Pharmaceutical Analytical Chemistry 1 (PA 101) PDF

Summary

This document is lecture notes on Pharmaceutical Analytical Chemistry 1 (PA 101), focusing on the analysis of anions, and includes information on dry, wet, and special tests. The document includes tables summarizing the types of anions, their reactions with various reagents, and their properties. Also discusses topics such as ionic size, electron affinity, and reduction/oxidation properties of different groups of anions.

Full Transcript

# Pharmaceutical Analytical Chemistry 1 (PA 101) ## Analysis of Anions - Part 2 ### Anions: Anions are divided into groups according to their parent acid. | Group | Group Name | Anions | |---|---|---| | 1 | Carbonate gp. | CO<sub>3</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup> | | 2 | Sulphur...

# Pharmaceutical Analytical Chemistry 1 (PA 101) ## Analysis of Anions - Part 2 ### Anions: Anions are divided into groups according to their parent acid. | Group | Group Name | Anions | |---|---|---| | 1 | Carbonate gp. | CO<sub>3</sub><sup>2-</sup>, HCO<sub>3</sub><sup>-</sup> | | 2 | Sulphur gp. | S<sup>2-</sup>, SO<sub>3</sub><sup>2-</sup>, S<sub>2</sub>O<sub>3</sub><sup>2-</sup>, SO<sub>4</sub><sup>2-</sup>| | 3 | Halide gp. | F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup> | | 4 | Phosphate gp. | PO<sub>4</sub><sup>3-</sup>, AsO<sub>4</sub><sup>3-</sup>, AsO<sub>3</sub><sup>3-</sup> | | 5 | Nitrogen gp. | NO<sub>3</sub><sup>-</sup>, NO<sub>2</sub><sup>-</sup> | ### Anion Reactions Anion reactions can be divided into three categories: * **Dry Reactions:** Solid powder + acid * **Wet Reactions:** Salt solution + reagent → ppt or color * **Special Test:** Salt solution + special reagent → ppt or color; selective reagent for selected one or two anions ### 3 - Halide gp * **Ionic size:** Increases down the group * **Electron affinity:** Decreases down the group. * **Tendency to lose electrons (gets oxidized):** Increases down the group. Iodide ion is firstly and easily oxidized into free I<sub>2</sub> by losing readily an electron followed by Br<sup>-</sup>. It's difficult to oxidize F<sup>-</sup> into F<sub>2</sub>, as F<sup>-</sup> ions are highly stable. ### Reducing & Oxidizing Properties of the Halide gp | Anion | Reducing Properties | Oxidizing Properties | |---|---|---| | Chloride Cl<sup>-</sup> | Very weak reducing | Chlorine Cl<sub>2</sub> | | Bromide Br<sup>-</sup> | | Bromine Br<sub>2</sub> - Brown color in both aqueous and organic solutions | | Iodide I<sup>-</sup> | Strongest reducing properties among halide gp, reducing properties increases down the group | Iodine I<sub>2</sub> - Brown color in aqueous solution, violet color in organic solution, blue color in starch solution | ### Parent Acid - 3 - Halide gp | Anion | Parent Acid | Properties | |---|---|---| | Fluoride F<sup>-</sup> | Hydrofluoric acid HF | Highly corrosive | | Chloride Cl<sup>-</sup> | Hydrochloric acid HCl | Colorless gas with irritating odor fumes in moist air. | | Bromide Br<sup>-</sup> | Hydrobromic acids HBr | Colorless gas with irritating odor fumes in moist air. | | Iodide I<sup>-</sup> | Hydroiodic acid: HI | Colorless gas with irritating odor fumes in moist air. Strongest acidic solution of the halogen series | The order of stronger halogen acid is from HI > HBr > HCl > HF ### Solubility - 3 - Halide gp | Anion | Solubility | Exceptions | |---|---|---| | Fluoride F<sup>-</sup> | Insoluble in water | Na<sup>+</sup>, K<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, Ag<sup>+</sup> | | Chloride Cl<sup>-</sup> | Soluble in water | Pb<sup>2+</sup>, Ag<sup>+</sup>, Hg<sup>+</sup>, Cu<sup>2+</sup> | | Bromide Br<sup>-</sup> | Soluble in water | Pb<sup>2+</sup>, Ag<sup>+</sup>, Hg<sup>+</sup>, Cu<sup>2+</sup> | | Iodide I<sup>-</sup> | Soluble in water | Pb<sup>2+</sup>, Ag<sup>+</sup>, Hg<sup>+</sup>, Cu<sup>2+</sup> | ### Dry Reaction (Solid + dil HCI) | Anion | Observations | |---|---| | CO<sub>3</sub><sup>2-</sup> | Strong effervescence CO<sub>2</sub> gas | | HCO<sub>3</sub><sup>-</sup> | Strong effervescence CO<sub>2</sub> gas | | S<sup>2-</sup> | H<sub>2</sub>S gas | | SO<sub>3</sub><sup>2-</sup> | SO<sub>2</sub> gas | | S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | SO<sub>2</sub> gas + Colloidal S | | SO<sub>4</sub><sup>2-</sup> | No reaction | | F<sup>-</sup> | No reaction | | Cl<sup>-</sup> | No reaction | | Br<sup>-</sup> | No reaction | | I<sup>-</sup> | No reaction | ### Dry Reaction (Solid + Conc. H₂SO₄) | Anion | Observations | |---|---| | F<sup>-</sup> | HF acid | | Cl<sup>-</sup> | HCl gas. How to identify HCl gas? <br> 1. Form white fumes with moist air due the formation of droplets of HCl acid. <br>2. Pungent irritating odor. <br>3. Change a moistened litmus paper from blue into red. <br> 4. Formation of white clouds of NH<sub>4</sub>Cl when a glass rod moistened with ammonium hydroxide solution is exposed to the evolved gas <br> NH<sub>4</sub>OH + HCl → NH<sub>4</sub>Cl + H<sub>2</sub>O | | Br<sup>-</sup> | HBr gas + Br<sub>2</sub> gas. How to identify Br<sub>2</sub> gas? <br> 1. Brown color. <br> 2. Suffocating & irritating odor <br> 3. Turn starch paper to brown | | I<sup>-</sup> | HI gas + I<sub>2</sub> gas. How to identify I<sub>2</sub> gas? <br> 1. Violet color <br> 2. Suffocating & irritating odor <br> 3. Turn starch paper to blue | ### 1- Concentrated H2SO4 +MnO2 Mix the solid halide with an equal amount of MnO<sub>2</sub>, add concentrated sulphuric acid, and warm gently. HCl, HBr, and HI can be reduced in acidic medium by strong oxidizing agents such as MnO<sub>4</sub><sup>-</sup>, MnO<sub>2</sub> and higher heavy metals oxides producing elemental halogens. 2X + 4H<sup>+</sup> + MnO<sub>2</sub> → X<sub>2</sub> + Mn<sup>2+</sup> + H₂O ### 2- Chromyl chloride test - Specific test for chloride Solid Cl<sup>-</sup> + solid K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> + conc. H<sub>2</sub>SO<sub>4</sub> → CrO<sub>2</sub>Cl<sub>2</sub> (chromyl chloride gas), deep red fumes 4 Cl<sup>-</sup> + Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> + 6 H<sup>+</sup> → 2 CrO<sub>2</sub>Cl<sub>2</sub>↑ + 3H<sub>2</sub>O CrO<sub>2</sub>Cl<sub>2</sub>↑ + 4 OH<sup>-</sup> → CrO<sub>4</sub><sup>2-</sup> + 2 Cl<sup>-</sup> + 2H<sub>2</sub>O 1. CrO<sub>4</sub><sup>2-</sup> + Pb<sup>2+</sup> → PbCrO<sub>4</sub> ppt 2. CrO<sub>4</sub><sup>2-</sup> + H<sup>+</sup> → Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> 3. Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O<sub>2</sub> → CrO<sub>8</sub><sup>3-</sup> - Blue in ether layer (perchromic acid) Classified as dry reactions test because it is carried out on the solid sample ### Wet reaction: Salt soln. (S.S)+ AgNO<sub>3</sub> | Anion | Observations | |---|---| | Fluoride F<sup>-</sup> | No ppt. AgF is soluble in water.| | Chloride Cl<sup>-</sup> | White ppt. AgCl. <br> - Insoluble in HNO<sub>3</sub>. <br> - Soluble in NH<sub>3</sub> (complex). <br> - Soluble in cyanides (complex). <br> - Soluble in S<sub>2</sub>O<sub>3</sub><sup>2-</sup> (complex). | | Bromide Br<sup>-</sup> | Yellowish white ppt. AgBr. Sparingly Soluble in NH<sub>3</sub> (complex). | | Iodide I<sup>-</sup> | Yellow ppt. AgBr. Insoluble in NH<sub>3</sub>. | There is a periodicity in character of three silver halides. AgCl will be dissolved in dilute ammonia, followed by AgBr in concentrated ammonia, but AgI does not. Why is AgI ppt. insoluble in NH<sub>3</sub>? Because the concentration of Ag<sup>+</sup> produced from dissociation of silver ammine complex (according to its instability constant) is very high and sufficient to exceed the very small value of the solubility product of AgI. AgI + NH<sub>3</sub> → 2[Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup> + I<sup>-</sup> Ag<sup>+</sup> + NH<sub>3</sub> → AgI ### Wet reaction: Salt soln. (S.S)+ BaCl<sub>2</sub> | Anion | Observations | |---|---| | Fluoride F<sup>-</sup> | White ppt. BaF<sub>2</sub>. Ba<sup>2+</sup> + 2F<sup>-</sup> → BaF<sub>2</sub> | | Chloride Cl<sup>-</sup> | No reaction | | Bromide Br<sup>-</sup> | No reaction | | Iodide I<sup>-</sup> | No reaction | ### Wet reaction: Salt soln. (S.S) + FeCl<sub>3</sub> - Mild oxidizing agent | Anion | Observations | |---|---| | Fluoride F<sup>-</sup> | White ppt. of the complex salt [FeF<sub>6</sub>]<sup>3-</sup>. Fe<sup>3+</sup> + 6F<sup>-</sup> → [FeF<sub>6</sub>]<sup>3-</sup> | | Chloride Cl<sup>-</sup> | No reaction. Due to its weak reducing action. | | Bromide Br<sup>-</sup> | No reaction. Due to its relatively weak reducing action. | | Iodide I<sup>-</sup> | Brown color of I<sub>2</sub>. Fe<sup>3+</sup> + I<sup>-</sup> → Fe<sup>2+</sup> + I<sub>2</sub>. Due to strong reducing action of iodide. | ### Wet reaction: Salt soln. (S.S)+ Pb acetate | Anion | Observations | |---|---| | Fluoride F<sup>-</sup> | White ppt. PbF<sub>2</sub> | | Chloride Cl<sup>-</sup> | White ppt. PbCl<sub>2</sub> | | Bromide Br<sup>-</sup> | White ppt. PbBr<sub>2</sub> | | Iodide I<sup>-</sup> | yellow ppt. Pbl<sub>2</sub> | All lead halides are soluble in hot water and precipitate on cooling. ### Wet reaction: Salt soln. (S.S)+ Chlorine water | Anion | Observations | |---|---| | Fluoride F<sup>-</sup> | No reaction | | Chloride Cl<sup>-</sup>| No reaction | | Bromide Br<sup>-</sup> | Chlorine water oxidizes Br<sup>-</sup> into Br<sub>2</sub>. The liberated Br<sub>2</sub> can be extracted with chloroform as brown or yellow color in chloroform layer. <br> 2KBr + Cl<sub>2</sub> → Br<sub>2</sub> + 2KCl | | Iodide I<sup>-</sup> | Chlorine water oxidizes I<sup>-</sup> into I<sub>2</sub>. The liberated I<sub>2</sub> can be extracted with chloroform as **violet** color in chloroform layer. <br> 2KI + Cl<sub>2</sub> → I<sub>2</sub> + 2KCl | If iodide and bromide are in a mixture, iodide reacts first with chlorine water before bromide as it has more reducing character. 1. Mixture + chloroform + dps chlorine water → **violet** color in chloroform 2. On the same test tube: Take aqueous part + chloroform + dps chlorine water → **Brown** color in chloroform Chlorine water reagent is added drop wise to a solution of iodide or bromide. * Excess chlorine water converts Br<sub>2</sub> into colorless bromic acid (more oxidation). * Excess chlorine water converts I<sub>2</sub> to colorless iodic acid (more oxidation). Br<sub>2</sub> + 5 Cl<sub>2</sub> (excess) + 6 H<sub>2</sub>O → 2 HBrO<sub>3</sub> + 10 HCl (bromic acid) I<sub>2</sub> + 5 Cl<sub>2</sub> (excess) + 6H<sub>2</sub>O → 2 HIO<sub>3</sub> + 10 HCl (iodic acid) ### Special Tests **Fluoride F<sup>-</sup>** **Boron fluoride test:** Mix the fluoride with borax and moisten with concentrated H<sub>2</sub>SO<sub>4</sub>: Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> + H<sub>2</sub>SO<sub>4</sub> + 5H<sub>2</sub>O -> 4H<sub>3</sub>BO<sub>3</sub> + Na<sub>2</sub>SO<sub>4</sub> 2NaF + H<sub>2</sub>SO<sub>4</sub> -> 2HF + Na<sub>2</sub>SO<sub>4</sub> 3HF + H<sub>3</sub>BO<sub>3</sub> -> BF<sub>3</sub> (boronfloride gas, green in flame) **Iodide I<sup>-</sup>** * **Nitrite or hydrogen peroxide test:** Oxidized in acid solution with nitrite solution or hydrogen peroxide into free iodine. * **Cupper sulphate test:** White precipitate of Cu<sub>2</sub>I<sub>2</sub> and free iodine. * **Mercuric chloride test:** Mercuric iodide will be precipitated as yellow-scarlet red ppt. which dissolves in excess iodide forming soluble colorless complex. ### Mixture of Cl<sup>-</sup> and I<sup>-</sup> * Add AgNO<sub>3</sub> and NH<sub>3</sub> * Filter or centrifuge * Ppt. will contain AgI. Confirmed by concentrated H<sub>2</sub>SO<sub>4</sub> test * Filtrate will contain Cl<sup>-</sup>. ### Dry Reaction (Solid + dil HCI) | Anion | Observations | |---|---| | CO<sub>3</sub><sup>2-</sup> | Strong effervescence CO<sub>2</sub> gas | | HCO<sub>3</sub><sup>-</sup> | Strong effervescence CO<sub>2</sub> gas | | S<sup>2-</sup> | H<sub>2</sub>S gas | | SO<sub>3</sub><sup>2-</sup> | SO<sub>2</sub> gas | | S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | SO<sub>2</sub> gas + Colloidal S | | SO<sub>4</sub><sup>2-</sup> | No reaction | | F<sup>-</sup> | No reaction | | Cl<sup>-</sup> | No reaction | | Br<sup>-</sup> | No reaction | | I<sup>-</sup> | No reaction | ### Dry Reaction (Solid + Conc. H₂SO₄) | Anion | Observations | |---|---| | F<sup>-</sup> | HF | | Cl<sup>-</sup> | HCl gas | | Br<sup>-</sup> | HBr gas + Br<sub>2</sub> gas | | I<sup>-</sup> | HI gas + I<sub>2</sub> gas | ### Wet reaction: Salt soln. (S.S)+ AgNO<sub>3</sub> | Anion | Observations | |---|---| | CO<sub>3</sub><sup>2-</sup> | White ppt of Ag<sub>2</sub>CO<sub>3</sub> (Sol in NH<sub>3</sub>) | | HCO<sub>3</sub><sup>-</sup> | No ppt (Soluble AgHCO<sub>3</sub>) | | S<sup>2-</sup> | Black ppt Ag<sub>2</sub>S (Insol in NH<sub>3</sub>) | | SO<sub>3</sub><sup>2-</sup> | White ppt Ag<sub>2</sub>SO<sub>3</sub> (Sol in NH<sub>3</sub>). Self-oxidation reduction. Ag<sub>2</sub>SO<sub>3</sub> soluble in excess SO<sub>3</sub><sup>2-</sup> | | S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | White ppt. Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub> → turn to black Ag<sub>2</sub>S. Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub> soluble in excess S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | | SO<sub>4</sub><sup>2-</sup> | White ppt Ag<sub>2</sub>SO<sub>4</sub> | | F<sup>-</sup> | No ppt | | Cl<sup>-</sup> | White ppt AgCl (sol in NH<sub>3</sub>) | | Br<sup>-</sup> | Yellowish white ppt AgBr (sparingly sol. In NH<sub>3</sub>) | | I<sup>-</sup> | **Yellow** ppt (Insol in NH<sub>3</sub>) | ### Wet reaction: Salt soln. (S.S)+ BaCl<sub>2</sub> | Anion | Observations | |---|---| | CO<sub>3</sub><sup>2-</sup> | White ppt of Ba<sub>2</sub>CO<sub>3</sub> | | HCO<sub>3</sub><sup>-</sup> | No ppt Soluble Ba(HCO<sub>3</sub>)<sub>2</sub> | | S<sup>2-</sup> | No ppt | | SO<sub>3</sub><sup>2-</sup> | White ppt BaSO<sub>3</sub> (Sol in dil. HCI) | | S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | White ppt Ba<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (if very conc. Soln.) | | SO<sub>4</sub><sup>2-</sup> | White ppt BaSO<sub>4</sub> (Insol in dil HCI) | | F<sup>-</sup> | White ppt BaF<sub>2</sub> | | Cl<sup>-</sup> | No ppt | | Br<sup>-</sup> | No ppt | | I<sup>-</sup> | No ppt | ### Wet reaction: Salt soln. (S.S) + FeCl<sub>3</sub> | Anion | Observations | |---|---| | CO<sub>3</sub><sup>2-</sup> | - | | HCO<sub>3</sub><sup>-</sup> |- | | S<sup>2-</sup> | Black ppt. Fe<sub>2</sub>S<sub>3</sub> | | SO<sub>3</sub><sup>2-</sup> | **Dark Red** color Fe<sub>2</sub>(SO<sub>3</sub>)<sub>3</sub> | | S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | **Purple** color → disappear | | SO<sub>4</sub><sup>2-</sup> | No reaction | | F<sup>-</sup> | white ppt of complex [FeF<sub>6</sub>]<sup>3-</sup> | | Cl<sup>-</sup> | No reaction | | Br<sup>-</sup> | No reaction | | I<sup>-</sup> | **Brown** color of I<sub>2</sub> | ### Wet reaction: Salt soln. (S.S)+ Pb acetate | Anion | Observations | |---|---| | CO<sub>3</sub><sup>2-</sup> | - | | HCO<sub>3</sub><sup>-</sup> |- | | S<sup>2-</sup> | Black ppt. PbS | | SO<sub>3</sub><sup>2-</sup> | White ppt. PbSO<sub>3</sub> | | S<sub>2</sub>O<sub>3</sub><sup>2-</sup> | White ppt. Pb<sub>2</sub>S<sub>2</sub>O<sub>3</sub> → turn to black PbS | | SO<sub>4</sub><sup>2-</sup> | White ppt. PbSO<sub>4</sub> <br>Insoluble in mineral acids <br> Soluble in ammonium acetate <br> Soluble in hydroxide solutions (complex) | | F<sup>-</sup> | White ppt. PbF<sub>2</sub> | | Cl<sup>-</sup> | White ppt. PbCl<sub>2</sub> | | Br<sup>-</sup> | White ppt. PbBr<sub>2</sub> | | I<sup>-</sup> | **Yellow** ppt. Pbl<sub>2</sub> | ### Complex formation * Ag<sup>+</sup> + NH<sub>3</sub> → 2[Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup> * Ag<sub>2</sub>SO<sub>3</sub> + SO<sub>3</sub><sup>2-</sup> → [Ag(SO<sub>3</sub>)<sub>2</sub>]<sup>3-</sup> * Ag<sub>2</sub>S<sub>2</sub>O<sub>3</sub> + S<sub>2</sub>O<sub>3</sub><sup>2-</sup> → [Ag(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>3-</sup> * Fe<sup>3+</sup> + S<sub>2</sub>O<sub>3</sub><sup>2-</sup> → [Fe(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub>]<sup>-</sup> * Fe<sup>3+</sup> + 6 F<sup>-</sup> →[FeF<sub>6</sub>]<sup>3-</sup> * PbSO<sub>4</sub> + 4 OH<sup>-</sup> → [Pb(OH)<sub>4</sub>]<sup>2-</sup> +SO<sub>4</sub><sup>2-</sup> ## Thank you! The document contains a diagram of 6 test tubes with various coloured liquids. It also contains a diagram of a Hulk and Shrek character.

Use Quizgecko on...
Browser
Browser