Use and Programming of Industrial Robots PDF

Summary

This document is a training guide on the use and programming of industrial robots, aimed at school and college students. It covers various aspects such as robot components, applications, programming, and safety.

Full Transcript

Training KUKA Roboter GmbH Use and Programming of Industrial Robots Target Group: School and College Students Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) Use and...

Training KUKA Roboter GmbH Use and Programming of Industrial Robots Target Group: School and College Students Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) Use and Programming of Industrial Robots © Copyright 2013 KUKA Roboter GmbH Zugspitzstraße 140 D-86165 Augsburg Germany This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of KUKA Roboter GmbH. Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work. We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, how- ever, and necessary corrections will be incorporated in the subsequent edition. Subject to technical alterations without an effect on the function. Translation of the original documentation KIM-PS5-DOC Publication: Pub College Einsatz und Programmierung von Industrierobotern (TG- COL) en Bookstructure: EduPack Einsatz und Programmierung von Industrierobotern V5.1 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) Contents Contents 1 Introduction to robotics.............................................................................. 7 1.1 Overview.................................................................................................................... 7 1.2 Introduction................................................................................................................ 7 1.3 R.U.R. – Rossum’s Universal Robots........................................................................ 8 1.4 Laws of Robotics........................................................................................................ 8 1.5 The first robot............................................................................................................. 9 1.6 KUKA company history.............................................................................................. 9 2 Fields of application for industrial robots................................................. 13 2.1 Overview.................................................................................................................... 13 2.2 Applications for industrial robots................................................................................ 13 2.3 Examples of robotic applications............................................................................... 16 3 Overview of the components of a robot system....................................... 27 3.1 Overview.................................................................................................................... 27 3.2 Components of a robotic cell..................................................................................... 27 3.3 Robot selection.......................................................................................................... 28 3.4 Controller configuration.............................................................................................. 30 3.5 Selection of the end effector / tool............................................................................. 30 3.6 Selection of the energy supply system...................................................................... 31 3.7 Periphery connection (field bus)................................................................................ 32 3.8 Use of sensors........................................................................................................... 32 3.9 Safety equipment....................................................................................................... 33 4 Industrial robots.......................................................................................... 39 4.1 Overview.................................................................................................................... 39 4.2 Introduction to robotics............................................................................................... 39 4.3 Definition and structure.............................................................................................. 40 4.4 Robot arm of a KUKA robot....................................................................................... 41 4.5 Arrangement of the main axes................................................................................... 44 4.6 Absolute accuracy and repeatability.......................................................................... 46 5 Robot controller........................................................................................... 49 5.1 Overview.................................................................................................................... 49 5.2 Dimensions of robot controller................................................................................... 51 5.3 Minimum clearances, robot controller........................................................................ 52 5.4 Overview of the robot controller................................................................................. 52 5.5 Overview of applications and bus systems................................................................ 56 5.5.1 KUKA Controller Bus, KCB................................................................................... 58 5.5.2 KUKA System Bus, KSB....................................................................................... 58 5.5.3 KUKA Extension Bus, KEB................................................................................... 59 5.5.4 KUKA Line Interface, KLI...................................................................................... 60 5.6 Energy efficiency........................................................................................................ 61 6 Moving the robot......................................................................................... 63 6.1 Overview.................................................................................................................... 63 6.2 KUKA smartPAD teach pendant................................................................................ 63 6.2.1 Front view............................................................................................................. 63 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 / 271 Use and Programming of Industrial Robots 6.2.2 Rear view............................................................................................................. 65 6.3 Reading and interpreting robot controller messages................................................. 66 6.4 Selecting and setting the operating mode................................................................. 68 6.5 Moving individual robot axes..................................................................................... 70 6.6 Coordinate systems in conjunction with robots......................................................... 74 6.7 Moving the robot in the world coordinate system...................................................... 75 6.8 Moving the robot in the tool coordinate system......................................................... 80 6.9 Moving the robot in the base coordinate system....................................................... 83 7 Start-up......................................................................................................... 89 7.1 Overview.................................................................................................................... 89 7.2 Mastering principle.................................................................................................... 89 7.3 Mastering the robot.................................................................................................... 92 7.4 Loads on the robot..................................................................................................... 94 7.5 Tool load data............................................................................................................ 95 7.6 Supplementary loads on the robot............................................................................. 99 7.7 Tool calibration.......................................................................................................... 100 7.8 Base calibration......................................................................................................... 108 7.9 Displaying the current robot position......................................................................... 112 8 Executing robot programs.......................................................................... 115 8.1 Overview.................................................................................................................... 115 8.2 Performing an initialization run.................................................................................. 115 8.3 Selecting and starting robot programs....................................................................... 116 9 Working with program files........................................................................ 123 9.1 Overview.................................................................................................................... 123 9.2 Creating program modules........................................................................................ 123 9.3 Editing program modules........................................................................................... 125 10 Creating and modifying programmed motions......................................... 127 10.1 Overview.................................................................................................................... 127 10.2 Creating new motion commands............................................................................... 127 10.3 Creating cycle-time optimized motion (axis motion).................................................. 129 10.4 Creating CP motions................................................................................................. 135 10.5 Modifying motion commands..................................................................................... 144 11 Using logic functions in the robot program.............................................. 149 11.1 Overview.................................................................................................................... 149 11.2 Introduction to logic programming............................................................................. 149 11.3 Programming wait functions...................................................................................... 150 11.4 Programming simple switching functions.................................................................. 155 11.5 Programming time-distance functions....................................................................... 157 12 Introduction to Expert level........................................................................ 161 12.1 Overview.................................................................................................................... 161 12.2 Using Expert level...................................................................................................... 161 13 Loops, conditional instructions and case distinctions............................ 165 13.1 Overview.................................................................................................................... 165 4 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) Contents 13.2 Program execution control......................................................................................... 165 13.3 Loops......................................................................................................................... 166 13.4 Conditional instructions and case distinctions........................................................... 169 14 Subprograms and functions....................................................................... 171 14.1 Overview.................................................................................................................... 171 14.2 Working with local subprograms................................................................................ 171 14.3 Working with global subprograms.............................................................................. 173 14.4 Transferring parameters to subprograms.................................................................. 175 15 Variables and declarations......................................................................... 177 15.1 Overview.................................................................................................................... 177 15.2 Data management in KRL.......................................................................................... 177 15.3 Working with simple data types................................................................................. 179 15.3.1 Declaration of variables........................................................................................ 180 15.3.2 Initialization of variables with simple data types................................................... 182 15.3.3 Manipulation of variable values of simple data types with KRL............................ 184 15.4 Arrays with KRL......................................................................................................... 187 15.5 Structures with KRL................................................................................................... 190 15.6 The enumeration data type ENUM............................................................................ 193 16 Motion programming with KRL.................................................................. 195 16.1 Overview.................................................................................................................... 195 16.2 Programming motions with KRL................................................................................ 195 16.3 Calculating or manipulating robot positions............................................................... 203 16.4 Deliberate modification of Status and Turn bits......................................................... 204 17 Working with a higher-level controller...................................................... 209 17.1 Overview.................................................................................................................... 209 17.2 Preparation for program start from PLC..................................................................... 209 17.3 Adapting the PLC interface (Cell.src)......................................................................... 211 17.4 Configuring and implementing Automatic External.................................................... 213 18 Programming with WorkVisual.................................................................. 223 18.1 Overview.................................................................................................................... 223 18.2 Connection with WorkVisual...................................................................................... 223 18.3 Managing a project with WorkVisual.......................................................................... 230 18.3.1 Opening a project with WorkVisual....................................................................... 230 18.3.2 Comparing projects with WorkVisual.................................................................... 234 18.3.3 Transferring a project to the robot controller (deployment)................................... 239 18.3.4 Activating a project on the robot controller........................................................... 243 18.4 Editing KRL programs with WorkVisual..................................................................... 246 18.4.1 File handling......................................................................................................... 246 18.4.2 Working with the KRL Editor................................................................................. 252 19 Appendix...................................................................................................... 259 19.1 Abbreviations............................................................................................................. 259 19.2 Terms used................................................................................................................ 260 19.3 Excerpt from KR C4 safety........................................................................................ 261 Index............................................................................................................. 267 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 5 / 271 Use and Programming of Industrial Robots 6 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 1 Introduction to robotics 1 Introduction to robotics 1.1 Overview The following contents are explained in this training module: Introduction R.U.R. – Rossum’s Universal Robots Laws of robotics The first robot KUKA history Fig. 1-1: Change of chapter 1.2 Introduction Fig. 1-2 In view of the increasing diversity of products and variants, it is necessary to enhance manufacturing productivity and flexibility in order to maintain or in- crease competitiveness. The use of industrial robots (IR) is one suitable way of achieving the flexible automation required. The term “robot” originates in the Slavic word “robota”, in the sense of labori- ous work. In the technical sense, however, industrial robots are defined as distinct from other automation devices and working machines. Nevertheless, there is a cer- tain amount of international confusion over the term, as similar systems, such as manipulators or loading devices, are often counted as robots and included in the statistics. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 7 / 271 Use and Programming of Industrial Robots The reason for this is that in all such systems, the mechanical structure con- sists of a kinematic chain with a fixed part and an arm (or several arms) on which a wrist with a gripper or tool (e.g. welding torch) is mounted. 1.3 R.U.R. – Rossum’s Universal Robots R.U.R. (Czech: Rosumovi Umeli Roboti) is the title of a play by the Czech au- thor Karel Capek that appeared in 1921. It is about a company that manufactures humanoid machines (robots) to re- lieve the workload on humans. These machines subsequently overthrow soci- ety and destroy humanity. Fig. 1-3: R.U.R. – Rossum’s Universal Robots The name of the play, R.U.R., stands for Rossum’s Universal Robots, the company that produces these machines. The name Rossum is an ironic play on words by the author: the Czech word “rozum” (pronounced with a short first syllable) means reason, understanding. A correct translation of the original ti- tle would be “(Mr.) Reason’s Artificial (Slave-)Workers”; the name “Rossum” has been retained in translation, however, and “universal” has been used in order to be able to keep the Czech abbreviation R.U.R. The term “Robot” coined in this play quickly found its way into many languages as an everyday word. 1.4 Laws of Robotics The Laws of Robotics were first described by Isaac Asimov in his collection of science-fiction stories I, Robot (1950). Since then, they have influenced concepts of what a robot should be and how it should act. These laws are bind- ing on the way the robots described by Asimov act and make decisions. Initially, these laws only applied to “literary” robots, but they have since come to influence the programming of modern robots and are used in modified forms in competitions, e.g. for cleaning robots. Modern industrial robots are also pro- grammed in accordance with these laws, even if most robot programmers are unaware of the fact. 8 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 1 Introduction to robotics Asimov’s laws state: 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm. 2. A robot must obey orders given to it by human beings except where such orders would conflict with the First Law. 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law. It should be noted that the laws are hierarchical in nature. Although the laws appear to be clearly formulated, they are not “foolproof”, primarily because they are interpreted by humans, i.e. imperfectly and incompletely. 1.5 The first robot Fig. 1-4: The first industrial robot (type: Unimate; manufacturer: Unima- tion; entered service: 1961) The first industrial robot, later known as the Unimate, came about after its in- ventors, George Devol and Joseph Engelberger, discussed a science-fiction novel at a meeting in 1956. On the basis of this novel, these two men decided to develop a real robot. The Unimate was integrated into a production line at General Motors (Trenton, USA) in 1962. This robot’s tasks consisted of taking hot workpieces out of a metal press and stacking them. The program for the robot consisted of a large number of individual instruction steps stored on a magnetic drum. This already enabled it to perform a wide range of automation tasks. 1.6 KUKA company history 1898 The entrepreneurs Johann Josef Keller and Jakob Knappich founded the Augsburg Acetylene Factory in 1898. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 9 / 271 Use and Programming of Industrial Robots Fig. 1-5: Johann Josef Keller (left) and Jakob Knappich (right) History 1900 Knappich’s acetylene spotlight 1927 Large refuse collection vehicle for munici- pal waste 1939 “Mars” spot welding machine 1949 “Princess” typewriter 1970 Turret for Marder main infantry combat vehicle 10 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 1 Introduction to robotics KUKA robots 1973 KUKA develops the world’s first industrial robot with six electric motor-driven axes, called FAMU- LUS. 1976 Development of a new robot model with electromechanically driven axes and an offset wrist. 1989 The new product generation with brushless drive motors and a triple- roll wrist, covering a payload range from 8 kg to 240 kg – without a par- allelogram-type kinematic system. 1996 The first PC-based robot controller and the new robot product line keep KUKA Roboter GmbH on course for success. Many pioneering applica- tions will be developed in the com- ing years, e.g. RoboTeam and SafeRobot. 2007 The KR 1000 titan – the world’s strongest industrial robot – is unveiled. The palletizing variant of the titan can carry a payload of 1300 kg. 2011 With the KR C4, QUANTEC, smart- PAD and KUKA WorkVisual, auto- mation becomes easy. 2012 KR AGILUS series with KR C4 comp, the future of small robots. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 11 / 271 Use and Programming of Industrial Robots KUKA today KUKA Roboter GmbH, with its headquarters in Augsburg, is a KUKA Aktieng- esellschaft company and ranks among the world’s leading suppliers of indus- trial robots. Core competencies are the development, production and sale of industrial robots, controllers, software and linear units. The company is the market leader in Germany and Europe, and the number two in the world. KUKA Robotics employs about 3,180 people worldwide. The Robotics busi- ness unit achieved total sales of €742.6 million in 2012. 25 subsidiaries pro- vide a presence in the major markets of Europe, America and Asia. Fig. 1-6: KUKA locations in Augsburg and Gersthofen 12 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots 2 Fields of application for industrial robots 2.1 Overview The following contents are explained in this training module: Robotics statistics Application examples Fig. 2-1: Change of chapter 2.2 Applications for industrial robots Fig. 2-2: Robot applications Legend: [Source: IFR World Robotics 2011] Tool handling Tool handling includes: Robots for spot welding Robots for arc welding Robots for coating Robots for deburring Workpiece Workpiece handling includes: handling Robots for handling workpieces under stationary tools (stationary spot weld gun, pierce-&-roll rivet gun, torch). Robots for loading machine tools and machining centers. Robots for loading and unloading presses, die-casting machines and in- jection molding machines. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 13 / 271 Use and Programming of Industrial Robots Robots for handling workpieces at forging, annealing and tempering sys- tems and in the manufacture of glass products. Assembly Assembly: Robots for the assembly of wheels, sunroofs, window glass, etc., in the au- tomotive industry. Robots for the assembly of monitors. Robots in industry Fig. 2-3: Branches of industry Legend: [Source: IFR World Robotics 2011] Robot density 20010 Number of robots per 10,000 employees in production [Source: IFR World Ro- botics 2011] Countries with a higher robot density than average (51) Fig. 2-4: Robot density 1 14 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots Legend: Source: IFR World Robotics 2012 Countries with a lower robot density than average (51) Fig. 2-5: Robot density 2 Legend: Source: IFR World Robotics 2012 1 Robot density in the automotive industry, by country Fig. 2-6: Robot density in the automotive industry Legend: Source: IFR World Robotics 2012 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 15 / 271 Use and Programming of Industrial Robots 2.3 Examples of robotic applications Fig. 2-7: Spot welding a body-in-white Fig. 2-8: Arc welding 16 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots Fig. 2-9: Handling of engine blocks Fig. 2-10: Handling of beer barrels Fig. 2-11: Handling of furniture components Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 17 / 271 Use and Programming of Industrial Robots Fig. 2-12: Handling of sheet-metal parts – sheet-metal bending Fig. 2-13: Handling of sheet-metal parts – press linking 18 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots Fig. 2-14: Machining – grinding and polishing Fig. 2-15: Machining – plasma cutting of castings Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 19 / 271 Use and Programming of Industrial Robots Fig. 2-16: Machining – cutting meat Fig. 2-17: Processing of foodstuffs 20 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots Fig. 2-18: Assembly – fitting of weatherstrips Fig. 2-19: Assembly of vehicle seats Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 21 / 271 Use and Programming of Industrial Robots Fig. 2-20: Palletizing of cartons Fig. 2-21: Palletizing of chemical sacks 22 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots Fig. 2-22: Palletizing of beverage crates Fig. 2-23: Testing of water fittings Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 23 / 271 Use and Programming of Industrial Robots Fig. 2-24: Testing – durability testing of vehicle seats Fig. 2-25: Measuring – laser in-line measurement 24 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 2 Fields of application for industrial robots Fig. 2-26: Wind tunnel measurements – detail Fig. 2-27: Wind tunnel measurements Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 25 / 271 Use and Programming of Industrial Robots Fig. 2-28: Entertainment – ROBOCOASTER Fig. 2-29: Medical equipment 26 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 Overview of the components of a robot system 3 Overview of the components of a robot system 3.1 Overview The following contents are explained in this training module: Components of a robotic cell Selection criteria for a robot Control of robot and external axes Tool selection Selection of the energy supply system Periphery connection Use of sensors Safety equipment Fig. 3-1: Change of chapter 3.2 Components of a robotic cell A robot system / robotic cell consists of the following components: Fig. 3-2: Arc welding cell Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 27 / 271 Use and Programming of Industrial Robots Item Description 1 Robot 2 Controllers 3 Tool/tool changer 4 Energy supply system 5 Periphery connection 6 Sensor system 7 Safety fence 8 Loading area with photoelectric curtain 3.3 Robot selection Criteria for robot selection: Loads Load: The load is a function of the mass, the moment of inertia, and the static and dynamic forces exerted by the robot. Rated load: Maximum load that may be exerted on the robot flange under normal conditions (temperature, air humidity...) without affecting any per- formance specification. Supplementary load: Load that can be carried by the robot in addition to the rated payload. It is mounted on the robot’s arm, link arm and/or rotating column. Operating conditions Application: The manufacturer specifies the main area(s) of application for which the robot is intended. Examples of typical applications are: Handling Assembly Spot welding Arc welding Application of adhesives/sealants Machining of materials (milling) Normal conditions (environment): (EN ISO 9946) The manufacturer de- fines the limit values of the ambient conditions under which the specified performance features can be achieved. These limit values must be ob- served in order to prevent damage to the robot during storage and opera- tion (the values may vary). The ambient conditions include the following (list not exhaustive): Temperature (°C) Relative atmospheric humidity (%) Maximum altitude (m) Electromagnetic interference Repeatability and absolute accuracy Spatial specifications Work envelope: That part of the restricted space which is actually used during all motions specified in the application program. The size of the space is described by the wrist root point. 28 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 Overview of the components of a robot system Fig. 3-3: Wrist root point Different work envelopes for: Standard robots Ceiling-mounted robots Shelf-mounted robots Palletizing robots SCARA robots Robots with linear units External dimensions and mass: For the design, the specification of the dimensions (mm) and weight of the robot is important (e.g. for transporta- tion / integration / exchange). Base mounting surface: Description of the base mounting surface for mounting the robot base frame; necessary to ensure safe operation. Mechanical interface: Dimensioned drawing in accordance with standard (ISO 9409-1) Robot velocity To achieve the cycle time, the maximum individual axis velocity and the max- imum nominal path velocity must be known. Cycle time calculation Estimation: Inexact but fast method of estimating the cycle time on the basis of a sketch or CAD drawing. The result also depends on experience. Simulation: Planning the robotic cell and simulation of the process using KUKA.Sim or another robot simulation software (Robcad eM Workplace). Very precise results can be achieved. Test set-up: Cost-intensive method (materials, time), which also allows quality control and the optimization of process parameters (e.g. dispens- ing speed). Safety The robot system must comply with the current standard (DIN EN ISO 10218- 1). Selection of which safety components can be used (for system safety or safety of personnel). Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 29 / 271 Use and Programming of Industrial Robots Criterion Description Payload/supplemen- Tool weight; for handling, always tool + work- tary load piece Supplementary load, e.g. valve terminal or wire feeder Working envelope Details of the working envelope can be found in the specification. Note: The working envelope is always deter- mined by the wrist root point. Area of application Check the area of application on the Internet / in the Product Catalog Cycle time The cycle time is most usefully checked using KUKA.Sim 3.4 Controller configuration The KR C controller offers an integrated control and drive concept for KUKA robots of all payload classes. Fig. 3-4: (V)KR C4 axis control The KR C controller and KUKA motors can also be used, however, to control non-KUKA kinematic systems. The designation KMC – KUKA Motion Control is used for this. Fig. 3-5: KMC with non-KUKA kinematic system 3.5 Selection of the end effector / tool In the modern world, the term “effector” has found its way into the field of tech- nology. It is synonymous with the term “actuator”. In the field of robotics, grip- pers, measuring devices, tools and other equipment moved in the workspace 30 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 Overview of the components of a robot system with programmed motions and used by the robot to manipulate its environment are called end effectors. A tool center point (TCP) is defined for every tool. Control of the robot can be configured in such a way that all motion specifications refer to the TCP. Possible robot tools: Gripper (finger gripper, vacuum gripper) Welding gun Welding torch Spray-paint nozzle Adhesive nozzle Water-jet head Laser welding/cutting optics Drilling/milling head Power wrench Cutting tool (saw, blade) Measurement sensors 3.6 Selection of the energy supply system For the end effector (tool) mounted on the robot wrist, energy and control sig- nals are required (e.g. compressed air, control signals for gripper). The type of energy depends on the type of tool used. There are basically two possibilities for the energy supply system: External energy supply system independent of the robot Integrated energy supply system in/on the robot External energy In an external energy supply system, the energy is routed independently of the supply system robot by means of supply booms or similar constructions, from which dress packages are suspended. However, this kind of energy supply system in- volves the risk of damage to the dress package during robot motion – particu- larly during the commissioning phase – if it gets caught. In addition, longer dress packages are usually required. Fig. 3-6: Arc welding cell with external energy supply system Integrated energy In an integrated energy supply system, the required energy is routed internally supply system through the robot’s assemblies or along the outside of the robot body. The dress packages are routed in such a way that they are not subjected to stress and are not damaged by the robot. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 31 / 271 Use and Programming of Industrial Robots Fig. 3-7: Robot with integrated energy supply system 3.7 Periphery connection (field bus) Fig. 3-8: (V)KR C4 communication options For communication between the robot and the periphery there is a wide range of possibilities: Integrated inputs/outputs Bus systems PROFINET PROFIBUS INTERBUS ETHERNET IP Can bus / DeviceNet Ethernet 3.8 Use of sensors Sensor In the field of technology, a sensor or probe is a device which, in addition to concrete, physical or chemical properties (e.g. heat radiation, temperature, humidity, pressure, brightness, magnetism, acceleration, force), can also de- 32 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 Overview of the components of a robot system tect the material properties of its environment qualitatively or measure them as quantitative values. Sensors play an important role in automated processes. The detected values or states are processed in the relevant controller, usually with electrical ampli- fication, thereby initiating the corresponding next steps. Sensors in the robotic cell or on the robot detect the properties of the environ- ment of the robot: Status of objects (e.g. open or closed) Collision with obstacles Physical variables in the technological process (e.g. force) Location of position markers and objects Contour of objects Images of the environment (pixel images) 3.9 Safety equipment The use of industrial robots inevitably involves contact between people and ro- bots. Normally direct contact is limited to the commissioning phase and to ad- justment and maintenance work. In the production phase, the workspaces of personnel and robots are kept strictly separate. Even during the short time in which physical contact is possible, however, severe accidents often occur due to human error. Personnel and equipment protection systems available with KUKA robots: Software limit switches Mechanical end stops Working range monitoring by means of workspaces Safe Robot technology Safety fence External safety sensors Safety switches Photoelectric curtain Safety mats Laser scanner Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 33 / 271 Use and Programming of Industrial Robots Software limit switches Fig. 3-9: Software limit switches, positive/negative range The working range of the robot is limited by means of software limit switches on all axes. The working ranges of axes 1, 2, 3, and 5 are mechanically limited by end stops with a buffer function. Software limit switches must only be used for equipment protection. Mechanical end stops Fig. 3-10: Working range limitation, axis 1 34 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 Overview of the components of a robot system Fig. 3-11: Axis 1 end stop Working range limitations are available as accessories. These can be supplied for axes 1 to 3 as mechanical stops for task-related limitation of the respective working range. Mechanical working range limitation systems may be used for per- sonnel protection and for equipment protection Working range If these workspaces are used, a distinction must be made between the stan- monitoring by dard workspaces in the KUKA system software and the workspaces used in means of the KUKA.SafeRobot technology package: workspaces Workspaces with KUKA robots Standard workspaces Up to 8 cubic or axis-specific workspaces can be monitored automatically. These workspaces may also be overlapped to produce more complex shapes. Fig. 3-12: Example of a Cartesian workspace Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 35 / 271 Use and Programming of Industrial Robots If one of these defined workspaces is violated, the controller sets a pre- defined output. The output signal provided can then be further processed by the KRL program or by an external host computer. The robot can also be stopped and an error message generated. Standard workspaces (from the standard software) must only be used for equipment protection. Workspaces for personnel protection 16 freely configurable (Cartesian or axis-specific) monitoring spaces (workspace or protected space) Fig. 3-13: Example of a Cartesian protected space 1 Protected space 2 Spheres on tool 3 Robot 16 freely configurable tools – each of which can be modeled with up to 6 spheres. The safety functions of KUKA.SafeOperation meet the requirements of Category 3 and Performance Level d in accordance with EN ISO 13849- 1:2007. This corresponds to SIL 2 acc. to EN 62061. Workspaces configured and tested using SafeOperation may be used for personnel protection and for equipment protection. 36 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 3 Overview of the components of a robot system Safety fences Fig. 3-14: Defective safety fence The requirements for safeguards are also described in greater detail in the Ma- chinery Directive, Annex I, section 1.4. Guards and protective devices must be of robust construction, e.g. resistant to impacts and shocks must be securely held in place, must not give rise to any additional hazards, e.g. risk of crushing due to accidental closing, risk of impacts, risk of irradiation, must not be easy to bypass or render non-operational, ... In addition, guards must, where possible, protect against the ejection or falling of materials or objects and against emissions generated by the machinery. Further information is contained in the corresponding standards and regulations. External safety If the presence of operating personnel in the motion range of the robot is un- sensors avoidable (e.g. for loading components), the danger zone is to be isolated by means of a safety mat, a photoelectric curtain or a laser scanner. Safety gates and flaps are usually safeguarded by means of safety switches. Further information is contained in the corresponding standards and regulations. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 37 / 271 Use and Programming of Industrial Robots 38 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 4 Industrial robots 4 Industrial robots 4.1 Overview The following contents are explained in this training module: What is a robot? Structure of a robot Arrangement of the main axes Absolute accuracy and repeatability Fig. 4-1: Change of chapter 4.2 Introduction to robotics Duration: 00:10:00 Equipment: Info: Certificate Text: What is a robot? The term robot comes from the Slavic word robota, meaning hard work. According to the official definition of an industrial robot: “A robot is a freely pro- grammable, program-controlled handling device”. The robot thus also includes the controller and the operator control device, to- gether with the connecting cables and software. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 39 / 271 Use and Programming of Industrial Robots Fig. 4-2: Industrial robot 1 Controller ((V)KR C4 control cabinet) 2 Manipulator (robot arm) 3 Teach pendant (KUKA smartPAD) Everything outside the system limits of the industrial robot is referred to as the periphery: Tooling (end effector/tool) Safety equipment Conveyor belts Sensors Machines etc. 4.3 Definition and structure Robots are categorized as “flexible automation machines”. 40 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 4 Industrial robots Fig. 4-3: Manipulator 1 Manipulator (robot arm) 2 Start of the kinematic chain: base of the robot (ROBROOT) 3 Free end of the kinematic chain: flange (FLANGE) A1 Robot axes 1 to 6... A6 VDI guideline Definition according to VDI guideline 2860 is: 2860 Robots are universally applicable manipulators with several axes, whose movements are freely programmable (i.e. without mechanical intervention) with regard to sequence, paths or angles, and can be assisted by sensors if necessary. They can be equipped with grippers, tools or other manufacturing equipment and can perform handling and/or manufacturing tasks. EN 10218-1 Definition according to European standard EN 10218-1 (previously EN 775): A robot/industrial robot is an automatically controlled, freely programmable, multi-purpose manipulator that can be programmed in three of more axes, is used in automation systems, and can be either fixed in place or mobile. The robot consists of: the robot arm (including actuators) the control device including teach pendant and all communications inter- faces (hardware and software) This includes all external axes controlled by the robot controller. 4.4 Robot arm of a KUKA robot Duration: 00:20:00 Equipment: Robot model Info: Certificate Text: What is a manipu- The manipulator is the actual robot arm. It consists of a number of moving links lator? (axes) that are linked together to form a “kinematic chain”. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 41 / 271 Use and Programming of Industrial Robots Fig. 4-4: Manipulator 1 Manipulator (robot arm) 2 Start of the kinematic chain: base of the robot (ROBROOT) 3 Free end of the kinematic chain: flange (FLANGE) A1 Robot axes 1 to 6... A6 The individual axes are moved by means of targeted actuation of servomotors. These are linked to the individual components of the manipulator via reduction gears. Fig. 4-5: Overview of manipulator components 1 Base frame 4 Link arm 2 Rotating column 5 Arm 3 Counterbalancing system 6 Wrist The components of a robot arm consist primarily of cast aluminum and steel. In isolated cases, carbon-fiber components are also used. 42 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 4 Industrial robots The individual axes are numbered from bottom (robot base) to top (robot flange): Fig. 4-6: Degrees of freedom of a KUKA robot Excerpt from the technical data of manipulators from the KUKA product range: Number of axes: 4 (SCARA and parallelogram robots) to 6 (standard ver- tical jointed-arm robots) Reach: from 0.35 m (KR 5 scara) to 3.9 m (KR 120 R3900 ultra K) Weight: from 20 kg to 4700 kg. Standard robots: KR 16: 235 kg, KR 180-2 (Series 2000): 1277 kg. Accuracy: 0.015 mm to 0.2 mm repeatability. The axis ranges of main axes A1 to A3 and wrist axis A5 of the robot are lim- ited by means of mechanical end stops with a buffer. Axis 1 Axis 2 Axis 3 Additional mechanical end stops can be installed on the external axes. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 43 / 271 Use and Programming of Industrial Robots If the robot or an external axis hits an obstruction or a buffer on the mechanical end stop or axis range limita- tion, this can result in material damage to the robot system. KUKA Roboter GmbH must be consulted before the robot system is put back into operation. The affected buffer must be replaced with a new one before robot operation is resumed. If a robot (or external axis) collides with a buffer at more than 250 mm/s, the robot (or external axis) must be exchanged or recommission- ing must be carried out by the KUKA Roboter GmbH. 4.5 Arrangement of the main axes Robots are classified according to the nature of the kinematic system of the main axes: Translational motion (T) Rotational motion (R) Fig. 4-7: Kinematics of the main axes The figure (>>> Fig. 4-8 ) illustrates the different possible arrangements of the main axes and the resulting coordinates: 1. Cylindrical coordinates 2. Spherical coordinates 3. Vertical joint coordinates 4. Horizontal joint coordinates (SCARA robots) 5. Cartesian coordinates (gantry robots) 44 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 4 Industrial robots Fig. 4-8: Robot types with different arrangements of the motion axes (main axes 1 - 3) There are three more motion axes arranged in the robot wrist for positioning and orienting the tool/gripper. Comparison of the joint types for main axes: Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 45 / 271 Use and Programming of Industrial Robots Linear axes: Freely configurable workspace Suitable kinematic system for handling and palletiz- ing tasks Freely expandable workspace Rigid overall construction with mechanical decou- pling of the axes Rotational axes: Fast motions Cost-effective for small workspaces Favorable kinematic system for machining tasks Force-coupled Cost savings axes: Reduced degrees of freedom 4.6 Absolute accuracy and repeatability Absolute accuracy is the ability of an industrial robot to position its tool center point (TCP), coming from a specified direction, to a point in space specified in Cartesian coordinates within a tolerance range given by the radius of a sphere. The absolute accuracy thus describes the mean deviation, in all degrees of freedom, of the tool center point and its orientation from a specified point in the workspace and a specified orientation (DIN EN ISO 9283). Repeatability describes the ability of an industrial robot to position its tool cen- ter point reproducibly to a programmed point in the workspace within a toler- ance range given by the radius of a sphere, with a defined orientation and under defined conditions (DIN EN ISO 9283). The absolute accuracy is generally significantly poorer than the repeatability. Fig. 4-9: Absolute accuracy and repeatability of industrial robots 46 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 4 Industrial robots h Frequency distribution AP Absolute accuracy RP Repeatability PTCP_IST Actual position value of the TCP PTCP_SOLL Command position value of the TCP The absolute accuracy defines the position of the mean value of the numerical actual positions, e.g. programmed textually or offline, relative to the command position. Low absolute High absolute Low absolute High absolute accuracy accuracy accuracy accuracy Low repeat- Low repeat- High repeat- High repeat- ability ability ability ability Command position Actual position(s) The repeatability defines the deviation of the individual actual positions from the mean value of the actual positions (cf. diameter and center of sphere). Fig. 4-10: Adhesive bonding application Path accuracy is the ability of a robot to move its TCP along a defined path within a Cartesian workspace and at a defined velocity. If the TCP does not remain within a defined radius from the specified path or within a defined ve- locity range (setpoint velocity), this is referred to as a following error. Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 47 / 271 Use and Programming of Industrial Robots 48 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 5 Robot controller 5 Robot controller 5.1 Overview The following contents are explained in this training module: Overview of technical data Components of the robot controller Overview of the bus systems Energy efficiency Fig. 5-1: Change of chapter Basic data Cabinet type KR C4 Number of axes max. 8 Weight (without transformer) 150 kg Protection classification IP 54 Sound level according to average: 67 dB (A) DIN 45635-1 Installation with other cabinets Side-by-side, clearance 50 mm (with/without cooling unit) Load on cabinet roof with even dis- 1,500 N tribution Power supply The robot controller may only be connected to grounded-neutral power supply connection systems. If no grounded neutral is available, or if the mains voltage differs from those specified here, a transformer must be used. Rated supply voltage, optionally: AC 3x380 V, AC 3x400 V, AC 3x440 V or AC 3x480 V Permissible tolerance of rated sup- Rated supply voltage ±10% ply voltage Mains frequency 49... 61 Hz System impedance up to the con- ≤ 300 mΩ nection point of the robot controller Full-load current See identification plate Mains-side fusing without isolating min. 3x25 A, slow-blowing transformer Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 49 / 271 Use and Programming of Industrial Robots Mains-side fusing with isolating min. 3x32 A, slow-blowing, with transformer 13 kVA Equipotential bonding The common neutral point for the equipotential bonding conductors and all protective ground conduc- tors is the reference bus of the power unit. Environmental Ambient temperature during opera- +5... 45 °C (278... 318 K) conditions tion without cooling unit Ambient temperature during opera- +20... 50 °C (293... 323 K) tion with cooling unit Ambient temperature during stor- -25... +40 °C (248... 313 K) age/transportation with batteries Ambient temperature during stor- -25... +70 °C (248... 343 K) age/transportation without batteries Temperature change max. 1.1 K/min Humidity class 3k3 acc. to DIN EN 60721-3-3; 1995 Altitude up to 1000 m above mean sea level with no reduction in power 1000 m... 4000 m above mean sea level with a reduction in power of 5%/1000 m To prevent exhaustive discharge and thus destruction of the batteries, the batteries must be recharged at regular intervals according to the storage temperature. If the storage temperature is +20 °C or lower, the batteries must be re- charged every 9 months. If the storage temperature is between +20 °C and +30 °C, the batteries must be recharged every 6 months. If the storage temperature is between +30 °C and +40 °C, the batteries must be recharged every 3 months. Vibration resis- Type of loading During transpor- During continuous tance tation operation r.m.s. acceleration (sus- 0.37 g 0.1 g tained oscillation) Frequency range (sustained 4 - 120 Hz oscillation) Acceleration (shock in X/Y/Z 10 g 2.5 g direction) Waveform/duration (shock Half-sine/11 ms in X/Y/Z direction) If more severe mechanical stress is expected, the controller must be installed on anti-vibration components. Control unit Supply voltage DC 27.1 V ± 0.1 V Control PC Main processor See shipping version DIMM memory modules See shipping version (min. 2 GB) Hard disk See shipping version 50 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 5 Robot controller KUKA smartPAD Supply voltage DC 20…27.1 V Dimensions (WxHxD) approx. 33x26x8 cm3 Display Touch-sensitive color display 600x800 pixels Display size 8.4 " Interfaces USB Weight 1.1 kg Cable lengths For cable designations, standard lengths and optional lengths, please refer to the operating instructions or assembly instructions of the manipulator and/or the assembly and operating instructions for KR C4 external cabling for robot controllers. When using smartPAD cable extensions, only two extensions may be used. An overall cable length of 50 m must not be exceeded. The difference in the cable lengths between the individual channels of the RDC box must not exceed 10 m. 5.2 Dimensions of robot controller The dimensions of the robot controller are indicated in the diagram (>>> Fig. 5-2 ). Fig. 5-2: Dimensions 1 Front view 2 Side view 3 Top view Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 51 / 271 Use and Programming of Industrial Robots 5.3 Minimum clearances, robot controller The minimum clearances that must be maintained for the robot controller are indicated in the diagram (>>> Fig. 5-3 ). Fig. 5-3: Minimum clearances If the minimum clearances are not maintained, this can result in damage to the robot controller. The specified minimum clearances must always be observed. Certain maintenance and repair tasks on the robot controller must be carried out from the side or from the rear. The robot controller must be accessible for this. If the side or rear panels are not accessible, it must be possible to move the robot controller into a position in which the work can be carried out. 5.4 Overview of the robot controller KR C4 front view Fig. 5-4: Overview of robot controller, front view 52 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 5 Robot controller 1 Mains filter 9 CCU 2 Main switch 10 Contactors 3 CSP 11 Switch 4 Control PC 12 Fuse element 5 Drive power supply with drive 13 Batteries controller 6 Drive controller for axes 4 to 6 14 Connection panel 7 Drive controller for axes 1 to 3 15 Housing 8 Brake filter 16 smartPAD KR C4 front view Fig. 5-5: Overview of robot controller, front view 1 Mains filter 2 Main switch 3 Controller System Panel (CSP) KR C4 front view Fig. 5-6: Overview of robot controller, front view Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 53 / 271 Use and Programming of Industrial Robots 4 Control PC 5 Drive power supply with drive controller 7 Drive controller for axes 1 to 3 KR C4 front view Fig. 5-7: Overview of robot controller, front view 6 Drive controller for axes 4 to 6 8 Brake filter 9 Cabinet Control Unit (CCU) KR C4 front view Fig. 5-8: Overview of robot controller, front view 10 Contactors 11 Switch 12 Fuse element 54 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 5 Robot controller KR C4 front view Fig. 5-9: Overview of robot controller, front view 13 Batteries 14 Connection panel 15 Housing 16 smartPAD KR C4 rear view Fig. 5-10: Overview of robot controller, rear view 1 Ballast resistors 2 Heat exchanger 3 External fan 4 Low-voltage power supply unit Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 55 / 271 Use and Programming of Industrial Robots 5.5 Overview of applications and bus systems Overview of the applications Fig. 5-11: Overview of block model To enable cabinet-specific hardware interfaces to be accessed from robot programs, applications and additional options must be installed on the controller. The system-relevant applications include: RC (Robot Control) KUKA kernel system of the robot controller Safety Integrated KUKA safety controller The customer-specific options include: PLC Soft PLC that can be integrated for general sequence control XM (eXtended Motion) Runtime system that can be integrated for a KUKA MotionControl library Process control General platform for integration of process controllers e.g. integration of vision capability Overview of the There are four different EtherNet-based bus systems in the KR C4 control- bus systems ler. Each of these bus systems interconnects different control components. Fig. 5-12: Overview of KR C4 bus systems 56 / 271 Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 5 Robot controller Bus Description KCB Connection of the drive circuit devices: (KUKA Controller Bus) RDC (Resolver Digital Converter) KPP (KUKA Power Pack) KSP (KUKA Servo Pack) EMD (Electronic Mastering Device) KSB Connection of: (KUKA System Bus) smartPAD SIB (Safety Interface Board) Extended SIB RoboTeam Other KUKA options KEB Connection of: (KUKA Extension Bus) EtherCat I/Os Gateway for PROFIBUS Gateway for DeviceNet KLI Connection of: (KUKA Line Interface) PLC Field bus connection PROFINET & PROFIsafe EtherNet/IP & CIP safety Network connection via TCP/IP: Archiving data Diagnosis VRP (Virtual Remote Pendant) etc. Detailed bus view: Motherboard D3075-K Fig. 5-13: Bus architecture Issued: 07.06.2013 Version: Edu Pack Einsatz und Programmierung von Industrierobotern V4 en (TG-COL) 57 / 271 Use and Programming of Industrial Robots Depending on the motherboard version, the KLI and KSB connec- tions are interchanged. Motherboar

Use Quizgecko on...
Browser
Browser