Music Intelligence and Music Theory Learning: A Cognitive Load Theory Viewpoint PDF

Summary

This academic research article investigates the impact of cognitive load theory and musical intelligence on music theory learning amongst Jordanian primary school pupils. The study employed an analysis of covariance (ANCOVA) to analyze the effects of these factors on learning outcomes. The findings indicate a significant correlation between high musical intelligence and better performance in music theory.

Full Transcript

www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010                                                            ISSN 1918-7211   E-ISSN 1918-722X  150 Music Intelligence and Music Theory Learning:    A Cognitive Load Theory Viewpoint ...

www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010                                                            ISSN 1918-7211   E-ISSN 1918-722X  150 Music Intelligence and Music Theory Learning:    A Cognitive Load Theory Viewpoint  Osamah (Mohammad Ameen) Ahmad Aldalalah    School of Educational Studies, Universiti Sains Malaysia  Minden 11800, Penang, Malaysia  Tel: 60-1-7413-2557      E-mail: [email protected]    Soon Fook Fong (Corresponding author)  School of Educational Studies, Universiti Sains Malaysia  Minden 11800, Penang, Malaysia  Tel: 60-4-653-2968      E-mail: [email protected]  Abstract The purpose of this study was to investigate the effects of cognitive load theory and the role of music intelligence  on the learning of music theory among Jordanian primary pupils. The independent variable was music intelligence  levels (high, low). The dependent variables were the post te st score. An analysis of covariance (ANCOVA) was  carried out to examine the main effects of the independent  variables on the dependent variables. The findings of  this study showed that pupils with hi gh music intelligence pupils performed significantly  better than low music  intelligence pupils.    Keywords: Music theory, Cognitive load theory, Music Intelligence  1. Introduction Over the recent decades of the 20th century, international ed ucational systems along with the important role of the  teachers in community development have emphasized the need for quality education systems with specific focus  on the preparation of the teacher in terms of mental aptitudes and abilities (Qtami, 2005). The great potentials of  the human mind and how it may be developed demonstra tes the importance of having open minded learners who  meet the expectations of their communities and  perform effectively for the post-industrial community. This  necessitates a higher level of cogn itive adaptability in the third millennium (Otoum, 20 03). To achieve such a goal,  planning of curricula was sought in order to develop textbooks that are writtem based on the findings of academic  research in psychology and the related cognitive psychology fields. Psychology research indicates that students  differ in their intelligence and how they learn. The adoption of one traditional teaching style that depends on  reiteration or lecturing would make students feel bored.  Psychologists, however, have long been interested in  developing many teaching strategies to meet different learning styles (Gnam, 2005). Among the newly established  teaching methods is the one which is based on the multiple intelligence approach by Howard Gardner. Intelligence  plays a significant role in human life si nce there is a strong relationship between intelligence and achievement  implying that the higher the level of intelligence,  the greater the achievement and hence, greater distinction and  academic success.    2. Music theory Many scholars such as Nosir (1980) define music theory as the area in which music works are studied. It mainly  deals with the language and notion of musi c where it is composed and interpreted. It assists to categorize the  various music patterns and structures experienced in the  process of composition throughout genres, styles or  during historical periods. According to Chew (2005) mu sic is a language that possesses both universal context and  notations. On the other hand, Aldalalah  (2003) argues that music provides a unique structure for musicians to  reveal their musical concepts. This is because it focuses on music notation is composed in terms of the components  of the notation. Also, it involves basic musical concepts  that may be observed in forms of the structure, the  organization and the history (Smith,  2009). These musical concepts have an  important role in establishing the  necessary knowledge for inte rpreting the development stag es in music and the mode in which the notation is  utilized in various situations.    www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010  Published by Canadian Center of Science and Education 151 3. Musical Intelligence and Learning Musical intelligence is described as the feeling of musical pitches, sound rhythm an d tempo as well as being  emotionally affected by such musical  components (Gardner, 1983). Intelligence, however, is easily seen in the  learners who can automatically remember melodies, identi fy pitches and rhythms. Learners are thus described as  more inclined to hear music and  are highly sensitive to sounds around them (Gardner, 2000). Gardner (2004)  argued that musical intellig ence varies according to people as everyone  has his own musical ability, while some  others have nothing to do with  music. Musical intelligence is related to  the identification of tones, melodies,  sounds, rhythm, and tempos, particularly, the sense of tone types, melody composition, and sensitivity to sounds as  well as using charts for music hearing and understanding  musical structure. Musical intelligence is the most  emerging type of intelligence in the  early stages of a person’s life  (Al-Ahdal,  2 009). It can be identified by the  followings characteristics: a disposition to mu sic hearing and attraction to songs, a tendency to read music related  topics, playing musical instruments, making musical com positions, writing songs, recognizing consistent and  inconsistent sounds, memorizing more songs and melodies, self-singing wh ile doing tasks, easily memorizing  melodies, listening to bird sounds, imitating soun ds, and a desire to let others listen to the person’s voice (Gardner,  2003; Afanan &Alkzindar, 2004).    The educational practice and the day-to-day interaction between the teachers and students at different school levels  are helpful in identifying the stude nts’ intelligence types. Other entities such as family members can also assist in  identifying their interests and preferences. In the foll owing section, a discussion of some behavioral indications  that can be used to identify  intelligence types in the learn ers is presented. Such indication s may be helpful for the  students to accomplish a fruitful and  affective learning experience (Dobbs,  2001). A number of researchers have  been interested in the degree to which mu sic aptitude or music experiences are related  to academic achievement.  Using data from first and fourth graders, Lamar (1989) found a  significant and positive relationship between music  aptitude and reading and one that approached significance for math ematics. Music aptitude was also high related  with academic achievement in eigh t to 12-year-old students. A positive relationship was found for those high  schools whose bands participated in festival concerts and SAT scores (Johnson, 2000). According to Luiz (2007)  music improves the development of our brains and helps to improve our abilities in other subjects such as reading  and mathematics. From simple sums to complex functions, mathematical concepts form part of the world of music.  Because in this connection, it is possible to establish a positive correlation between participation performance in  music and cognitive development in mathematics. Gar dner’s theory of multiple intelligences incited several  researchers to re-examine the relationships between musical experiences, music learning, and academic  achievement. The majority of studies have found that th e most significant relationships are between music and  mathematics, or to be more specific, between music an d spatial-temporal reasoning (important in mathematical  concepts), and music and performance in reading. With regard to the former relationship, the assumption is based  on a group of studies which explore the effects of lear ning to play the keyboard on spatial-temporal reasoning,  suggesting that mastering a musical instrument helps one to  develop an understanding of Mathematics. According  to Gouzouasis, Guhn & Kisho r (2007), who examined the relationship between particip ation and achievement in  music and achievement in academic courses, based on data from three consecutive British Columbia student  cohorts, it was consistently found that music participation was associated with generally higher academic  achievement across the three cohorts.  Many studies confirmed the effect of music on achievement. Khalil (2005), for example, showed that Mathematics  scores improved for 6th, 7th, and 8th grades students learni ng to play musical instruments in Saudi Arabia.  However, students with musical in telligence and who have inclination for  music, possess thinking skills that differ  from normal students (Hussein, 2008) . Christopher and Memmott (2006) demonstrated that involvement of  students with musical intelligence in various musical instru ctional courses, playing music or even listening to  music would improve their achievement compared with their peers who have similar characteristics but lack such  musical intelligence (Babo, 2004). Further, musical intelligence not only improves musical achievement but would  also have perceived effect on achievement  in many subjects (Gouzouasis, Guhn & Kishor, 2007). Gouzouasis,  Guhm & Kishor (2007) further indicated that time allotted for musical activities helps academic superiority. On the  other hand, listening to music while learning is  a contributing factor to academic superiority basically in artistic  fields that improves thinking to high er and deepened levels (Gur, 2009). Music improv es brain functionality and  intrinsic skills of learners  primarily in literacy and Mathematics (Luiz,  2007). This result would be accounted for  by the outstanding features of music that develop many developmental aspects of children including cognitive  development as proven by the multi-intelligence theory. Reportedly, music improves literacy among children,  provides a repertoire of lyrics and so ngs that imply meaningful educational  content (Omari, Alhirsh, Aldalalah, &  Al-Ababneh, 2010). Finally, there is a  strong relationship between multi-intelligen ces and musical aptitude. This  www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010                                                            ISSN 1918-7211   E-ISSN 1918-722X  152 result received support from Chan (2007) who conducted a study with talented students in Hong Kong. It is  therefore essential to pay greater attention  to musical intelligence of students in classrooms when studying  different subjects including a music class.    4. Cognitive Load Theory and Learning Cognitive Load Th eory (CLT) suggests that the in structional methods should be dynamic based on the cognitive  load that is imposed on th e working memory (Jeroen,  Enboer & Sweller, 2005). Therefore, CLT employs the  connections between the information structures and the human cognitive knowledge to establish an instructional  design to reduce the redundant or irrelevant cognitive load. The reduction of the irrelevant cognitive load  considers the relations between  working memory and long-term memory  (Sweller, Paas & Renkl, 2003). CLT  also has its methods of adapting and respo nding to the needs of individual learners (Van & Ayres, 2005).  Moreover, to effectively utilize the limite d capacity of an individual’s working memory, the CLT offers  principles and methods to design and deliver efficient in structional environments (Paas, Renkl & Sweller, 2003).  The CLT also assumes that the human  processing memory consists of multiple  memory stores including a very  limited working memory and an exte nsive long-term memory. The working  memory is limited in capacity and in  time when dealing with novel information (Mayer &  Moreno, 2003). However, the limitations of the working  memory make it difficult for the learner to understand  multiple information elements simultaneously (Artino,  2008). There are three types  of cognitive load: intrinsic, extraneous, and germ ane  (Deleeuw & Mayer, 2008).  Since, the cognitive load interactivity is intrinsic, then altering  the interactivity by instructional interventions is  not possible. Extraneous cognitive load suggests that an inappropriate instructional design that requires a  considerable amount of working memory resources may impose a heavy cognitive load and thus interferes with  the learning process (Sweller, 2004). However, the extraneous cognitive load is detrimental and can be  controlled by the instructor.  The third type of cognitive load is the germane cognitive load,  which occurs when  working memory resources are engaged with learning. Howev er, the germane cognitive load is also detrimental  and can be controlled by the instructor (Toh, 2005).    Therefore, Paas & Gog  (2006) suggests that allowing the available  working memory resources to be dedicated to  the germane cognitive load as well as, reducing the extraneous cognitive load will significantly help in achieving  effective learning. As a result, recently , the CLT has been employed as a framework for designing instructional  procedures and materials for complex learn ing by reducing extraneous cognitive load and increasing germane  cognitive load (Mayer & Moreno , 2003). Long-term memory is unlimited  and holds a permanent record of  everything the learner has acquired. The long-term me mory can hold all the knowledge which in turn can be  processed as a single element by the working memory because all learning activities require the  working-memory capacity. However, if the requ ired working-memory capacity goes beyond the learner’s limit,  his learning or problem-solving performance will be affect ed, which is known as a cognitive overload (Jun-xia,  2007). On the other hand, a high cognitive load may occur when  the learner’s attention is split (i.e. when a  learner is required to process unnecessary information ) which is known as the split-attention effect (Mayer &  Moreno, 1998). Therefore, reducing the cognitive load of the materials is the only way to maximize the students’  learning because the cognitive load is subcategorized into intrinsic cognitive load and extrinsic cognitive load  (Jun-xia, 2007).    5. Methods & Procedures 5.1 Sample  The population of this study comprised all third grade  primary pupils (2263) enrolled in the ALKORAH  educational directorate in Irbid Governorate in the second semester for the 2008/2009 academic year. There are  37 primary schools in the ALKORAH ed ucational directorate in Irbid Governorate. In order to implement this  study in a naturalistic school setting, existing intact classes were used (O’deh and Malkawi, 1992). Pupils are  from different towns within the  ALKORAH Education Directorate. The popu lation of this study is representative  of almost all the existing so cial classes in Jordan in terms of gender, age, nationa lity and native language. They  are in the age group ranging from 8 to 9 years and of both gender. They are also homogenous in terms of their  nationality, mother tongue (Arabic), exposure to English as a foreign language, and educational system and  cultural background. Pupils in the selected schools – as  well as all ALKORAH Government schools - were from  approximately equivalent socioeconomic  status as defined by the Ministry of Education of Jordan. They are from  the low income group Figure 1. The sample consisted of 405 pupils who studied in third-grade classes and were  randomly selected from six different  primary co-educational schools. According to Gay and Airasian (2003) ‘’all  the individuals in the defined population have equal and independent chance of being selected’’. The six schools  www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010  Published by Canadian Center of Science and Education 153 were also randomly selected from the  primary schools where music was taught  in heterogeneous classes with no  grouping or ability tracking.    5.2 Instruments  The music achievement test: that was administered on the participants of the groups in this study is adapted from  the music theory competency test developed by the researcher. The music theory competency test consisted of 15  recall (remembering) and 15 understand ing items. The duration of the achievement music test was 35 minutes. The  achievement test comes in the following arrangement: The test  is composed of two types of items. The two types of  items are based on multiple-choice items for rememberin g and understanding that are specifically designed to  assess learners’ music achievement. The stability or what is commonly known as test-retest method is considered  the most suitable approach of measuring the reliability that guarantees tests  consistency over time (Tuckman,  1999). Nevertheless, this type of reliability has a major problem as to the pe riod of time that should pass between  the two testing sessions (Gay & Aira sian, 2003). The time that elapses between the two tests was four weeks in  order to measure the reliability of the music achievemen t. The pre-test and post-test given to the sample were the  same to maintain consisten cy. The Music Achievement Test contains 30  items used to evaluate the students’  ability to gain what they understood from the lessons  and the topics covered in the music theory unit by reporting  their learning achievement scores in the test. The reliability of the test questions was calculated using the Cronbach Alpha procedure to calculate th e internal consistency. The Cronbach Alpha  of the test was 0.80, the internal  consistency of the test was 0.93. The  Discrimination Index values ranged from 0.45–0.98 and the difficulty values  ranged from 0.31–0.66. The total score of the music achievement test is 30. Students received a score of “1” for a  correct answer and a score of “0” for an incorrect answer or for the case of no answer on each item.    The Music Intelligence Test: that was administered on the participants of the groups in this study was adapted from  the music intelligence co mpetency scale developed by the researcher. The  Music Intelligence Competency Test  consisted of 10 items. It comes in  the following arrangement: The scale is co mposed of two types of items. The two  types are based on multiple-choice items for rhythm  and tone that are specifically designed to assess learners’  music intelligence. The duration of  the music intelligence test is 20 minut es. The total score of the music  intelligence test is 10. Pupils received a score of “1” for a correct answer and a score of “0” for an incorrect answer  or for the case of no answer on each item. Music Intelligence pupils were divided into two levels based on the  music intelligence test scores : Low  and High. The levels are identified based on Equation (1) below:  Levels of Nnumber  Mark Lowest   - Mark  Highest   Z   ……. Equation (1)  where   Hmin = Highest Mark    Lmin = Lowest Mark    Z        = The difference between a level and the other.    L     = Low,                  H = high  L (range) = [Lmin    - Lmin + Z]  H (range) = (Lmin + Z - Lmin + 2 Z]  Highest Mark = 9,    Lowest Mark = 1,    Number of Levels = 2  4 2 1 - 9   Z   L (range) = [1    - 5]  H (range) = (6    - 9]   The reliability coefficient of th is instrument was computed by  the implementation of Cronbach Alpha  whereby it was 0.85 for the whol e scale. The internal consistency in this instrument was 0.88. The  Discrimination Index values ranged from 0.57–0.85 an d the difficulty values ranged from 0.35–0.56.   Instruments Validity: Validity  of the instruments are important aspects that should be taken into account  when conducting a research. Validity consists of two different aspects that is face and content validity.  According to Gay and Airasian (200) face validity relates to ‘’ the degree to which a test appears to  measure what it claims to measure’’. Face validity was ju dged by a panel of experts in the field of  education and music. Content valid ity refers to the ‘’degree to which a test measures an intended content  www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010                                                            ISSN 1918-7211   E-ISSN 1918-722X  154 area (Gay & Airasian, 200). Content validity of the instru ments in this research was justified by the panel.  The feedback and comments received from the panel of experts were employed to establish the necessary  clarifications, changes, and  modifications before and after piloting the study.    5.3 Research Variables  The present research contains three ty pes of variables (independent, dependent and moderating variables) that are  presented as follows:    o Independent Variable  Music Intelligence Lev els (High, Low)  o Dependent Variable  Post Test Scores (learning)      6. Results The analyses of the collected data were carried out through various statistical techniques such as the ANCOVA.  The data were compiled and analyzed using the Statistical Package for  the Social Science (SPSS 16) for Windows  computer software.  6.1 Measure of Relationship between  Pre-test Scores and Post-test Scores  Table 1 shows the degree of relationship between  the pretest score and post-test score. A correlation coefficient of  R = 0.627** indicates a high positive  relationship between the two variables.  6.2 Testing the two groups' equivalence  The purpose of the pre-experiment al study was to test the assumption that the participants across the groups were  equivalent in their remembering and understanding of th e music theory unit for third grade primary pupils. To  achieve this purpose, a pre-test that measures pre-music theory was  conducted before the beginning of the study.  To examine the equality of treatment mode on the pre-scores, the t-test procedure wa s used. The values p = .463  showed that there is no significant difference in  the pre- test scores in the various groups. This means that the two  groups have the same level of prior knowledge of the  unit on music theory for third grade primary pupils.  6.3 Music Intel ligence Distributions In the final distribution based on th eir scores in the music intelligence test, the samples were divided into two  groups: low music intelligence and high music intelligence of the music intelligence scale based upon a score of 1  mark per music intelligence test on the 10 items. The maximum score of  the music intelligence test is 9. The mean  score is M = 5. The distribution of the group is tabulated in Table 1.    6.4 Frequency Distribution  of Music Intelligence  Figure 2 shows the frequency distribution of  Music Intelligence of the 405 pupils involved in the study. There were  245 pupils and 160 pupils fo r the low and high music intelligence groups respectively.    6.4 Testing Homogeneity    The results from Levene's Test for homogeneity of variance by  comparing the dependent variables across the two.  As p > 0.05, the results show that the groups were homogenous.    6.5 Testing of Normality    A skewness range and kurtosis range present ed values reveal that the variables are normally distributed and have  met the criteria for further analysis.    6.6 Description of the Post-test Scores of Pupils with Different Levels of Music Intelligence (LMI & HMI)  Comparison was made between the two groups – pupils  with low music intelligence level and pupils with high  music intelligence level (LMI & HMI) - based on the mean of the post-test scores using the descriptive procedure  (Table 1).  From Table 2 it can be seen that the post-test score mean ( M = 21.5813) for high mu sic intelligence group is higher  than the post-test score mean ( M = 17.9755) for the  low music intelligence group.  6.7 ANCOVA of the Post-test Scores of Pupils with Different Levels of Music Intelligence (L & H)  In order to reduce the statistical error, the pre-test scores were used as the covariate, and a comparison was made  among pupils with different levels of music in telligence (LMI & HMI) using the ANCOVA procedure (Table 3).  www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010  Published by Canadian Center of Science and Education 155 The values F (1, 402) =  5.243, Mean Square = 95.349, and p = .023  show  a significant difference between the  post-test scores of pupils’ with different level s of music intelligence (LMI & HMI).    7. Discussion Results of the study show that hi gh music intelligence pupils (HMI) attained  significantly higher post-test scores  than Low music intelligence (LMI) pupils. Various studies confirmed a strong relationship between multiple  intelligence theory and academic performance across various subjects (Dobbs, 2001; Afana & Khazendar, 2004).  Hussein (2008) reported that high musical in telligent pupils seem to have better memory. Seemingly, this could be  attributed to the larger mental capacity in the working  memory for cognitive processing. Johnson & Memmott  (2006) demonstrated that American students who attended training classes on music showed significant  improvements in learning Mathematics a nd English. This result is consistent with Gouzouasis, Guhn, & Kishor’s  (2007) who found that music trainees in Britain sh owed improvements in their other academic achievements.  Luiz’s (2007) study showed that  learning music improved the students’ achievements in Mathematics. Gur (2009)  reported that classical music positively impr oved the cognitive process of Turkish pupils in performing  drawing-tasks. Babo’s  (2004) study found a positive  relationship between middle schoo l students’ participation in  music activities and academic ach ievements in language, literacy, and arts. However, Al-Darris (2008) found no  effect of musical intelligence on learning  among primary students with learning difficulties. Literature reviews on  musical intelligence was not able to  throw any light on the apparent positive correlation of musical intelligence or  even the blending of music in improving learning. Chan’s (2007) study reported the positive correlation of musical  intelligence to students’ attitude in music. The working memory refers to an information processing system that  provides temporary storage and manipulation of th e information necessary for complex cognitive tasks in music  theory learning. The working memory requires sim ultaneous storage and processing of information and is  therefore very important for processing musi cal theory by the pupils. In other words, pupils with a poor working  memory capacity may have delayed learning of music th eory. From this study, pupils with high music intelligence  seem to have a larger capacity in their working memory  and hence could process and realign information better  and that helps maintain information retention and storage in the long-term memory.    Conclusion Apparently, high music intelligence pup ils have larger capacity in their working memory to accommodate and  integrate incoming information. Hence the performan ces of the high music intelligence pupils are better. The  researchers were not able justify for such a phenomenon and  strongly recommend that more studies be conducted  to determine other instructional designs that might  help the “disadvantaged” low music intelligence pupils.  References Afanan, I., & Akzndar, N. (2004). Multi intelligence levels among basic education students stage in Gaza and their  relationship to achievement in ma thematics and orientation towards.  Humanists Studies Journal, 12 (2), 323-366.    Al-Ahdal, A. (2009). The efficiency of activities and approaches based on the multi-intelligence theory in  improving the achievement of Geography and maintaining  the learning effect among first year secondary students  in Jeddah Province.  Journal of Science Education and Human, 1  (1), 191-242.  Aldalalah, O. M. (2003).  Educational software effects in learning musical concepts for class rooms teachers,  students and their attitudes toward them.  Master Thesis (Unpublished), Yarmouk University, Jordan.  Al-Drais, S. (2008). Multiple intelligences assist pr imary students who have academic difficulties . Master Thesis  (Unpublished), Kuwait University.    Artino, A. R. (2008). Cognitive  load theory and the role of learner experience: An abbreviated review for  educational practitioners.  AACE Journal, 16(4), 425-439.  Babo, D. G. (2004). The relationship between instru mental music participation and standardized assessment  achievement of middle school students.  Research Studies in Music Education, 22  (1), 14-27.  Chan, W. D. (2007). Musical aptitude and multiple intelligences among Chinese gifted students in Hong Kong: Do  self-perceptions predict abilities?.  Personality and Individual Differences, 43 (6), 1604–1615.  Chew, D. (2005).  Computer-assisted instruction for music  theory education: Rhythm in music. PhD Thesis  (Unpublished), Californ ia state university.    Christopher, J. M., & Memmott,  J. E. (2006). Examination of relationships between participation in school music  programs of differing quality and standardized test results.  Journal of Research in Music Education, 54 (4),  293-307.  www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010                                                            ISSN 1918-7211   E-ISSN 1918-722X  156 Deleeuw, K. E., & Mayer, R. E. (2008). A comparison of three measu res of cognitive load: Evidence for separable  measures of intrinsic, extraneous, and germane load.  Journal of Educational Psychology, 100(1), 223-234.  Dobbs, V. R. (2001).  The relationship between implementation of the multiple intelligences theory in the  curriculum and student academic  achievement at a seventh – grade at-risk alternative school. Ph.D Thesis  (Unpublished), Yarmouk University, Jordan.      Gardner, H. (1983). Frames of mind: The theo ry of multiple intelligences. New York:    Basic Books.  Gardner, H. (2000). Project Ero: Ne lson Goodman’s legacy in arts education. Journal of Aesthetics and Art  Criticism,  58 (3), 245-249.  Gardner, H. (2003).  Multiple intelligences  after twenty years. Paper presented at the American Educational  Research Association, Chicago, Illinois.  Gardner, H. (2004). Audiences for th e theory of multiple intelligence.  Teacher College Record . 106 (1), 212-220.  Columbia University.  Gay, L. R., & Airasian, P. (2000).  Educational research: Competencies for  analysis and application (6th ed.).  Upper Saddle River, NJ: Merrill.  Gay, L. R.,  & Airasian, P. W. (2003).  Educational research: Competencies fo r analysis and application (7th ed):  Prentice Hall.  Gnam, K. (2005).  The impact of the use of collective guidance skills training courses to improve the level of  academic achievement and Locus of control . Master Thesis (Unpublished, Jordanian  University, Jordan.  Gouzouasis, P., Guhn, M., & Kishor, N. (2007). The name  assigned to the document by the author. This field may  also contain sub-titles, series names,  and report numbers. the predictive relationship between achievement and  participation in music and achievement in core grade 12 academic subjects.  Music Education Research, 9 (1),  81-92.   Gur, C. (2009). Is there any positive  effect of classical music on cognitive cont ent of drawings of six year-old  children in Turkey?.  European Journal of Scientific Research,  36 (2), 251-259.  Hussein, Z. M. (2008).  Pattern of Thinking Music Students.  PhD Thesis (Unpublished), Gulf University.  Jeroen.    J., Enboer, V., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments  and future directions.  Educational Psychology Review, 17 (2), 147-177.    Johnson, D. A. (2000). The developm ent of music aptitude and effects on scholastic     achievement of 8 to 12 year  olds. Ph.D Thesis (Unpub lished), Kentucky: University of   Louisville.  Jun-Xia, G. (2007). Action research: The application of cognitive load theory to reading teaching.  Sino-US English  Teaching, 4 (4), 19-23.  Khalil, A. (2005).  Science  of creativity [Online] Available: http://www.adabfalasteeni.org/artical.php. (Accessed 3  April 2009).  Lamar, H. B. (1989).  An examination of congruency of musical  aptitude scores and mathematics and reading  achievement scores of elementary children . Ph.D Thesis (Unpublished), University of Southern Mississippi.  Luiz, C. S. (2007).  The learning of music as a means to improve mathematical skills.  International Symposium on  Performance Science Published by  the AECAll rights reserved.  Mayer, R. E., & Moreno, R. (1998a). A split-attention effect  in multimedia learning: evidence for dual processing  system in working memory.  Journal of educational psychology, 90 (2) 312- 320.  Mayer, R. E., & Moreno, R. (2003). Nin e ways to reduce cognitive load in multimedia learning.  Educational  Psychologist, 38 (1), 43–52.  Nosir, S. (1980).  Music theory. Egypt: Dar Alsabeel.    Omari, M., Alhersh, A., Aldalalah, O.,  & Ababneh, Z. (2010). Effect drill and practice pattern in    mathematics  among first-grade students, compared with music anthems, and traditional way.  Journal of Science Education and  Human (Umm al-Qura University). 21  (1). (in pres)  Otoum, A. (2004).  Cognitive psychology . Amman: Dar Almaserh.    Paas, F. & Gog, T. (2006). Optimising worked example in struction: Different ways to increase germane cognitive  load.  Learning and Instruction, 16 (2), 87-91.  www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010  Published by Canadian Center of Science and Education 157 Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: recent developments.  Educational Psychologist, 38 (1), 1-4.  Qtami, U. (2005).  Educational psychology and thinking . Jordan: Dar Hanen.  Smith, K. H. (2009). The effect of computer-assisted  instruction and field independence on the development of  rhythm sight-reading skills of middl e school instrumental students. International Journal of Music Education, 27   (1), 59-68.  Sweller, J. (2004). Instructional design  consequences of an analogy between evolution by natural selection and  human cognitive architecture.  Instructional Science, 32(1), 9–31.  Sweller, J., Paas, F., & Renkl, A. (2003). Cognitiv e load theory and instructional design: recent developments.  Educational Psychologist, 38  (1), 1-4  Toh, C. S. (2005). Recent advances in cognitive load theory research: implication for instructional designers.  Malaysian Online of Journal  of Instructional Technology (mojtt), 2 (3), 106-117.  Van, J., & Ayres, P. (2005). Research on  cognitive load theory and its design implications for E-learning.  Educational Technology, Research and Development, 53 (3), 5-13.  Table 1. Distribution  of Music Intelligence Group  Levels of Musical IQ Frequency Percent Low 245  60.5  High 160 39.5  Total 405  100.0  Table 2. Post-test Scores of Pupils with Different Levels of Music Intelligence (LMI & HMI)  Music Intelligence  Mean  Std. Deviation N  Low  17.9755 5.18899  245  High  21.5813 5.24191  160  Total  19.4000 5.49464  405    Table 3. ANCOVA of the Post-test Scores of Pupils with  Different Levels of Music Intelligence (LMI & HMI)  Source  Type III Sum of  Squares  df  Mean Square F  Sig.  Corrected Model  4886.354a   2  2443.177  134.342  .000  Intercept  689.686  1  689.686  37.924  .000  pre-test  3627.951  1  3627.951  199.489  .000  Music Intelligence  95.349  1  95.349  5.243  .023  Error  7310.846  402  18.186      Total  164623.000  405        Corrected Total  12197.200  404          www.ccsenet.org/ijps            International Journal of Psychological Studies          Vol. 2, No. 2; December 2010                                                            ISSN 1918-7211   E-ISSN 1918-722X  158   Figure 1. Educational Director ates in Irbid Governorate      Figure 2. Frequency Distributi on of Music Intelligence   

Use Quizgecko on...
Browser
Browser