Evolution Study Note - SBU3U PDF

Summary

These study notes cover the unifying concept of biology, delving into topics such as belief versus theory, structure and function, and examples and questions related to evolution. The notes also discuss main ideas surrounding evolution, mutations and biological change, and the evolution of evolutionary theory from 1700 to the present day .

Full Transcript

‭ arby‬‭McMillan‬ D ‭7‬‭Oct‬‭-‬‭ur‬‭mom‬ ‭a‬‭clock/‬ ‭Evolution‬ ‭Stu...

‭ arby‬‭McMillan‬ D ‭7‬‭Oct‬‭-‬‭ur‬‭mom‬ ‭a‬‭clock/‬ ‭Evolution‬ ‭Study‬‭Note‬‭-‬‭SBU3U‬ ‭Main‬‭Topic‬ ‭Subtopics‬ ‭Notes‬ ‭ e‬‭unifying‬‭concept‬ Th ‭Belief‬‭vs.‬‭Theory‬ ‭ eory‬‭-‬‭combination‬‭of‬‭evidence‬‭to‬‭create‬‭an‬‭explanation‬ Th ‭of‬‭biology‬ ‭Hypothesis‬‭(Belief‬‭as‬‭mr.dusty‬‭says)‬‭-‬‭No‬‭evidence,‬‭created‬‭to‬ ‭be‬‭tested‬ ‭Yap‬‭yap‬‭this‬‭will‬‭be‬‭a‬‭test‬‭question‬ ‭Structure‬‭and‬‭Function‬ ‭Biology‬‭-‬‭study‬‭of‬‭living‬‭things,‬‭the‬‭parts:‬ ‭-‬ ‭Describing‬‭the‬‭structure‬ ‭-‬ ‭Describing‬‭the‬‭function‬ ‭-‬ ‭Reflecting‬‭on‬‭how‬‭“structure”‬‭is‬‭ideally‬‭suited‬‭to‬‭the‬ ‭“function”‬‭(Evolution‬‭:0)‬ ‭Examples‬‭&‬‭Questions‬ ‭How‬‭do‬‭organs‬‭become‬‭so‬‭ideally‬‭suited‬‭to‬‭their‬‭function?‬ ‭-‬ ‭Did‬‭these‬‭parts‬‭always‬‭exist‬‭this‬‭way?‬‭NUH‬‭UH‬ ‭-‬ ‭Why‬‭are‬‭some‬‭organs‬‭useless?‬ ‭-‬ ‭Why‬‭do‬‭parts‬‭develop‬‭during‬‭embryo‬‭development‬ ‭then‬‭disappear?‬ ‭-‬ ‭Why‬‭are‬‭we‬‭able‬‭to‬‭manipulate‬‭organisms‬‭to‬‭change?‬ ‭-‬ ‭Why‬‭are‬‭these‬‭different‬‭species‬‭with‬‭the‬‭same‬‭parts?‬ ‭-‬ ‭Functionally‬‭so‬‭dif,‬‭structurally‬‭so‬‭similar‬ ‭Main‬‭idea‬ ‭Organisms‬‭change‬‭to‬‭become‬‭more‬‭“ideally‬‭suited”‬ ‭ utation‬‭and‬ M ‭Phylogenetic‬‭tree‬ ‭ ‬‭tree‬‭that‬‭displays‬‭evolution,‬‭showing‬‭that‬‭organisms‬‭that‬‭are‬ A ‭Biological‬‭Change‬ ‭closer‬‭are‬‭more‬‭similar‬‭to‬‭each‬‭other.‬ ‭-‬ ‭Also‬‭referred‬‭to‬‭“the‬‭tree‬‭of‬‭life”‬‭from‬‭Darwin‬ ‭Phylogeny‬‭-‬‭the‬‭study‬‭of‬‭evolutionary‬‭relationships‬ ‭Mutation‬ ‭Mutation‬‭-‬‭The‬‭source‬‭of‬‭new‬‭“variants”‬ ‭-‬ ‭Genetic‬‭diversity‬‭of‬‭gene‬‭pool‬ ‭-‬ ‭Gene‬‭pool:‬‭the‬‭amount‬‭of‬‭different‬‭genes‬ ‭-‬ ‭Can‬‭be‬‭harmful‬‭or‬‭beneficial:‬ ‭-‬ ‭Harmful:‬‭something‬‭that‬‭decreases‬‭the‬ ‭reproduction‬‭and‬‭survival‬‭chance.‬‭Ex:‬ ‭-‬ ‭Beneficial:‬‭something‬‭that‬‭increases‬‭the‬‭rate‬ ‭of‬‭reproduction‬‭and‬‭survival.‬‭Ex:‬‭sickle‬‭cell‬ ‭carriers‬‭that‬‭have‬‭increased‬‭resistance‬‭to‬ ‭malaria.‬ ‭Selective‬‭breeding‬‭-‬‭choosing‬‭specific‬‭variants‬‭to‬‭develop‬ ‭specific‬‭traits.‬‭Also‬‭called‬‭“Artificial‬‭selection”‬ ‭-‬ ‭Natural‬‭selection:‬‭some‬‭variants‬‭that‬‭survive‬‭more‬‭are‬ ‭naturally‬‭more‬‭present‬ ‭Evolution‬‭of‬‭Evolution‬ ‭1700-1800‬ ‭Buffon‬ ‭-‬ ‭Structures‬‭that‬‭no‬‭longer‬‭serve‬‭a‬‭function‬ ‭Linnaeus‬ ‭-‬ ‭Organisms‬‭change‬ ‭Darwin‬‭(grandfather)‬ ‭-‬ ‭All‬‭species‬‭may‬‭have‬‭originated‬‭from‬‭one‬‭species‬ ‭-‬ ‭Was‬‭less‬‭ridiculed‬‭that‬‭his‬‭grandson‬‭because‬ ‭he‬‭had‬‭to‬‭evidence‬ ‭1750-1850‬ ‭Lamarck‬ ‭-‬ ‭The‬‭environment‬‭drives‬‭change‬‭in‬‭organisms‬ ‭-‬ ‭Putting‬‭an‬‭organism‬‭in‬‭an‬‭environment‬‭that‬ ‭forces‬‭it‬‭to‬‭change‬‭to‬‭better‬‭fit‬‭the‬‭env.‬ ‭-‬ ‭Acquired‬‭traits‬ ‭-‬ ‭He‬‭believed‬‭that‬‭a‬‭trait‬‭that‬‭an‬‭organism‬ ‭made‬‭was‬‭passed‬‭to‬‭children.‬‭Ex:‬‭if‬‭aaron‬ ‭got‬‭built‬‭then‬‭his‬‭babies‬‭would‬‭be‬‭born‬ ‭built‬ ‭-‬ ‭Individuals‬‭pass‬‭on‬‭their‬ ‭acquired/developed‬‭traits,‬‭causing‬ ‭species‬‭to‬‭evolve‬ ‭Cuvier‬ ‭-‬ ‭He‬‭studied‬‭paleontology‬ ‭-‬ ‭Fossilization‬ ‭-‬ ‭Sedimentation,‬‭mineralization,‬‭exposure‬ ‭-‬ ‭Mostly‬‭in‬‭marine‬‭environments‬ ‭-‬ ‭Also‬‭found‬‭in‬‭amber(tree‬‭sap),‬‭ice,‬ ‭lava,‬‭as‬ ‭-‬ ‭Observations‬‭made:‬ ‭-‬ ‭Simple‬‭fossils‬‭are‬‭at‬‭all‬‭depths,‬‭complex‬‭only‬ ‭at‬‭shallow‬ ‭-‬ ‭Shallow‬‭fossils‬‭resemble‬‭current‬‭species‬ ‭more‬‭than‬‭deep‬‭ones‬ ‭-‬ ‭distinct‬‭layers,‬‭with‬‭unique‬‭fossils‬ ‭-‬ ‭Theory:‬‭catastrophism.‬‭Major‬ ‭events‬‭caused‬‭mass‬‭extinction.‬ ‭-‬ ‭Contribution:‬‭species‬‭evolve,‬‭from‬‭simple‬‭to‬ ‭complex‬ ‭Lyell‬ ‭-‬ ‭He‬‭studied‬‭geology‬ ‭-‬ ‭Observations‬‭made:‬ ‭-‬ ‭Explained‬‭geological‬‭processes‬‭(erosion,‬ ‭sedimentation),‬‭and‬‭said‬‭they‬‭occured‬‭at‬ ‭constant‬‭and‬‭similar‬‭rates.‬ ‭-‬ ‭Theory:‬‭uniformitarianism:‬ ‭geological‬‭is‬‭a‬‭constant‬‭process‬ ‭that‬‭occurs‬‭at‬‭a‬‭similar‬‭rate‬ ‭-‬ ‭He‬‭was‬‭the‬‭first‬‭to‬‭suggest‬‭that‬‭the‬ ‭earth‬‭was‬‭millions‬‭of‬‭years‬‭old‬ ‭-‬ ‭Contribution:‬‭massive‬‭geological‬‭features‬ ‭take‬‭millions‬‭of‬‭years‬‭to‬‭form.‬ ‭1831‬ ‭Charles‬‭Darwin‬ ‭-‬ ‭He‬‭was‬‭a‬‭naturalist‬‭(studied‬‭nature)‬ ‭-‬ ‭Invited‬‭on‬‭a‬‭trip‬‭on‬‭HMS‬‭Beagle‬‭to‬‭South‬‭America‬‭to‬ ‭observe‬‭nature‬‭and‬‭collect‬ ‭-‬ ‭Collected‬‭thousands‬‭of‬‭samples‬ ‭-‬ ‭Observations:‬ ‭-‬ ‭Galapagos‬‭Islands:‬‭specimens‬ ‭similar‬‭to‬‭south‬‭america‬ ‭-‬ ‭Cape‬‭verde:‬‭specimens‬‭similar‬‭to‬ ‭Africa‬ -‭ ‬ ‭Many‬‭weird‬‭species‬‭on‬‭islands‬ -‭ ‬ ‭Spent‬‭20‬‭years‬‭formulating‬‭his‬‭theory‬ ‭-‬ ‭Lead‬‭him‬‭to‬‭develop‬‭the‬‭theory‬‭of‬‭evolution‬ ‭by‬‭natural‬‭selection‬ ‭Evidence‬ ‭Biogeography‬ ‭The‬‭study‬‭of‬‭geographic‬‭distribution‬‭of‬‭species‬ ‭-‬ ‭Fossils‬ ‭-‬ ‭Obs:‬‭Unique‬‭species‬‭in‬‭isolated‬‭places.‬‭More‬ ‭-‬ ‭Geology‬ ‭isolated=more‬‭unique‬ ‭-‬ ‭biogeography‬ ‭-‬ ‭Inf.‬‭Species‬‭emigrate,‬‭get‬‭stuck‬‭in‬‭location,‬ ‭then‬‭evolve.‬ ‭-‬ ‭Obs:‬‭proximity‬‭explains‬‭more‬‭of‬‭the‬‭variations‬‭than‬ ‭habitat.‬‭(the‬‭closer‬‭they‬‭are‬‭the‬‭similar‬‭likely‬‭to‬‭be‬ ‭similar‬‭than‬‭similar‬‭habitats)‬ ‭-‬ ‭Inf.‬‭Species‬‭emigrate,‬‭get‬‭stuck,‬‭evolve‬ ‭-‬ ‭Longer‬‭distance‬‭to‬‭travel‬‭and‬ ‭evolve‬ ‭Gould‬ ‭Ornithologist‬‭-‬‭a‬‭person‬‭who‬‭studies‬‭birds‬ ‭-‬ ‭Confirms‬‭Darwin’s‬‭finches‬‭are‬‭different‬‭species‬ ‭-‬ ‭Very‬‭similar..‬‭Common‬‭ancestor?‬ ‭1837‬ ‭-‬ ‭Darwin‬‭essay‬‭“ Transmutation‬‭of‬‭species”‬ ‭ omologous‬‭and‬ H ‭When‬‭comparing‬‭similar‬‭structures‬‭between‬‭species,‬‭some‬‭are..‬ ‭Analogous‬‭Structures‬ ‭-‬ ‭Analogous‬ ‭-‬ ‭Similar‬‭function,‬‭but‬‭different‬‭structure‬ ‭-‬ ‭Ex.‬‭wings‬‭of‬‭birds‬‭and‬‭butterflies,‬ ‭eye‬‭of‬‭lobster‬‭and‬‭fish,‬‭fins‬‭of‬ ‭fishes‬‭and‬‭whales‬ ‭-‬ ‭Homologous‬ ‭-‬ ‭Different‬‭function,‬‭but‬‭similar‬‭structure‬ ‭-‬ ‭Ex.‬‭limbs‬‭of‬‭birds,‬‭mammals,‬ ‭reptiles,‬‭amphibians‬ ‭Hypothesis‬ ‭-‬ ‭Homologous‬‭structures‬‭arise‬‭from‬‭recent‬‭common‬ ‭ancestry‬‭(inherited)‬ ‭-‬ ‭Analogous‬‭structures‬‭are‬‭not‬‭due‬‭to‬‭common‬ ‭ancestry.‬‭Instead‬‭du‬‭to‬‭similar‬‭environment‬ ‭(coevolution)‬ ‭Mechanism‬ ‭-‬ ‭mutation‬ ‭Embryology‬ ‭Study‬‭of‬‭embryo‬‭development‬ ‭-‬ ‭Reveals‬‭many‬‭homologous‬‭structures‬‭that‬‭disappear‬ ‭before‬‭birth‬ ‭-‬ ‭Closer‬‭they‬‭are‬‭the‬‭longer‬‭they‬‭retain‬ ‭homology‬ ‭ estigial‬ V ‭-‬ ‭Some‬‭organs/features‬‭that‬‭provide‬‭no‬‭useful‬‭purpose‬ ‭Organs/Features‬ ‭-‬ ‭Ex.‬‭dew‬‭claw,‬‭appendix,‬‭ear‬‭muscles,‬ ‭whale/snake‬‭hip‬‭bones‬ ‭-‬ ‭Hypothesis:‬‭features‬‭left‬‭over‬‭from‬‭ancestors‬ ‭that‬‭made‬‭use‬‭of‬‭it‬ ‭Artificial‬‭selection‬ ‭Species‬‭can‬‭be‬‭selectively‬‭bred‬‭to‬‭enhance‬‭desirable‬‭traits‬ ‭-‬ ‭ g.‬‭agriculture,‬‭plants,‬‭animals,‬‭pets‬‭like‬‭dogs‬‭and‬ E ‭cats.‬ ‭-‬ ‭Hypothesis:The‬‭environment‬‭could‬‭do‬‭the‬‭same‬ ‭thing.‬‭(if‬‭we‬‭can‬‭change‬‭these‬‭things,‬‭why‬‭can’t‬‭the‬ ‭environment‬‭as‬‭well?)‬ ‭-‬ ‭But‬‭he‬‭still‬‭didn’t‬‭know‬‭how?‬ ‭-‬ ‭He‬‭read‬‭Malthus:‬‭“essay‬‭on‬‭the‬‭principle‬ ‭of‬‭population”‬ ‭-‬ ‭More‬‭individuals‬‭produced‬ ‭than‬‭can‬‭survive.‬‭Thus:‬‭intense‬ ‭competition.‬‭Only‬‭those‬‭with‬ ‭features‬‭that‬‭give‬‭a‬‭competitive‬ ‭advantage‬‭will‬‭survive.‬ ‭-‬ ‭He‬‭didn’t‬‭explain‬‭that‬‭this‬‭is‬ ‭what‬‭causes‬‭evolution,‬‭driving‬ ‭changes‬‭in‬‭features‬‭to‬‭better‬ ‭suit‬‭environments.‬ ‭ e‬‭Theory‬‭of‬ Th ‭Development‬‭of‬‭theory‬ ‭ arwin:‬‭1844‬‭-‬‭after‬‭20‬‭years‬‭of‬‭research‬ D ‭Evolution‬‭by‬‭Natural‬ ‭Wallace:‬‭1858‬‭-‬‭same‬‭theory‬‭in‬‭2‬‭days‬ ‭Selection‬ ‭-‬ ‭Came‬‭up‬‭with‬‭the‬‭same‬‭idea‬‭without‬‭evidence‬ ‭Presented‬‭together‬‭in‬‭1858‬ ‭Darwin‬‭1858:‬‭“on‬‭the‬‭origin‬‭of‬‭species‬‭by‬‭means‬‭of‬‭natural‬ ‭selection”‬ ‭BLASPHEMY‬‭or‬‭logic?‬ ‭Fitness:‬‭how‬‭well‬‭an‬‭organism's‬‭“fits”‬‭an‬‭environment‬ ‭Observations‬ ‭Inferences‬ ‭ eory‬‭of‬‭Natural‬ Th ‭Selection‬ ‭ ore‬‭offspring‬ M ‭are‬‭produced‬ ‭than‬‭can‬‭survive‬ ‭ opulations‬‭do‬ P I‭ ndividuals‬ ‭not‬‭continue‬‭to‬ ‭within‬‭a‬ ‭grow‬‭in‬‭size/‬‭have‬ ‭population‬ ‭a‬‭limit‬ ‭compete‬‭for‬ ‭resources‬ ‭ ood‬‭and‬‭many‬ F ‭ ver‬‭time‬‭the‬ O ‭other‬‭resources‬ ‭population‬ ‭are‬‭limited‬ ‭changes‬‭as‬ ‭advantageous‬ ‭heritable‬ ‭characteristics‬ ‭become‬‭more‬ ‭common‬ ‭generation‬‭after‬ ‭generation‬ I‭ ndividuals‬ S‭ ome‬‭individuals‬ ‭within‬‭all‬ ‭will‬‭inherit‬ ‭populations‬‭vary‬ ‭characteristics‬ ‭that‬‭give‬‭them‬‭a‬ ‭better‬‭chance‬‭of‬ s‭ urviving‬‭and‬ ‭reproducing‬ ‭ any‬‭variations‬ M ‭are‬‭heritable‬ -‭ ‬ ‭ ajor‬‭societal‬‭back-lash‬ M ‭-‬ ‭Importance‬‭of‬‭volume‬‭of‬‭evidence‬ ‭Points‬‭of‬‭dispute‬ ‭Time‬ I‭ f‬‭evolution‬‭is‬‭a‬‭long‬‭process‬‭and‬‭the‬‭earth‬‭is‬‭only‬‭6000‬‭years‬ ‭old,‬‭how??‬ ‭-‬ ‭Resolved‬‭by‬‭radiometric‬‭dating‬‭of‬‭rocks/fossils‬ ‭-‬ ‭Radioactive‬‭decay‬‭by‬‭unstable‬‭isotopes‬ ‭-‬ ‭Eg.‬‭C-14‬ ‭-‬ ‭Each‬‭“half‬‭life”‬‭of‬‭an‬‭specific‬ ‭isotope‬‭(eg.‬‭C-14)‬‭is‬‭the‬‭time‬‭it‬ ‭takes‬‭for‬‭half‬‭of‬‭the‬‭isotope‬‭to‬ ‭decay‬‭in‬‭the‬‭daughter‬‭isotope.‬ ‭-‬ ‭Eg.‬‭C-14‬‭takes‬‭5,730‬‭years‬ ‭to‬‭decay.‬‭For‬‭half‬‭of‬‭the‬ ‭isotope‬‭to‬‭be‬‭converted,‬ ‭it‬‭will‬‭take‬‭that‬‭long.‬‭For‬ ‭it‬‭to‬‭be‬‭75/25,‬‭it‬‭will‬‭take‬ ‭14,060‬ ‭Transitional‬‭Forms‬ ‭ ow‬‭are‬‭all‬‭these‬‭little‬‭steps‬‭cause‬‭big‬‭changes?‬‭Like‬‭a‬‭whale‬‭to‬ H ‭a‬‭bug??‬ ‭-‬ ‭Slowly‬‭resolved‬‭by‬‭fossil‬‭evidence‬ ‭Source‬‭of‬‭new‬‭variations‬ ‭How‬‭do‬‭these‬‭new‬‭variations‬‭form?‬ ‭-‬ ‭Mutation‬‭(harmful,‬‭neutral,‬‭beneficial)‬ ‭-‬ ‭Crossing‬‭over,‬‭recombination‬‭(alleles‬‭being‬‭separated‬ ‭then‬‭recombined)‬ ‭-‬ ‭Sexual‬‭reproduction‬ S‭ ame‬‭species‬‭on‬‭different‬ H ‭ ow‬‭do‬‭both‬‭species‬‭exist‬‭on‬‭the‬‭earth‬‭on‬‭different‬‭continents‬ ‭continents‬ ‭at‬‭the‬‭same‬‭times?‬ ‭-‬ ‭Plate‬‭tectonics.‬‭They‬‭started‬‭at‬‭the‬‭same‬‭place‬‭on‬ ‭Pangea,‬‭and‬‭then‬‭split.‬ ‭Complex‬‭structures‬ ‭ ecause‬‭organisms‬‭are‬‭so‬‭complex,‬‭it’s‬‭too‬‭complicated‬‭to‬‭have‬ B ‭a‬‭creator.‬ ‭-‬ ‭Things‬‭begun‬‭simple‬‭and‬‭evolved‬‭to‬‭be‬‭more‬‭complex‬ ‭slowly‬ ‭Types‬‭of‬‭Selection‬ ‭Stabilizing‬‭Selection‬ ‭Selection‬‭where‬‭the‬‭average‬‭phenotype‬‭is‬‭favored‬‭for‬‭survival.‬ ‭-‬ ‭Ex.‬‭If‬‭the‬‭average‬‭beak‬‭size‬‭of‬‭a‬‭hummingbird‬‭is‬‭5‬‭cm,‬ ‭then‬‭birds‬‭closer‬‭to‬‭that‬‭size‬‭will‬‭have‬‭a‬‭higher‬ ‭chance‬‭of‬‭survival.‬ ‭Directional‬‭Selection‬ S‭ election‬‭that‬‭increases‬‭or‬‭decreases‬‭the‬‭average‬‭of‬‭a‬‭trait‬‭in‬‭a‬ ‭population.‬ ‭-‬ ‭Ex.‬‭If‬‭the‬‭average‬‭hummingbird‬‭beak‬‭size‬‭is‬‭5cm,‬‭but‬ ‭a‬‭shift‬‭in‬‭the‬‭environment‬‭like‬‭a‬‭drought‬‭forces‬ ‭longer‬‭beaks‬‭to‬‭be‬‭better‬‭at‬‭obtaining‬‭food,‬‭then‬‭it‬ ‭would‬‭drive‬‭an‬‭increase‬‭in‬‭the‬‭average.‬ ‭Disruptive‬‭Selection‬ S‭ election‬‭that‬‭favors‬‭two‬‭or‬‭more‬‭variations‬‭of‬‭a‬‭trait‬‭that‬ ‭differs‬‭from‬‭the‬‭average.‬ ‭-‬ ‭Ex.‬‭If‬‭the‬‭average‬‭hummingbird‬‭beak‬‭size‬‭is‬‭5cm,‬‭but‬ ‭2‬‭cm‬‭and‬‭8cm‬‭thrive,‬‭then‬‭these‬‭will‬‭be‬‭selected.‬ ‭Sexual‬‭Selection‬ S‭ election‬‭that‬‭favors‬‭a‬‭phenotype‬‭that‬‭specifically‬‭enhances‬‭the‬ ‭mating‬‭success‬‭of‬‭an‬‭individual.‬ ‭-‬ ‭Hummingbirds‬‭with‬‭brighter‬‭feathers‬‭might‬‭attract‬ ‭more‬‭partners.‬‭Over‬‭time,‬‭the‬‭number‬‭of‬‭bright‬ ‭feathered‬‭birds‬‭will‬‭increase.‬ ‭Sexual‬‭Dysmorphism‬ ‭ e‬‭physical‬‭differences‬‭between‬‭males‬‭and‬‭females‬‭of‬‭the‬ Th ‭same‬‭species.‬ ‭-‬ ‭Sexual‬‭selection‬‭is‬‭the‬‭mechanism‬‭behind‬‭this.‬ ‭-‬ ‭Ex.‬‭Initially‬‭both‬‭male‬‭and‬‭female‬ ‭hummingbirds‬‭had‬‭mostly‬‭white‬‭fluff,‬‭and‬ ‭males‬‭with‬‭more‬‭colors‬‭were‬‭more‬‭sexually‬ ‭attractive.‬‭Then‬‭over‬‭hundreds‬‭of‬‭years,‬ ‭male‬‭birds‬‭would‬‭be‬‭more‬‭colorful‬‭than‬ ‭females.‬ ‭-‬ ‭Only‬‭happens‬‭in‬‭some‬‭species.‬ ‭Extra‬‭notes‬ ‭-‬ I‭ f‬‭a‬‭population‬‭has‬‭been‬‭in‬‭the‬‭same‬‭environment‬‭for‬ ‭a‬‭long‬‭time,‬‭you‬‭can‬‭assume‬‭its‬‭stable‬‭selection.‬‭If‬ ‭not,‬‭disruptive.‬ ‭Hardy‬‭Weinberg‬ ‭Allele‬ ‭Frequencies‬ ‭Remember:‬‭For‬‭each‬‭trait,‬‭there‬‭are‬‭two‬‭alleles.‬ ‭-‬ ‭Ex.‬‭Height:‬‭Tall=‬‭T‬‭short=‬‭t‬ ‭The‬‭proportion‬‭of‬‭a‬‭specific‬‭allele‬‭in‬‭a‬‭population.‬ ‭-‬ ‭Shows‬‭how‬‭common‬‭an‬‭allele‬‭is.‬ ‭-‬ ‭Ex.‬‭How‬‭frequent‬‭T‬‭(tall)‬‭is.‬‭If‬‭it‬‭is‬‭0.8,‬‭then‬ ‭80%‬‭frequency.‬ ‭ quation:‬ E ‭P‬‭+‬‭Q‬‭=‬‭1‬ ‭P‬‭=‬‭The‬‭frequency‬‭of‬‭the‬‭dominant‬‭allele‬ ‭Q‬‭=‬‭The‬‭frequency‬‭of‬‭the‬‭recessive‬‭allele‬ ‭ llele‬‭Frequency‬ A I‭ f‬‭60%‬‭of‬‭alleles‬‭are‬‭G,‬‭and‬‭40%‬‭are‬‭g,‬‭then..‬ ‭example‬‭questions‬ ‭P=‬‭0.6‬ ‭Q=‬‭0.4‬ ‭Genotype‬‭frequencies‬ ‭The‬‭proportion‬‭of‬‭a‬‭specific‬‭Genotype‬‭in‬‭a‬‭population‬ ‭-‬ ‭Shows‬‭how‬‭common‬‭a‬‭phenotype‬‭is‬ ‭-‬ ‭Ex.‬‭How‬‭frequent‬‭TT,‬‭Tt,‬‭tt‬‭is.‬ ‭Equation:‬ ‭P‬‭2‬‭+‬‭2PQ‬‭+‬‭Q‬‭2‬‭=‬‭1‬ ‭P‭2‬‬‭=‬‭Frequency‬‭of‬‭the‬‭heterozygous‬‭dominant‬‭genotype‬‭(TT)‬ ‭2PQ‬‭=‬‭Frequency‬‭of‬‭the‬‭homozygous‬‭genotype‬‭(Tt)‬ ‭Q‭2‬‬‭=‬‭Frequency‬‭of‬‭the‬‭heterozygous‬‭recessive‬‭genotype‬‭(tt)‬ ‭ enotype‬‭frequencies‬ G ‭.6‬‭2‬ ‭+‬‭2(o.6)(0.4)‬‭+‬‭0.4‬‭2‬‭=‬‭1‬ O ‭example‬‭questions‬ ‭0.36‬‭+‬‭0.48‬‭+‬‭0.16‬‭+‬‭1‬ ‭36%‬‭=‬‭GG‬ ‭48%‬‭=‬‭Gg‬ ‭16%‬‭=‬‭gg‬ ‭BIG‬‭EXAMPLE‬ ‭Given‬‭info:‬ ‭-‬ ‭500‬‭total‬‭frogs‬ ‭-‬ ‭375‬‭dark‬‭green‬ ‭Determine:‬ ‭-‬ ‭Find‬‭genotype‬‭and‬‭allele‬‭frequencies‬ ‭Solve:‬ ‭-‬ ‭500-375=125‬ ‭-‬ ‭75%‬‭are‬‭dark‬‭green‬ ‭-‬ ‭25%‬‭are‬‭light‬‭green‬ ‭-‬ ‭Q‬‭2‬‭=‬‭.25‬ ‭-‬ ‭P‬‭+‬‭√.25‬ ‭=‬‭1‬ ‭-‬ ‭P‬‭+‬‭0.5‬‭=‬‭1‬ ‭-‬ ‭P‬‭=‬‭0.5‬ ‭-‬ ‭0.5‬‭2‬‭+‬‭2(0,5)(0,5)‬‭+‬‭0.5‬‭2‬ ‭-‬ ‭GG‬‭=‬‭0.25‬ ‭-‬ ‭Gg‬‭=‬‭0.5‬ ‭-‬ ‭gg‬‭=‬‭0.25‬ ‭ enotype‬‭proportions‬‭in‬ G ‭Gene‬‭Pool‬‭=‬‭The‬‭combination‬‭of‬‭all‬‭the‬‭genes‬‭in‬‭a‬‭population.‬ ‭Populations‬ ‭-‬ ‭Population‬‭size‬‭multiplied‬‭by‬‭two‬ ‭-‬ ‭Because‬‭each‬‭individual‬‭has‬‭2‬ ‭-‬ ‭Percentage‬‭of‬‭population‬‭that‬‭have‬‭a‬‭specific‬‭allele‬ ‭-‬ ‭T‬‭+‬‭t‬‭=‬‭1‬ ‭Genotypes‬‭in‬‭population‬ ‭-‬ ‭Percentage‬‭of‬‭population‬‭that‬‭has‬‭a‬‭specific‬‭genotype‬ ‭-‬ ‭TT‬‭+‬‭Tt‬‭+‬‭tt‬‭=‬‭1‬ ‭The‬‭proportion‬‭of‬‭individuals‬‭that‬‭are‬‭hetero‬‭and‬‭homo‬‭must‬ ‭equal‬‭1.‬ ‭-‬ ‭Proportions‬‭are‬‭the‬‭same‬‭as‬‭percentages‬‭by‬ ‭multiplying‬‭by‬‭100.‬ ‭-‬ ‭Ex.‬‭Proportion‬‭=‬‭0.6‬ ‭-‬ ‭Percentage‬‭=‬‭60%‬ ‭ enotype‬‭proportions‬‭=‬‭calculated‬‭by‬‭dividing‬‭the‬‭individuals‬ G ‭with‬‭a‬‭certain‬‭genotype‬‭by‬‭the‬‭total‬‭population‬ ‭-‬ ‭Percentage‬‭of‬‭the‬‭population‬‭with‬‭a‬‭specific‬‭genotype‬ ‭-‬ ‭Ex.‬‭if‬‭500‬‭total‬‭population,‬‭and‬‭150‬‭have‬‭Aa,‬‭then‬ ‭500/160‬‭=‬‭0.64‬‭or‬‭64%‬ ‭Example‬ ‭ all‬‭=‬‭TT,Tt‬ T ‭Short‬‭=‬‭tt‬ ‭TT‬‭+‬‭Tt‬‭+‬‭tt‬‭=‬‭100%‬ ‭60%‬‭+‬‭30%‬‭+‬‭10%‬‭=‬‭100%‬ ‭0.6‬‭+‬‭0.3‬‭+‬‭0.1‬‭=‬‭1‬ ‭ ardy‬‭Weinberg‬ H -‭ ‬ ‭ opulation‬‭size‬‭is‬‭large‬ P ‭assumptions‬ ‭-‬ ‭No‬‭selection‬ ‭-‬ ‭No‬‭mutation‬ ‭-‬ ‭No‬‭immigration‬ ‭-‬ ‭Random‬‭mating‬ ‭ andom‬‭change‬‭(small‬ R ‭ onstant‬‭allele‬ C ‭Random‬‭change-”genetic‬‭drift”‬ ‭populations)‬ ‭frequencies‬ ‭-‬ ‭There‬‭is‬‭no‬‭selection,‬‭no‬‭mutation,‬‭no‬‭migration,‬ ‭their‬‭allele‬‭ratios‬‭&‬‭genotype‬‭ratios‬‭will‬‭stay‬ ‭relatively‬‭the‬‭same‬‭for‬‭future‬‭generations.‬ ‭Fixed:‬‭The‬‭gene‬‭for‬‭a‬‭trait‬‭is‬‭at‬‭0%,‬‭or‬‭100%.‬ ‭-‬ ‭Only‬‭albino‬‭squirrels‬‭with‬‭3‬‭legs‬‭died,‬‭and‬‭now‬‭no‬ ‭produced,‬‭and‬‭albino‬‭squirrels‬‭are‬‭fixed‬‭at‬‭0%.‬ ‭Most‬‭probable‬‭results‬‭will‬‭occur‬‭with‬‭multiple‬‭trials.‬ ‭-‬ ‭Alleles‬‭frequencies‬‭can‬‭change‬‭randomly‬‭(not‬‭due‬‭to‬ ‭natural‬‭selection)‬‭due‬‭to‬‭a‬‭small‬‭population.‬ ‭-‬ ‭Because‬‭one‬‭single‬‭dead‬‭albino‬‭squirrel‬ ‭could‬‭drive‬‭a‬‭fixed‬‭gene‬‭if‬‭there's‬‭only‬‭10‬ ‭squirrels.‬ ‭-‬ ‭If‬‭it‬‭was‬‭a‬‭larger‬‭population,‬‭all‬‭the‬‭albino‬ ‭squirrels‬‭would‬‭have‬‭to‬‭die‬‭to‬‭have‬‭the‬‭same‬ ‭effect.‬ ‭-‬ ‭With‬‭a‬‭small‬‭population,‬‭a‬‭single‬‭organism‬‭represents‬ ‭a‬‭larger‬‭portion‬‭of‬‭the‬‭population.‬ ‭Bottleneck‬‭effect‬ -‭ ‬ ‭ ‬‭large‬‭population‬‭is‬‭drastically‬‭reduced‬ A ‭-‬ ‭Loss‬‭in‬‭diversity‬‭(esp.‬‭Alleles‬‭that‬‭were‬‭already‬‭rare)‬ ‭-‬ ‭May‬‭result‬‭in‬‭a‬‭totally‬‭new‬‭ratio‬‭in‬‭alleles‬ ‭Founder‬‭effect‬ -‭ ‬ S‭ mall‬‭group‬‭emigrates‬‭and‬‭forms‬‭a‬‭new‬‭population‬ ‭-‬ ‭New‬‭group‬‭like‬‭has‬‭new‬‭allele‬‭ratio‬ ‭-‬ ‭Small‬‭population‬‭may‬‭result,‬‭causing‬‭genetic‬‭drift.‬ ‭Speciation‬ ‭microevolution‬ ‭ e‬‭changes‬‭that‬‭occur‬‭in‬‭a‬‭population‬‭from‬‭one‬‭generation‬‭to‬ Th ‭the‬‭next.‬ S‭ peciation:‬ ‭-‬ ‭Speciation‬‭is‬‭the‬‭process‬‭of‬‭macroevolution:‬ ‭macroevolution‬ ‭ acroevolution:‬‭The‬‭changes‬‭that‬‭occur‬‭in‬‭a‬‭population,‬‭where‬ M ‭new‬‭species‬‭are‬‭formed‬‭from‬‭the‬‭accumulation‬‭of‬‭multiple‬ ‭microevolutions.‬ ‭Species‬ ‭ Y‬‭DEFINITION‬‭(STUPID‬‭THING):‬‭when‬‭a‬‭group‬‭is‬ B ‭reproductively‬‭isolated,‬‭they‬‭are‬‭considered‬‭a‬‭different‬‭species‬ ‭because‬‭they‬‭formed‬‭another‬‭gene‬‭pool.‬ ‭What‬‭is‬‭a‬‭species?‬ I‭ ndividuals‬‭isolated‬‭away‬‭from‬‭their‬‭gene‬‭pool,‬‭forming‬‭a‬‭new‬ ‭species,‬‭but‬‭uniquely‬‭causing‬‭physiology(chemical)‬‭and‬ ‭morphology(features).‬ ‭^impractical‬‭to‬‭detect,‬‭so‬‭we‬‭have‬‭traditionally‬‭used‬ ‭morphology‬‭features..‬‭Short‬‭term:‬‭DNA‬‭analysis‬‭is‬‭more‬ ‭effective,‬‭especially‬‭when‬‭you‬‭can’t‬‭tell‬‭differences.‬ ‭ eproductively‬ R ‭They‬‭can’t‬‭mate‬‭with‬‭different‬‭species.‬ ‭incompatible‬ ‭Reproductive‬‭isolation‬ ‭Allopatric‬‭speciation‬ ‭Not‬‭in‬‭same‬‭geographical‬‭-‬ ‭-‬ ‭Obvious‬‭physical‬‭barrier‬ ‭-‬ ‭Humans‬‭on‬‭earth,‬‭humans‬‭on‬‭mars‬‭can’t‬ ‭reproduce‬‭bc‬‭of‬‭how‬‭far‬‭they‬‭are‬ ‭-‬ ‭Now‬‭dif.‬‭species‬ ‭Sympatric‬‭speciation‬ I‭ n‬‭the‬‭same‬‭geographical‬‭location..‬‭Must‬‭be‬‭another‬ ‭mechanism..‬ ‭ echanisms‬‭of‬ M ‭Prezygotic‬ ‭ arriers‬‭that‬‭occur‬‭before‬‭fertilization:‬ B ‭reproductive‬‭isolation‬ ‭Sex‬‭cells‬‭never‬‭make‬‭contact.‬ ‭(sympatric‬‭speciation)‬ ‭-‬ ‭Fertilization‬‭does‬‭not‬‭occur,‬‭zygote‬‭never‬‭produced.‬ ‭-‬ ‭Behavioral‬ ‭Can‬‭be‬‭for‬‭any‬‭reason‬ ‭-‬ ‭Structural‬ ‭-‬ ‭Ecological‬‭(habitat‬‭preference)‬ ‭-‬ ‭biochemical‬ ‭-‬ ‭Temporal‬‭(breeding‬‭times)‬ ‭-‬ ‭Behavioral‬‭(mating‬‭calls)‬ ‭-‬ ‭Mechanical‬‭(morphological‬‭barriers‬‭to‬‭fertilization)‬ ‭-‬ ‭Gametic‬‭isolation‬‭(chemical‬‭markers‬‭for‬‭gametes)‬ ‭Postzygotic‬ ‭ arriers‬‭that‬‭occur‬‭after‬‭fertilization:‬ B ‭Sex‬‭cells‬‭make‬‭contact,‬‭but‬‭something‬‭happens..‬ ‭-‬ ‭Zygotic‬‭mortality‬‭(zygote‬‭dies)‬ ‭-‬ ‭Hybrid‬‭inviability‬‭(zygote‬‭lives,‬‭but‬‭dies‬‭too‬‭soon‬‭to‬ ‭reproduce)‬ ‭-‬ ‭Hybrid‬‭infertility‬‭(zygote‬‭lives,‬‭lives‬‭long,‬‭but‬‭can‬ ‭reproduce)‬ ‭Patterns‬‭of‬‭Speciation‬ ‭Adaptive‬‭Radiation‬ ‭ hen‬‭organisms‬‭diversity‬‭rapidly‬‭from‬‭an‬‭ancestral‬‭species‬ W ‭into‬‭a‬‭multitude‬‭of‬‭new‬‭forms.‬ ‭-‬ ‭Fills‬‭empty‬‭niches/habitats,‬‭and‬‭avoids‬‭competition‬ ‭with‬‭their‬‭own‬‭species‬‭because‬‭each‬‭form‬‭is‬‭assigned‬ ‭a‬‭position‬‭(niche‬‭-‬‭only‬‭works‬‭if‬‭opportunities‬‭are‬ ‭open‬‭for‬‭new‬‭birds).‬ ‭Divergent‬‭Evolution‬ ‭ hen‬‭organismsly‬‭diversify‬‭slowsly‬‭from‬‭ancestral‬‭species‬‭into‬ W ‭many‬‭new‬‭forms.‬ ‭ iverge‬‭-becoming‬‭more‬ D ‭-‬ ‭Avoids‬‭competition‬‭with‬‭its‬‭own‬‭species,‬‭but‬‭can‬ ‭different‬ ‭compete‬‭with‬‭other‬‭species.‬ ‭Convergent‬‭evolution‬ ‭ hen‬‭organisms‬‭that‬‭are‬‭distantly‬‭related‬‭become‬‭more‬ W ‭similar‬‭over‬‭time.‬ ‭ onverge‬‭-‬‭becoming‬ C ‭-‬ ‭When‬‭species‬‭undergo‬‭a‬‭similar‬‭nice/selection‬ ‭more‬‭similar‬ ‭pressure‬‭and‬‭leads‬‭to‬‭analogous‬‭features‬‭(not‬‭from‬ ‭same‬‭ancestor,‬‭but‬‭similar‬‭features‬‭from‬‭similar‬ ‭factors))‬ ‭Coevolution‬ ‭When‬‭two‬‭species‬‭are‬‭dependent‬‭on‬‭each‬‭other,‬‭a‬‭change‬‭in‬ ‭one‬‭species‬‭will‬‭change‬‭in‬‭the‬‭the‬‭other‬‭species.‬ ‭-‬ ‭Common‬‭in‬‭symbiotic‬‭relationships.‬ ‭Macroevolution‬ ‭Gradualism‬ ‭ ‬‭model‬‭of‬‭evolution‬‭which‬‭theorizes‬‭that‬‭evolution‬‭is‬‭a‬‭slow‬ A ‭and‬‭uniform‬‭process.‬ ‭-‬ ‭Lots‬‭of‬‭accumulation‬‭of‬‭adaptation‬ ‭-‬ ‭Lots‬‭of‬‭time‬‭for‬‭fossilization‬‭of‬‭transitionals‬‭(a‬‭fossil‬ ‭of‬‭an‬‭ancestors‬‭that‬‭exhibits‬‭traits‬‭similar‬‭to‬‭its‬ ‭descendant)‬ ‭Punctuated‬‭equilibrium‬ ‭“Gradualism”‬‭with‬‭sped‬‭up‬‭periods‬‭of‬‭evolution.‬ ‭-‬ ‭Includes‬‭rapid‬‭periods‬‭of‬‭environmental‬‭change,‬ ‭usually‬‭happens‬‭to‬‭a‬‭small‬‭isolated‬‭population,‬‭fewer‬ ‭fossilizations‬‭of‬‭transitionals.‬ ‭Human‬‭Evolution‬ ‭Modern‬‭vs‬‭old‬‭humans‬ ‭Modern‬ ‭-‬ ‭Complex‬‭reasoning,‬‭learning‬‭tools,‬‭communication‬ ‭-‬ ‭Large‬‭braun,‬‭fine‬‭hand‬‭motor‬‭skills,‬‭walk‬‭upright‬ ‭Phylogeny‬ ‭-‬ ‭Primates‬ ‭-‬ ‭Common‬‭ancestor‬‭60‬‭mya‬ ‭-‬ ‭Monkeys,‬‭apes,‬‭humans,‬‭prosimians‬ ‭-‬ ‭Large‬‭brains,‬‭forward‬‭eyes,‬‭flexible‬‭hands‬ ‭and‬‭feet,‬‭arms‬‭that‬‭rotate‬ ‭-‬ ‭Most‬‭have‬‭opposable‬‭thumbs‬ ‭-‬ ‭Most‬‭have‬‭tails‬ ‭-‬ ‭Humans‬‭are‬‭closest‬‭related‬‭with‬‭chimpanzees‬‭98.8%‬ ‭-‬ ‭Most‬‭recent‬‭common‬‭ancestor‬‭6‬‭mya‬ ‭-‬ ‭Hominids‬‭(great‬‭apes)‬ ‭-‬ ‭In‬‭africa,‬‭hominid‬‭evolution‬ ‭-‬ ‭Evidence:‬‭Fossils‬‭record,‬ ‭morphological‬‭differences,‬‭tools‬ ‭-‬ ‭Homo‬‭erectus‬‭leaves‬‭africa‬‭1.9‬‭mya‬‭and‬‭survived‬‭until‬ ‭100,000‬‭mya‬ ‭-‬ ‭Homo‬‭neanderthalensis(oonga‬‭boongas)‬ ‭leaves‬‭africa‬ ‭400,000‬‭mya‬ ‭-‬ ‭Homo‬‭sapien‬‭leaves‬‭africa‬‭100,000‬‭mya‬ ‭-‬ ‭Evidence‬‭of‬‭interbreeding‬‭with‬‭homo‬ ‭neanderthalensis‬‭and‬‭homo‬‭sapien‬ ‭-‬ ‭Extinction‬‭of‬‭homo‬‭neanderthalensis‬ ‭Are‬‭they‬‭still‬‭evolving?‬ ‭-‬ ‭Depends‬‭on‬‭intensity‬‭of‬‭selection‬‭pressure‬ ‭-‬ ‭Eg.‬‭sickle-cell‬‭anemia‬‭and‬‭malaria‬‭resistance‬ ‭(how‬‭necessary‬‭it‬‭is‬‭to‬‭survive‬‭malaria‬ ‭determines‬‭the‬‭intensity‬‭of‬‭selection‬ ‭pressure)‬ ‭-‬ ‭Medical‬‭compensations‬‭relieve‬‭selection‬‭pressure‬ ‭-‬ ‭Eg.‬‭treatments‬‭for‬‭a‬‭disease‬‭(reduces‬‭how‬ ‭necessary‬‭genes‬‭are‬‭than‬‭help‬‭fight‬‭off‬ ‭disease)‬ ‭Adaptations‬‭from‬‭past:‬ ‭-‬ ‭Obesity:‬‭taste‬‭for‬‭more‬‭rich‬‭foods‬ ‭-‬ ‭Diabetes:‬‭modern‬‭vs.‬‭primal‬‭diet‬‭(10,000‬‭years‬‭of‬‭a‬ ‭wheat‬‭diet,‬‭or‬‭millions‬‭of‬‭primal)‬ ‭-‬ ‭Vit‬‭D‬‭deficiency:‬‭avoiding‬‭the‬‭sun‬

Use Quizgecko on...
Browser
Browser