochemical Impedance Spectroscopy V13 27 Z ( ) Re Z j Im Z Real part Re Z Imaginary part Im Z (Ohmic) Resistance Reactance Independent of frequency Current oscillates out of phase with applied voltage Depends on frequency Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 28 Nyquist Plot for Reaction-Controlled Electrochemical Reaction Equivalent Circuit Randles Model Negative imaginary part at Electrode-Electrolyte Interface Rct/2 Z ( ) Re Z j Im Z www.dechema.de/kwi_media/Downloads/ec/7+Messmethoden.pdf Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 Ru+Rct Real part 13.3.1 Electrochemical Impedance Spectroscopy V13 29 Bode Plot for Reaction-Controlled Electrochemical Reaction at Electrode-Electrolyte Interface Cut-off frequency Equivalent circuit - 90 Randles model Z Re Z 2 Im Z 2 Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 30 Nyquist Plot for Diffusion-Controlled Reactions at Electrode-Electrolyte Interface* Kinetic control ZW … Warburg impedance Fitting parameter Ru Gabriel Warburg (1846 – 1931) www.dechema.de/kwi_media/Downloads/ec/7+Messmethoden.pdf Diffusion control Ru Rct * For details: see Appendix Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 https://de.wikipedia.org/wiki/Emil_Warburg 13.3.1 Electrochemical Impedance Spectroscopy V13 31 Bode Plot for Diffusion-Controlled Reactions at Electrode-Electrolyte Interface* H.S. Magar et al.: Sensors 21 6578 (2021) https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/ Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 32 For Rough and/or Heterogeneous Electrodes Cdl is replaced by Constant Phase Element CPE CPE 1 n A j CPE reflects Inhomogeneity of electrode Deviation from Randles model is fitted by parameter n (0 < n < 1) n = 1 … Only capacitive behavior n = 0 … Only resistive behavior E. Katz et al.: Electroanalysis 15 (11) 913-947 (2003) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 33 CPE in Nyquist-Plot Pure CPE (pink line) Straight line (-Q-) Angle to x-axis: n ∙ 90° Resistance parallel to CPE (green line) Half circle Centre of half circle declined by an angle of (1-n) ∙ 90° Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy Sensor Applications Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 34 13.3.1 Electrochemical Impedance Spectroscopy V13 35 EIS for Immunoassay Analysis Top view Cross section + Flow Channel wall Au - Electrodes Substrate Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 36 EIS for Immunoassay Analysis Top view Cross section A Y YY + A‘ A Flow Channel wall Y YY Au - Electrodes Substrate Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 A‘ 13.3.1 Electrochemical Impedance Spectroscopy Detail of Sensor Area Microfluidic EIS Sensor J. Lazar et al.: Macromol. Rapid Commun. 36 (16) 1472-1478 (2015) J. Lazar et al.: Anal. Chem. 88 (1) 682-687 (2016) T. Wagner, J. Lazar et al: ACS Applied Materials & Interfaces 8 (49) 27282-27290 (2016) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 37 V13 38 J. Lazar et al.: Macromol. Rapid Commun. 36 (16) 1472-1478 (2015) J. Lazar et al.: Anal. Chem. 88 (1) 682-687 (2016) T. Wagner, J. Lazar et al: ACS Applied Materials & Interfaces 8 (49) 27282-27290 (2016) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy EIS for Immunoassay Analysis Detection of a marker for breast cancer (MUC1 antigen) Capture molecule on sensor surface: antibody 214D4 developed by Stefan Barth’s group (Fraunhofer-IME, Aachen, Germany) J. Lazar et al.: Clinician and Technology Journal 45 (4) 105-109 (2015) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 39 13.3.1 Electrochemical Impedance Spectroscopy V13 40 (A) Pre-treatment in oxygen plasma (B) Rinse in 11-mercaptopropionic acid (MPA) for 12 hours (C) Application of EDC/NHS coupling crosslinking chemistry (D) Treatment with antibody 214D4 diluted in BSA/PBS (E) Channel blocked with BSA in PBS (F) Treatment with protein MUC1ex in BSA/PBS J. Lazar et al.: Clinician and Technology Journal 45 (4) 105-109 (2015) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 41 Imaginary part of Impedance Z Nyquist Plot Rct Real part of Impedance Z J. Lazar et al.: Clinician and Technology Journal 45 (4) 105-109 (2015) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.1 Electrochemical Impedance Spectroscopy V13 42 D J. Lazar et al: Clinician and Technology Journal 45 (4) 105-109 (2015) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 E F V13 43 13.3.2 Electrical Impedance Spectroscopy (EIS) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 44 Electrical Impedance Spectroscopy (EIS) Objectives ► To measure current-voltage dependencies between two electrodes ► To calculate the dielectric properties of the material between the electrodes Apply a sinusoidal potential between two electrodes Measure the current between the electrodes Analyze the frequency-dependent complex electrical resistance, called electrical impedance of the material between the electrodes Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy Electrical Impedance Analysis in Flow Cytometers Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 45 13.3.2 Electrical Impedance Spectroscopy EIS in Flow Cytometry Electrical impedance spectroscopy on single cells in microfluidic channel instead of scattered light or fluorescence spectroscopy http://www.abcam.com/ Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 46 13.3.2 Electrical Impedance Spectroscopy V13 47 Impedance in Flow Cytometry* Characterization of single cells in suspension with EIS Measuring the change of electrolyte impedance Advantages High sampling rates * Invented by W.H. Coulter: Means of counting particles suspended in a fluid, US2656508A, October 1953 H. Morgan et al.: J. Phys. D: Appl. Phys. 40 61-70 (2007) T. Sun et al: NANO: Brief Reports and Reviews: 3 (1) 55-63 (2008) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 48 Electrode Cdl Rct Ccell Rcell Cdl Rct The larger the cell, the higher the change of Rs electrical impedance Electrode Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 49 https://www.youtube.com/watch?v=7TeGk5tuDR0 https://www.youtube.com/watch?v=S8Gkjg9GFJw Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 50 Electrical Impedance Analysis of Oocytes Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 51 Assisted Reproductive Technology (ART) - Artificial Fertilization of Mammalian Oocytes - Mammalian Oocyte ICSI Intracytoplasmic sperm injection Zona pellucida (ZP) IVF In vitro fertilization Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 52 Window of Best Fertilization When Zona Pellucida is Soft Mouse oocyte Y. Murayama et al. (2006) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 53 Young‘s Modulus EZP of Zona Pellucida Is Typically Determined with Micropipette Aspiration Technique Zona pellucida Mouse Oocyte L … Aspiration length p … Aspiration pressure ri.. Inner pipette radius EZP. Young‘s modulus of ZP νZP Poisson ratio of ZP = 0.04 M. Khalilian et al. (2010) L.G. Alexopoulos et al. (2003) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 54 Micropipette Aspiration Technique EIS in Combination with µF Observer-independent readout method Easy cell handling Without optical control With multiplexing capability Only single cell characterization Challenging manual handling Time-consuming Microscopic control observer-dependent low resolution (curved glass surfaces) bad contrast (transparent ZP) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy 1st Setup Microfluidic Channel-Based System Outlet Inlet A. El Hasni et al.: Sensors and Actuators B 248 419-429 (2017) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 55 13.3.2 Electrical Impedance Spectroscopy V13 56 Hydrodynamic Trapping Equivalent Electrical Circuit Rhyd.2 𝑅ℎ𝑦𝑑.2 > 𝑅ℎ𝑦𝑑.1 → 𝑄1 > 𝑄2 → 𝑄1 𝑄1 +𝑄2 ≈ 0.7 Rhyd.1 Q1 Q2 Rhyd. Fluid resistance Q … Flow rate Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 57 + Coating the electrodes with PPy:PSS Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 58 50 µm Outlet Inlet 35 mm Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 50 µm 13.3.2 Electrical Impedance Spectroscopy V13 59 Mouse Oocyte 70 CONFIG14 60 without zona pellucida 50 ΔZ / [%] with zona pellucida 1 4 2 3 40 30 20 10 0 101 102 103 104 105 106 107 108 Frequency / [Hz] Zona Pellucida is more conductive than surrounding medium Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy 2nd Setup Microfluidic Aspiration-Assisted ElS (MAEIS) Y. Cao et al.: Micromachines 12 (6) 632 (2021) U. Schnakenberg et al.: Patent DE102020214862A1 (2022) Y. Cao et al.: Sensors & Actuators B 380 133316 (2023) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 60 13.3.2 Electrical Impedance Spectroscopy Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 61 13.3.2 Electrical Impedance Spectroscopy Impedance Analyser V13 62 µfluidic Chip & Read-out circuit Raspberry Pi Programable syringe pump Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 2nd Setup – MAEIS – Video of Hydrodynamic Oocyte Trappig 13.3.2 Electrical Impedance Spectroscopy Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 63 13.3.2 Electrical Impedance Spectroscopy V13 64 CPE … Constant Phase Element CE … Crosstalk capacitance C … Film capacitance CP … Cytoplasm capacitance RP … Cytoplasm resistance RS … Solution resistance R1,2,3 … Zona pellucida resistances RM … Cytomembrane resistance RPVS … Perivitelline space resistance RA … Aperture resistance R … R1+R2+R3+RA Simplified equivalent electrical circuit Only R = f(R2) depends on suction pressure, because Zona Pellucida is squeezed Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy Nyquist plot Parameter: Aspiration pressure The resistive part increases with increasing suction pressure Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 65 Bode diagram 13.3.2 Electrical Impedance Spectroscopy V13 66 Three Mouse Oocyte ( ø 100 µm) Genotypes were tested Wild type (WT) Fetuin-B single knock-out (KO) MII (ZP normal) MII (ZP hard) Fetuin-B/ovastacin double knock-out MII (ZP soft) (DKO) Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 67 Fitting the EIS Spectra with Simplified Equivalent Electrical Circuit Only R = f(R2) depends on suction pressure R … Resistance with trapped mouse oocyte at aperture R0.. Resistance of non-occupied open aperture Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 13.3.2 Electrical Impedance Spectroscopy V13 68 Young‘s Modulus EZP 𝑬𝐙𝐏 = 𝐶 ∗ ℎZP 1 − 𝑣ZP 2 𝑅2,0 1 𝑟i + 𝑅0 𝑟C 1 𝑟C 2 + 2 𝑟C 𝑟C − 𝑟C 2 − 𝑟i 2 𝑅2 −1 𝑅2,0 ∆𝒑 ∆ 𝑹Τ𝑹𝟎 Cell type Young’s modulus (kPa) ZP Hardness KO 23.29 ± 4.15 Hard WT 3.58 ± 0.63 Normal DKO 1.19 ± 0.30 Soft Remark: With micropipette aspiration technique EZP p L / ri Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 (see Slide 66) L … Aspiration length p … Aspiration pressure ri.. Inner pipette radius EZP. Young‘s modulus of ZP R … Resistance at sealed aperture R0.. Resistance at empty aperture Conclusion V13 69 Conclusion Microelectrodes play an important role in microfluidics for sensor applications EIS is an important measurement technique Impedance spectra can be fitted with equivalent electrical circuits. Each circuit element must correspond to a physical parameter Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 70 End of the course Thank you very much for your interest ! Please, recommend the course* to your colleagues and keep in touch ! All my best for your future, Uwe Schnakenberg and his team * Final course will take place in SS 2026 Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23 V13 71 One Minute Paper 1. What was the most important topic you understood? 2. What was the topic you didn‘t catch? Lecture „Microfluidic Systems - Bio-MEMS“ – EIS Prof. Dr.-Ing. Uwe Schnakenberg | Institute of Materials in Electrical Engineering 1 | WS 23