Embriología Médica Langman 14ª Edición - PDF
Document Details
Uploaded by SpeedyCalcium4150
Universidad Andina del Cusco
Tags
Summary
Este documento describe el periodo embrionario, un periodo crucial en el desarrollo humano, entre la tercera y la octava semana, donde las capas germinales ectodermo, mesodermo y endodermo forman tejidos y órganos específicos. El texto analiza los mecanismos moleculares de la inducción neural y la neurulación, destacando la formación del tubo neural.
Full Transcript
ERRNVPHGLFRVRUJ El periodo embrionario o periodo de organogénesis tiene lugar entre la tercera y la octava semanas del desarrollo, y es el periodo en el cual las tres capas germinales, ectodermo, mesodermo y endodermo, dan origen a distintos tejidos y órganos específicos. Al final del periodo embr...
ERRNVPHGLFRVRUJ El periodo embrionario o periodo de organogénesis tiene lugar entre la tercera y la octava semanas del desarrollo, y es el periodo en el cual las tres capas germinales, ectodermo, mesodermo y endodermo, dan origen a distintos tejidos y órganos específicos. Al final del periodo embrionario los principales sistemas se han establecido, lo que determina que las características externas principales del organismo puedan reconocerse al final del segundo mes. El periodo de la tercera a la octava semanas también se cita como aquel en que se induce la mayor parte de los defectos congénitos; antes de este periodo cualquier daño al embrión da origen a su muerte y a un aborto espontáneo. Si bien este principio es válido para muchas de las agresiones al desarrollo normal, es importante destacar que la formación de los ejes corporales comienza a finales de la primera semana, durante la etapa de blastocisto (véase Capítulo 3, p.44) y que una gran variedad de defectos al nacimiento pueden atribuirse a anomalías de la señalización celular durante la determinación de los ejes cráneo- caudal e izquierda-derecha. Además, no todos los embriones se pierden si sufren un daño ambiental o genético durante este periodo crítico. DERIVADOS DE LA CAPA GERMINAL ECTODÉRMICA Al inicio de la tercera semana del desarrollo la capa germinal ectodérmica tiene la configuración de un disco que es más ancho en su extremo cefálico que el caudal (Fig. 6-1). El desarrollo de la notocorda y el mesodermo precordal hace que el ectodermo suprayacente se engrose y constituya la placa neural (Fig. 6-2 A, B). Las células de la placa forman el neuroectodermo y su inducción representa el evento inicial en el proceso de la neurulación. Regulación molecular de la inducción neural La inducción de la señalización mediada por el factor de crecimiento de fibroblastos (FGF), junto con la inhibición de la actividad de la proteína morfogenética ósea 4 (BMP4), un miembro de la familia del factor de crecimiento transformante beta (TGF-β) responsable de la ventralización del ERRNVPHGLFRVRUJ 127 ERRNVPHGLFRVRUJ ectodermo y el mesodermo, induce la placa neural. La señalización de FGF probablemente promueve una vía neural mediante un mecanismo desconocido, mientras evita la transcripción del gen BMP y regula la expresión de cordina y noggina, que inhiben la acción de BMP. En presencia de BMP4, que invade el mesodermo y ectodermo del embrión en gastrulación, se induce al ectodermo a formar epidermis; y el mesodermo forma mesodermo de placa intermedia y lateral. Si se proteje al ectodermo de la exposición a BMP, su “estado por omisión” es convertirse en tejido neural. La secreción de otras tres moléculas: noggina, cordina y folistatina, inactiva a BMP. Estas tres proteínas están presentes en el organizador (nodo primitivo), en la notocorda y en el mesodermo precordal y neuralizan al ectodermo inhibiendo a BMP y ocasionando que el mesodermo se convierta en notocorda y mesodermo paraaxial (dorsaliza al mesodermo); sin embargo, estos inductores neurológicos inducen sólo los tipos de tejido del cerebro anterior y medio. La inducción de las estructuras de placa neural caudales (cerebro posterior y médula espinal) depende de dos proteínas secretadas, WNT3a y FGF. Además, el ácido retinóico (AR) podría participar en la organización del eje cráneo-caudal debido a que puede causar redefinición de los segmentos craneales en otros más cuadales al regular la expresión de los genes de homeosecuencia (p. 89). Neurulación La neurulación es el proceso por el cual la placa neural forma el tubo neural. Uno de los eventos clave de este proceso consiste en alargar la placa neural y el eje corporal por el fenómeno de extensión convergente (o conversión y extensión) en el que existe un desplazamiento lateral a medial de las células en el plano del ectodermo y el mesodermo. El proceso esta regulado por señales que se desplazan a través de la vía de la polaridad celular planar (v. el Cap. 1, p.10) y es fundamental para el desarrollo del tubo neural. Conforme la placa neural se alarga, sus bordes laterales se elevan para formar los pliegues neurales y la región medial hundida constituye el surco neural (Fig. 6.2). De manera gradual, los pliegues neurales se acercan uno a otro sobre la línea media, sitio en que se fusionan (Fig. 6-3 A, B). La fusión inicia en la región cervical (quinta somita) y procede en dirección cráneo-caudal (Fig. 6-3 C, D). Como consecuencia se forma el tubo neural. En tanto se completa la fusión, los extremos cefálico y caudal del tubo neural se comunican con la cavidad amniótica a través de los neuroporos anterior (craneal) y posterior (caudal), respectivamente (Figs. 6-3 C, D y 6-4 A). El cierre del neuroporo anterior ocurre cerca del día 25 (etapa de 18 a 20 somitas), en tanto que el neuroporo posterior se cierra el día 28 (etapa de 25 somitas) (Fig. 6-4 B). Con esto se completa la neurulación y el sistema nervioso central queda representado por una estructura tubular cerrada con una porción caudal estrecha, la médula espinal, y una porción cefálica mucho más ancha en la que se aprecia la vesícula cerebral (v. el Cap. 18). ERRNVPHGLFRVRUJ 128 ERRNVPHGLFRVRUJ FIGURA 6-1 A. Vista dorsal de un embrión presomítico de 16 días. Pueden observarse la línea primitiva y el nodo primitivo. B. Vista dorsal de un embrión presomítico de 18 días. El embrión tiene aspecto de pera, con su región cefálica un poco más ancha que el extremo caudal. C. Vista dorsal de un embrión humano de 18 días. Obsérvese el nodo primitivo y, extendiéndose en dirección ventral a partir de él, la notocorda. El saco vitelino muestra un aspecto ligeramente moteado. La longitud del embrión es de 1.25 mm y el ancho es de 0.68 mm. ERRNVPHGLFRVRUJ 129 ERRNVPHGLFRVRUJ FIGURA 6-2 A. Vista dorsal de un embrión presomitico tardío (alrededor de 19 días). El amnios se ha eliminado y la placa neural se observa con claridad. B. Vista dorsal de un embrión humano a los 19 días. C. Vista dorsal de un embrión de aproximadamente 20 días, se observan los somites y la formación del surco y los pliegues neurales. D. Vista dorsal de un embrión humano a los 20 días. ERRNVPHGLFRVRUJ 130 ERRNVPHGLFRVRUJ FIGURA 6-3 A. Vista dorsal de un embrión alrededor del día 22. A cada lado del tubo neural se observan siete somitas bien delimitados. B. Vista dorsal de un embrión humano a los 22 días. C. Vista dorsal de un embrión alrededor del día 23. Obsérvense los esbozos pericárdicos a ambos lados de la línea media en la región cefálica del embrión. D. Vista dorsal de un embrión humano de 23 días. ERRNVPHGLFRVRUJ 131 ERRNVPHGLFRVRUJ FIGURA 6-4 A. Vista lateral de un embrión de 14 somitas (alrededor de 25 días). Obsérvese el abultamiento de la región pericárdica, así como el primero y segundo arcos faríngeos. B. Vista lateral izquierda de un embrión de 25 somitas, con 28 días de edad de gestación. Se distinguen los tres primeros arcos faríngeos, así como las placodas del cristalino y la ótica. Células de las crestas neurales Al tiempo que los pliegues neurales se elevan y fusionan, las células en el borde lateral o cresta del neuroectodermo comienzan a separarse de las células vecinas. Esta población celular, las células de la cresta neural (CCN; Figs. 6.5 y 6.6), experimenta una transición epitelio-mesénquima mientras abandona, por migración activa y desplazamiento, el neuroectodermo para ingresar al mesodermo subyacente. El término mesodermo hace referencia a las células que derivan del epiblasto y de los tejidos extraembrionarios, mientras que mesénquima se refiere al tejido conectivo embrionario de organización laxa, independientemente de su origen. Una vez que ocurre el cierre del tubo neural, las células de las crestas neurales que provienen de la región del tronco migran a través de dos rutas: (1) una dorsal, a través de la dermis, mediante la cual ingresan al ectodermo a través de los orificios en la lámina basal para formar melanocitos en la piel y los folículos pilosos, y (2) una vía ventral por la mitad anterior de cada somita, para convertirse en ganglios sensitivos, neuronas simpáticas y entéricas, células de Schwann y células de la médula suprarrenal (Fig. 6-5). Las CCN también crean los pliegues neurales craneales y migran de ellos, alejándose del tubo neural antes del cierre de esta región (Fig. 6-6). Estas células contribuyen a la formación del esqueleto craneofacial y también de neuronas de los ganglios craneales, células de la glía, melanocitos y células de otros tipos (Cuadro 6-1, p. 78). Las CCN tienen una importancia a tal grado fundamental y contribuyen a tantos órganos y tejidos que en ocasiones se les denomina la cuarta capa germinal. También están implicadas en por lo ERRNVPHGLFRVRUJ 132 ERRNVPHGLFRVRUJ menos una tercera parte de todos los defectos congénitos y en muchos tipos de cáncer, como melanomas, neuroblastomas y otros. Desde la perspectiva evolutiva, estas células aparecieron al inicio del desarrollo de los vertebrados y formaron la base de las características de estos, entre ellas los ganglios sensitivos y las estructuras craneofaciales que incrementaron el éxito de los vertebrados al permitirles perfeccionar su estilo de vida predador. Regulación molecular de la inducción de la cresta neural La inducción de las CCN requiere una interacción en el borde en que se unen la placa neural y el ectodermo superficial (o de superficie) (epidermis; Fig. 6-5 A). En esta región limítrofe existen concentraciones intermedias de BMP, si se les compara con aquéllas a las que se encuentran expuestas las células de la placa neural, muy bajas, y las células del ectodermo superficial, muy altas. Las proteínas NOG y CHRD regulan estas concentraciones al actuar como inhibidoras de la BMP. Las concentraciones intermedias de BMP, junto con el FGF y las proteínas WNT, inducen al gen PAX3 y a otros factores de transcripción que “determinan” el borde de la placa neural (Fig. 6-5 A). A su vez, estos factores de transcripción inducen una segunda ola de factores de transcripción, entre ellos SNAIL y FOXD3, que especifican a las células de la cresta neural, así como SLUG, que promueve la migración de las células de la cresta desde el neuroectodermo. Así, el destino de toda la capa germinal ectodérmica depende de las concentraciones de las BMP. Las concentraciones altas inducen la formación de la epidermis; los niveles intermedios, en el borde de la placa neural y el ectodermo superficial, inducen a la cresta neural; las concentraciones muy bajas determinan la constitución del ectodermo neural. Las BMP, otros miembros de la familia del TGF-β, y los FGF regulan la migración de las CCN, su proliferación y diferenciación, y las concentraciones anómalas de estas proteínas se han vinculado con defectos de la cresta neural en la región craneofacial de animales de laboratorio (v. el Cap. 17). ERRNVPHGLFRVRUJ 133 ERRNVPHGLFRVRUJ FIGURA 6-5 Formación y migración de las células de la cresta neural en la médula espinal. A, B. Las células de la cresta se forman en los bordes de los pliegues neurales y no migran de esa región sino hasta que termina el cierre el tubo neural. C. Tras su migración, esas células contribuyen a la formación de un grupo heterogéneo de estructuras, entre ellas los ganglios de la raíz dorsal, los ganglios de la cadena simpática, la médula suprarrenal y otros tejidos (Cuadro 6-1, p. 78). D. Microfotografía electrónica de barrido en que es posible observar células de la cresta en el extremo superior del tubo neural cerrado, en su migración para alejarse del área. ERRNVPHGLFRVRUJ 134 ERRNVPHGLFRVRUJ FIGURA 6-6 Esquema que muestra las vías migratorias de las células de la cresta neural en la región de la cabeza. Estas células abandonan las crestas de los pliegues neurales antes del cierre del tubo neural, y migran para crear estructuras en la cara y el cuello (área azul). 1 a 6, arcos faríngeos; V, VII, IX y X, placodas epifaríngeas. Cuadro 6-1 Derivados de la cresta neural Tejido conectivo y huesos de la cara y el cráneo Ganglios de los nervios craneales (v. el Cuadro 18-3, p. 344) Células C de la glándula tiroides Tabique troncoconal del corazón Odontoblastos Dermis de la cara y el cuello Ganglios espinales (de la raíz dorsal) Ganglios de la cadena simpática y preaórticos Ganglios parasimpáticos del tubo digestivo Médula suprarrenal Células de Schwann Células de la glía Meninges (prosencéfalo) Melanocitos Células de músculo liso para los vasos sanguíneos de la cara y el prosencéfalo En el periodo en que el tubo neural se cierra dos engrosamientos ectodérmicos bilaterales, las placodas óticas y las placodas del cristalino, se hacen visibles en la región cefálica del embrión (Fig. 6-4 B). Al continuar el desarrollo, las placodas óticas se invaginan y forman las vesículas óticas, que se convertirán en las estructuras necesarias para la audición y el mantenimiento del equilibrio (v. el Cap. 19). Casi al mismo tiempo aparecen las placodas del cristalino. Estas placodas también se invaginan y durante la quinta semana constituyen el cristalino (v. el Cap. 20). En términos generales, la capa germinal ectodérmica da origen a los órganos ERRNVPHGLFRVRUJ 135 ERRNVPHGLFRVRUJ y las estructuras que mantienen el contacto con el mundo exterior: El sistema nervioso central El sistema nervioso periférico El epitelio sensitivo del oído, la nariz y el ojo La epidermis, incluidos el pelo y las uñas Además, da origen a las estructuras siguientes: Las glándulas subcutáneas Las glándulas mamarias La glándula hipófisis El esmalte de los dientes Correlaciones clínicas Defectos del cierre del tubo neural Los defectos del cierre del tubo neural (DTN) se generan cuando el cierre del tubo neural falla. Si el tubo neural no se cierra en su región craneal, la mayor parte del cerebro no se forma y el defecto se denomina anencefalia (Fig. 6-7 A). Si hay anomalías del cierre en cualquier punto desde la región cervical hasta la caudal, el defecto se denomina entonces espina bífida (Fig. 6-7 B, C). El sitio en que se ubica con más frecuencia la espina bífida es la región lumbosacra (Fig. 6-7 C), lo que sugiere que el proceso de cierre en esta región pudiera ser más susceptible a factores genéticos, ambientales o ambos. La anencefalia es un defecto letal y en la mayor parte de los casos se diagnostica antes del nacimiento, por lo que se interrumpe la gestación. Los niños con espina bífida pierden cierto grado de función neurológica, lo que depende del nivel de la lesión en la médula espinal y su gravedad. La presencia de estos tipos de defecto es común y varía en distintas regiones. Por ejemplo, antes de la fortificación de la harina con ácido fólico en Estados Unidos, su incidencia general era de 1 en 1 000 nacimientos, pero en Carolina del Norte y del Sur, la frecuencia era de 1 en 500 nacimientos. En ciertas regiones de China las tasas alcanzaban incluso 1 en 200 nacimientos. Al parecer distintos factores genéticos y ambientales explican esta variación. Las causas genéticas de los DTN siguen sin identificarse, si bien en fecha reciente se encontraron mutaciones de los genes VANGL, que se relacionaron con casos con distribución familiar. Los genes VANGL forman parte de la vía de la polaridad celular planar (v. el Cap. 1, p. 10), que regula la extensión convergente, proceso por el que se elonga el tubo neural y que posibilita su cierre normal. De manera independiente a la región o el país en que ocurren los DTN, las tasas se han reducido en grado significativo tras la administración de ácido fólico. Por ejemplo, las tasas en Estados Unidos son en la actualidad próximas a 1 por cada 1 500 nacimientos. Se calcula que de 50 a 70% de los DTN puede prevenirse si las mujeres ingieren 400 µg de ácido fólico por día (la dosis que contiene la mayor parte de los multivitamínicos) desde 3 meses antes de la concepción, y continúan su uso durante todo el embarazo. Puesto que 50% de los embarazos no se planea, se recomienda que todas las mujeres en edad reproductiva tomen a diario un multivitamínico que contenga 400 µg de ácido fólico. Si una mujer tiene un hijo con un DTN o si existe antecedente de este tipo de defectos en su familia, se recomienda que tome 400 µg de ácido fólico por día y luego 4 000 µg por día desde 1 mes antes de intentar la concepción y siga usándolo durante los primeros 3 meses del embarazo. ERRNVPHGLFRVRUJ 136 ERRNVPHGLFRVRUJ FIGURA 6-7 Ejemplos de defectos del cierre del tubo neural, que ocurren cuando su proceso de cierre falla. A. Anencefalia. B, C. Productos con espina bífida. La mayor parte de los defectos se localiza en la región lumbosacra. Con el ácido fólico, una vitamina, es posible evitar entre 50 y 70% de todos los DTN. ERRNVPHGLFRVRUJ 137 ERRNVPHGLFRVRUJ DERIVADOS DE LA CAPA GERMINAL MESODÉRMICA Al inicio las células de la capa germinal mesodérmica constituyen una lámina delgada de tejido laxo a cada lado de la línea media (Fig. 6-8). Sin embargo, cerca del día 17 las células en proximidad a la línea media proliferan y constituyen una placa engrosada de tejido conocida como mesodermo paraxial (Fig. 6-8). En un sitio lateral a éste, la capa mesodérmica se conserva delgada y se conoce como placa lateral. Con la aparición y la coalescencia de cavidades intercelulares en la placa lateral, este tejido se divide en dos hojas (Fig. 6-8 B, C): Una capa que tiene continuidad con el mesodermo que cubre el amnios, conocida como capa mesodérmica somática o parietal Una capa que muestra continuidad con el mesodermo que cubre el saco vitelino, que se conoce como capa mesodérmica esplácnica o visceral (Figs. 6-8 C, D y 6-9) Juntas, estas capas revisten una cavidad recién formada, la cavidad intraembrionaria, que tiene comunicación con la cavidad extraembrionaria a cada lado del embrión. El mesodermo intermedio conecta al mesodermo paraxial con el de la placa lateral (Figs. 6-8 B, D y 6-9). Mesodermo paraxial Al inicio de la tercera semana el mesodermo paraxial comienza a organizarse en segmentos. Estos elementos, conocidos como somitómeros, aparecen en primer lugar en la región cefálica del embrión, y su formación procede en dirección cefalocaudal. Cada somitómero está constituido por células mesodérmicas dispuestas en espirales concéntricas en torno al centro de la estructura. En la región de la cabeza, los somitómeros se forman en relación con la segmentación de la placa neural para constituir neurómeras, y contribuyen al mesénquima de la cabeza (v. el Cap. 17). Desde la región occipital hasta la caudal, los somitómeros se organizan en somitas. El primer par de somitas aparece en la región occipital del embrión, cerca del día 20 del desarrollo (Fig. 6-2 C, D). A partir de ahí surgen somitas nuevos en secuencia cráneo-caudal (Fig. 6-10) a una velocidad aproximada de tres pares por día hasta el final de la quinta semana, en que existen de 42 a 44 pares (Figs. 6-4 B y 6-10). Existen cuatro pares occipitales, ocho cervicales, 12 torácicos, cinco lumbares, cinco sacros, y entre 8 y 10 coccígeos. El primer par occipital y los últimos cinco a siete coccígeos desaparecen más adelante, en tanto el resto de los somitas constituye el esqueleto axial (v. el Cap. 10). Debido a que los somitas aparecen con una periodicidad específica, la edad de un embrión puede calcularse en forma precisa ERRNVPHGLFRVRUJ 138 ERRNVPHGLFRVRUJ durante este periodo temprano mediante su conteo (Cuadro 6-2). FIGURA 6-8 Cortes transversales que muestran el desarrollo de la capa germinal mesodérmica. A. Día 17. B. Día 19. C. Día 20. D. Día 21. La lámina mesodérmica delgada da origen al mesodermo paraxial (futuros somitas), el mesodermo intermedio (futuras unidades excretoras) y la placa lateral, que se divide en las capas mesodérmicas parietal y visceral, que revisten la cavidad intraembrionaria. ERRNVPHGLFRVRUJ 139 ERRNVPHGLFRVRUJ FIGURA 6-9 Corte transversal al nivel de los somitas y el tubo neural, que muestra la organización del mesodermo paraxial en somitas, así como del mesodermo intermedio y de la placa lateral. ERRNVPHGLFRVRUJ 140 ERRNVPHGLFRVRUJ FIGURA 6-10 Vista dorsal de los somitas que se están organizando a lo largo del tubo neural (se eliminó parte del ectodermo). Los somitas se forman a partir de mesodermo paraxial presomítico no segmentado en la región caudal y desarrollan segmentación en regiones más craneales. Regulación molecular de la formación de somitas La formación de los somitas segmentados a partir del mesodermo (paraxial) presomítico no segmentado (Fig. 6-10) depende del reloj de segmentación que establece mediante la expresión cíclica de ciertos genes. Entre los genes cíclicos se encuentran miembros de las vías de señalización de las proteínas NOTCH y WNT, que se expresan con un patrón oscilante en el mesodermo presomítico. De este modo, la proteína NOTCH se acumula en el mesodermo presomítico destinado a formar el siguiente somita, y luego disminuye al tiempo que ésta se establece. El incremento de NOTCH activa a otros genes de formación de patrones segmentarios, que establecen el somita. Los límites de cada somita están regulados por el ácido retinoico (AR) y una combinación de FGF8 y WNT3a. El AR se expresa en concentraciones altas en la región cra-neal y pierde concentración en dirección caudal, en tanto la combinación de las proteínas FGF8 y WNT3a tiene mayor concentración caudal y menor en la región craneal. Esta expresión superpuesta de gradientes controla el reloj de la segmentación y la actividad de la vía de NOTCH. Cuadro 6-2 Número de somitas correlacionado con la edad aproximada en días Edad aproximada (días) Número de somitas 20 1–4 21 4–7 22 7–10 23 10–13 24 13–17 25 17–20 26 20–23 27 23–26 28 26–29 30 34–35 Diferenciación de los somitas Cuando los somitas se forman por vez primera, a partir del mesodermo ERRNVPHGLFRVRUJ 141 ERRNVPHGLFRVRUJ presomítico, integran una esfera de células mesodérmicas (similares a fibroblastos). Estas células experimentan entonces un proceso de epitelización y adoptan una configuración en “dona” en torno a un lumen pequeño (Fig. 6-11). Al inicio de la cuarta semana las células en las paredes ventral y medial del somita pierden sus características epiteliales, vuelven a adquirir cualidades mesenquimatosas (similares a fibroblastos) y cambian de posición para circundar el tubo neural y la notocorda. De manera colectiva estas células constituyen el esclerotoma, que se diferenciará en vértebras y costillas (v. el Cap. 10). Las células en los bordes dorsomedial y ventrolateral de la región superior del somita forman a las precursoras de las células musculares, en tanto las células ubicadas entre los dos grupos dan origen al dermatoma (Fig. 6-11 B). Las células de los dos grupos de precursores musculares adquieren una vez más características mesenquimatosas y migran por debajo del dermatoma para crear el dermomiotoma (Fig. 6-11 C, D). Además, células del borde ventrolateral migran hacia la capa parietal del mesodermo de la placa lateral para formar la mayor parte de la musculatura de la pared del cuerpo (músculos oblicuos externo e interno, y transverso del abdomen) y casi todos los músculos de las extremidades (Fig. 6-11 B; v. el Cap. 11). Las células del dermomiotoma, por último, forman la dermis para la piel de la espalda y los músculos de la misma región, la pared del cuerpo (músculos intercostales) y algunos de las extremidades (v. el Cap. 11). Cada miotoma y dermatoma conserva la inervación derivada de su segmento de origen, de manera independiente al sitio al que migren sus células. Así, cada somita forma su propio esclerotoma (el componente tendinoso, cartilaginoso y óseo), su propio miotoma (que provee el componente muscular segmentario) y su propio dermatoma, que integra la dermis de la espalda. Cada miotoma y dermatoma cuenta también con su propio componente nervioso segmentario. Regulación molecular de la diferenciación de somitas Las señales para la diferenciación de los somitas provienen de las estructuras circundantes, entre ellas la notocorda, el tubo neural, la epidermis y el mesodermo de la placa lateral (Fig. 6-12). Los productos proteicos secretados de los genes Noggina y Sonic hedgehog (SHH), sintetizados por la notocorda y el piso de la placa del tubo neural, inducen a la porción ventromedial del somita a convertirse en el esclerotoma. Una vez inducidas, las células del esclerotoma expresan el factor de transcripción PAX1, que desencadena la cascada de genes formadores de cartílago y hueso para la integración vertebral. La expresión de PAX3, regulada por las proteínas WNT del tubo neural dorsal, marca la región del dermomiotoma del somita. Las proteínas WNT del tubo neural dorsal también tienen como blanco la porción dorsomedial del somita, a la que inducen para iniciar la expresión del gen específico del músculo MYF5 y para generar los precursores del músculo primaxial. La interacción de la proteína inhibidora BMP4 (y quizá FGF) del mesodermo de la placa lateral y los productos activadores WNT de la epidermis controlan a la porción dorsolateral del somita ERRNVPHGLFRVRUJ 142 ERRNVPHGLFRVRUJ para expresar otro gen específico del músculo, MYOD, y formar a los precursores de los músculos primaxiales y abaxiales. La porción media del epitelio dorsal del somita es inducida por la neurotrofina 3 (NT-3), secretada por la región dorsal del tubo neural, para formar la dermis. FIGURA 6-11 Etapas en el desarrollo de un somita. A. Las células mesodérmicas que experimentaron epitelización se disponen en torno a una cavidad pequeña. B. Las células procedentes de las paredes ventral y medial del somita pierden su disposición epitelial y migran alrededor del tubo neural y la notocorda. En conjunto, estas células constituyen el esclerotoma, que dará origen a las vértebras y las costillas. Mientras tanto, las células ubicadas en las regiones dorsomedial y ventrolateral se diferencian en precursoras musculares, y las que permanecen en sitios intermedios constituyen el dermatoma. C. Ambos grupos de células precursoras musculares adquieren características mesenquimatosas y migran por debajo del dermatoma para constituir el dermomiotoma (B, C), al tiempo que algunas células del grupo ventrolateral también migran hacia la capa parietal del mesodermo de la placa lateral. D. De ERRNVPHGLFRVRUJ 143 ERRNVPHGLFRVRUJ manera eventual, las células del dermatoma también desarrollan características mesenquimatosas y migran por debajo del ectodermo para constituir la dermis de la espalda (D). FIGURA 6-12 Patrones de expresión de los genes que regulan la diferenciación de los somitas. Las proteínas sonic hedgehog (SHH) y noggina, secretadas por la notocorda y la placa basal del tubo neural, hacen que la porción ventral del somita forme el esclerotoma y exprese PAX1, que a su vez controla la condrogénesis y la formación de las vértebras. Las proteínas WNT del tubo neural dorsal activan a PAX3, que delimita el dermomiotoma. Las proteínas WNT también inducen a la porción dorsomedial del somita a diferenciarse en células precursoras musculares y expresen el gen MYF5, específico del músculo. La porción dorsal intermedia del somita es activada para convertirse en dermis por la acción de la neurotropina 3 (NT-3), que se expresa en el tubo neural dorsal. Células precursoras musculares adicionales se forman a partir de la porción dorsolateral del somita bajo la influencia combinada de las proteínas activadoras WNT y la proteína inhibidora morfogenética ósea 4 (BMP4), y juntas activan la expresión de MyoD. Mesodermo intermedio El mesodermo intermedio, que conecta temporalmente al mesodermo paraxial con la placa lateral (Figs. 6-8 D y 6-9), se diferencia en las estructuras urogenitales. En las regiones cervical y torácica superior da origen a cúmulos de células segmentarias (los futuros nefrotomas), mientras que en sentido caudal forma una masa no segmentada de tejido, el cordón nefrógeno. Las unidades excretoras del sistema urinario y las gónadas se originan de este mesodermo intermedio, que muestra segmentación sólo en algunas regiones (v. el Cap. 16). Mesodermo de la placa lateral El mesodermo de la placa lateral se divide en capas parietal (somática) y visceral (esplácnica) que revisten la cavidad intraembrionaria y rodean los órganos, respectivamente (Figs. 6-8 C, D, 6-9 y 6-13 A). El mesodermo de la capa parietal, en unión con el ectodermo suprayacente, crea los pliegues de la ERRNVPHGLFRVRUJ 144 ERRNVPHGLFRVRUJ pared lateral del cuerpo (Fig. 6-13 A). Estos pliegues junto con los de la cabeza (cefálicos) y los de la cola (caudales) cierran la pared ventral del cuerpo. La capa parietal del mesodermo de la placa lateral forma entonces la dermis de la piel de la pared del cuerpo y las extremidades, los huesos y el tejido conectivo de las extremidades, así como el esternón. Además, las células precursoras del esclerotoma y del músculo migran hacia el interior de la capa parietal del mesodermo de la placa lateral para constituir los cartílagos costales, los músculos de las extremidades y la mayor parte de los músculos de la pared del cuerpo (v. el Cap. 11). La capa visceral del mesodermo de la placa lateral junto con el endodermo embrionario integra la pared del tubo intestinal (Fig. 6-13 B). Las células mesodérmicas de la capa parietal que rodea la cavidad extraembrionaria forman membranas delgadas, las membranas mesoteliales o membranas serosas, que cubrirán las cavidades peritoneal, pleural y pericárdica, y secretarán líquido seroso (Fig. 6-13 B). Las células mesodérmicas de la capa visceral dan origen a una membrana serosa delgada en torno a cada órgano (v. el Cap. 7). FIGURA 6-13 A. Corte transversal de un embrión de 21 días en la región del mesonefros, que muestra las capas parietal y visceral del mesodermo. Las cavidades intraembrionarias se comunican con la cavidad extraembrionaria (cavidad coriónica). B. Corte al final de la cuarta semana. El mesodermo parietal y el ectodermo suprayacente forman la pared ventral y lateral del cuerpo. Obsérvese la membrana peritoneal (serosa). ERRNVPHGLFRVRUJ 145 ERRNVPHGLFRVRUJ FIGURA 6-14 Los vasos sanguíneos se integran por dos mecanismos: vasculogénesis (A-C), en que los vasos sanguíneos surgen a partir de islotes sanguíneos, y angiogénesis (D), en que vasos nuevos brotan a partir de los ya existentes. Durante la vasculogénesis, el factor 2 de crecimiento de los fibroblastos (FGF2) se une a su receptor en subpoblaciones de células mesodérmicas y las induce para producir hemangioblastos. Luego, bajo la influencia del factor de crecimiento endotelial vascular (VEGF), que actúa por medio de dos receptores distintos, estas células se transforman en endoteliales y coalescen para constituir vasos sanguíneos. La angiogénesis también está regulada por el VEGF, que estimula la proliferación de las células endoteliales en los sitios en que brotarán vasos nuevos a partir de los ya existentes. El modelamiento y la estabilización finales de la vasculatura dependen del PDGF y el TGF- β. Sangre y vasos sanguíneos Las células hemáticas y los vasos sanguíneos también se originan a partir del mesodermo. Los vasos sanguíneos se forman mediante dos mecanismos: vasculogénesis, en que los vasos surgen a partir de islotes sanguíneos (Fig. 6- ERRNVPHGLFRVRUJ 146 ERRNVPHGLFRVRUJ 14), y angiogénesis, que implica la gemación a partir de vasos ya existentes. Los primeros islotes sanguíneos aparecen en el mesodermo rodeando la pared del saco vitelino a las 3 semanas de desarrollo, y poco después en el mesodermo de la placa lateral y otras regiones (Fig. 6-15). Estos islotes derivan de células mesodérmicas que son inducidas para producir hemangioblastos, un precursor común en la formación de vasos sanguíneos y células hemáticas. Si bien las primeras células hemáticas se originan en islotes sanguíneos en la pared del saco vitelino, esta población es transitoria. Las células troncales hematopoyéticas definitivas derivan del mesodermo que circunda la aorta en un sitio cercano al riñón mesonéfrico en desarrollo y que se denomina región aortogonadomesonéfrica. Estas células colonizan el hígado, que se convierte en el órgano hematopoyético principal del embrión y el feto desde cerca del segundo hasta el séptimo mes del desarrollo. Las células troncales provenientes del hígado colonizan la médula ósea, el tejido hematopoyético definitivo, durante el séptimo mes de la gestación; a partir de entonces, el hígado pierde su función hematopoyética. FIGURA 6-15 Formación de los vasos sanguíneos extraembrionarios en las vellosidades, el corion, el pedículo de fijación y la pared del saco vitelino en un embrión presomítico de alrededor de 19 días. Regulación molecular de la formación de los vasos sanguíneos El FGF2 induce el desarrollo de los islotes sanguíneos a partir de células competentes del mesodermo que dan origen a los hemangioblastos. Estos últimos son estimulados por el factor de crecimiento endotelial vascu lar (vascular endothelial growth factor, VEGF), secretado por células ERRNVPHGLFRVRUJ 147 ERRNVPHGLFRVRUJ mesodérmicas circundantes, para dar origen a hematocitos y vasos sanguíneos. La señal para la expresión del VEGF pudiera implicar a HOXB5, que genera regulación positiva del receptor FLK1 del VEGF (Fig. 6-14). Los hemangioblastos ubicados en el centro de los islotes sanguíneos producen células troncales hematopoyéticas, las precursoras de todas las células de la sangre, en tanto los hemangioblastos periféricos se diferencian en angioblastos, precursores de los vasos sanguíneos. Estos angioblastos proliferan y de manera eventual son inducidos por el VEGF, que secretan las células del mesodermo circundante, para dar origen a células endoteliales (Fig. 6-14). Ese mismo factor regula luego la coalescencia de las células endoteliales para constituir los primeros vasos sanguíneos primitivos. Una vez que el proceso de vasculogénesis establece un lecho vascular primario, que incluye a la aorta dorsal y las venas cardinales, se generan vasos adicionales mediante angiogénesis, es decir, por gemación de vasos nuevos (Fig. 6-14). Este proceso también es mediado por el VEGF, que estimula la proliferación de células endoteliales en los puntos en que deben brotar vasos nuevos. La maduración y el modelado de la vasculatura están regulados por otros factores de crecimiento, entre ellos el factor de crecimiento deri vado de plaquetas (platelet-derived growth factor, PDGF) y el TGF-β, hasta que se establece el patrón del adulto. La determinación de arterias, venas y sistema linfático ocurre poco después de la inducción de los angioblastos. SSH secretada por la notocorda induce al mesénquima circundante a expresar VEGF. A su vez, la expresión de éste induce la vía de NOTCH (una vía de receptores transmembrana) que determina el desarrollo de las arterias por medio de la expresión del gen de la efrina B2 (EFNB2; las efrinas son ligandos que se unen a los receptores de efrinas [Eph] en una vía que incluye la señalización mediada por cinasas de tirosina). Además de determinar las arterias, la expresión del EFNB2 su-prime el destino de las células venosas. La señalización por la vía de NOTCH también ejerce regulación positiva sobre la expresión de EPHB4, un gen específico de las venas, pero se desconoce el modo en que este gen con otros determinan el desarrollo venoso. Por otra parte, PROX1, un factor de transcripción que contiene un homeodominio, parece ser el gen maestro en la diferenciación de los vasos linfáticos. El crecimiento de los vasos sigue patrones, no es aleatorio, y parece implicar la participación de factores guía similares a los utilizados por el sistema nervioso. Correlaciones clínicas Hemangiomas capilares Los hemangiomas capilares son agrupaciones de vasos capilares con una densidad extrema anómala, y corresponden a los tumores más comunes en recién nacidos: se observan en cerca de 10% de todos los nacimientos. Pueden aparecer en cualquier sitio, pero a menudo se asocian con estructuras craneofaciales (Fig. 6-16 A). Las lesiones faciales pueden ser localizadas o difusas, ERRNVPHGLFRVRUJ 148 ERRNVPHGLFRVRUJ siendo estas últimas las que causan más complicaciones secundarias, como ulceración, cicatrización y obstrucción de la vía aérea (hemangiomas mandibulares; Fig. 6-16 B). El factor de crecimiento 2 insulinoide muestra expresión intensa en estas lesiones y pudiera promover el crecimiento anómalo de los vasos. No se ha confirmado si el VEGF interviene en el proceso. FIGURA 6-16 A. Hemangioma capilar localizado. B. Hemangioma capilar difuso que afecta la cavidad oral. DERIVADOS DE LA CAPA GERMINAL ENDODÉRMICA El tubo digestivo es el sistema orgánico principal derivado de la capa germinal endodérmica. Esta capa germinal cubre la superficie ventral del embrión y constituye el techo del saco vitelino (Fig. 6-17A). Sin embargo, con el desarrollo y crecimiento de las vesículas cerebrales el disco embrionario empieza a sobresalir hacia la cavidad amniótica. En ese momento la elongación del tubo neural lleva al embrión a flexionarse para adoptar la posición fetal, al tiempo que las regiones (pliegues) cefálica y caudal se desplazan en dirección ventral (Fig. 6-17). De manera simultánea se forman los dos pliegues de la pared lateral del cuerpo, que de igual modo se movilizan en esa dirección para cerrar la pared ventral del cuerpo (Fig. 6-18). Al tiempo que los pliegues de la cabeza, la cola y los dos laterales avanzan en dirección ventral llevan consigo al amnios, de modo tal que el embrión queda ubicado dentro de la cavidad amniótica (Figs. 6-17 y 6- 18). La pared ventral del cuerpo se cierra por completo, excepto en la región umbilical, sitio en que permanecen unidos el pedículo de fijación y el saco vitelino (Figs. 6-17 y 6-19). La consecuencia de la falta de cierre de los pliegues laterales del cuerpo son los defectos de la pared ventral del cuerpo (v. el Cap. 7). Producto del crecimiento cefalocaudal y del cierre de los pliegues de la pared ERRNVPHGLFRVRUJ 149 ERRNVPHGLFRVRUJ lateral del cuerpo, una porción cada vez mayor de la capa germinal endodérmica se incorpora al cuerpo del embrión para conformar el tubo intestinal. Éste se divide en tres regiones: intestino anterior, intestino medio e intestino posterior (Fig. 6-17 C). El intestino medio se comunica con el saco vitelino mediante un pedículo grueso llamado conducto (del saco) vitelino (Fig. 6-17 D). Al inicio su conducto es amplio, pero al continuar el crecimiento del embrión se vuelve estrecho y mucho más largo (Figs. 6-17 D y 6-18 B). En su extremo cefálico, el intestino anterior está limitado temporalmente por una membrana ectoendodérmica denominada membrana orofaríngea (Fig. 6- 17 A, C). Esta membrana separa al estomodeo, la cavidad bucal primitiva derivada del ectodermo, de la faringe, una parte del intestino anterior que se forma a partir del endodermo. Durante la cuarta semana la membrana orofaríngea se rompe, con lo que queda establecida la comunicación entre la cavidad bucal y el intestino primitivo (Fig. 6-17 D). El intestino posterior también termina de manera temporal en una membrana ectoendodérmica, la membrana cloacal (Fig. 6-17 C). Esta membrana separa la parte superior del conducto anal, que deriva del endodermo, y su porción inferior, llamada proctodeo, que se forma a partir de una invaginación cubierta por endodermo. La membrana se rompe durante la séptima semana para crear el orificio del ano. FIGURA 6-17 Cortes sagitales a la altura de la línea media en embriones en distintas fases de desarrollo para mostrar el plegamiento cefalocaudal y su efecto sobre la posición de la cavidad cubierta ERRNVPHGLFRVRUJ 150 ERRNVPHGLFRVRUJ por endodermo. A. 17 días. B. 22 días. C. 24 días. D. 28 días. Flechas, pliegues cefálico y caudal. FIGURA 6-18 Cortes transversales de embriones en distintas fases del desarrollo para mostrar el efecto del plegamiento lateral sobre la cavidad revestida por el endodermo. A. Inicia el plegamiento. B. Sección transversal a la altura del intestino medio para mostrar la conexión que existe entre el intestino y el saco vitelino. C. Corte realizado justo por debajo del intestino medio para mostrar la pared abdominal ventral cerrada y el intestino suspendido de la pared abdominal dorsal por su mesenterio. Flechas, pliegues laterales. FIGURA 6-19 Cortes sagitales de embriones en que se muestran los derivados de la capa germinal endodérmica. A. Bolsas faríngeas, revestimiento epitelial de yemas pulmonares y tráquea, hígado, vesícula biliar y páncreas. B. La vejiga urinaria deriva de la cloaca y en esta fase de desarrollo se comunica con el alantoides. Otro resultado importante del crecimiento cefalocaudal y del plegamiento lateral es la incorporación parcial del alantoides al cuerpo del embrión, en el que forma la cloaca (Fig. 6-19 A). La región distal del alantoides permanece en el pedículo de fijación. Para la quinta semana, el conducto del saco vitelino, el ERRNVPHGLFRVRUJ 151 ERRNVPHGLFRVRUJ alantoides y los vasos umbilicales quedan limitados a la región umbilical (Fig. 6- 19). La función del saco vitelino es incierta. Pudiera actuar como órgano de la nutrición durante las fases más tempranas del desarrollo, antes de la formación de los vasos sanguíneos. También aporta algunas de las primeras células de la sangre, no obstante esta función es fugaz. Una de sus funciones principales es albergar a las células germinales que residen en su pared posterior y más tarde migran hacia las gónadas para formar a los precursores de óvulos y espermatozoides (Cap. 16). De este modo, la capa germinal endodérmica genera al inicio el revestimiento epitelial del intestino primitivo y las porciones intraembrionarias del alantoides y del conducto vitelino (Fig. 6-19 A). Al proseguir el desarrollo el endodermo da origen a las estructuras siguientes: Cubierta epitelial del aparato respiratorio Parénquima de las glándulas tiroides y paratiroides, hígado y páncreas (v. los Caps. 15 y 17) Estroma reticular de las amígdalas y el timo Revestimiento epitelial de la vejiga urinaria y la uretra (v. el Cap. 16) Revestimiento epitelial de la cavidad timpánica y el conducto auditivo (v. el Cap. 19) PATRONES DE FORMACIÓN DEL EJE ANTEROPOSTERIOR: REGULACIÓN POR LOS GENES DE HOMOSECUENCIA Los genes de homosecuencia (o genes homeóticos) se conocen por su homeodominio, un motivo de unión al ADN, la caja homeótica. Codifican factores de transcripción que activan cascadas genéticas reguladoras de fenómenos como la segmentación y la formación del eje. Muchos genes de homeosecuencia están reunidos en cúmulos homeóticos, no obstante otros genes también contienen el homeodominio. Un grupo importante de genes que especifica el eje cráneo-caudal en la Drosophila es el complejo de genes de homosecuencia Hom-C. Estos genes, que contienen genes de homeosecuencia de las clases Antennapedia y Bithorax, están organizados en un solo cromosoma como unidad funcional. Así, los genes que determinan estructuras más craneales se distribuyen en el extremo 3ʹ del ADN y se expresan en primer lugar, mientras que los genes que controlan el desarrollo caudal se expresan en forma secuencial y se localizan en mayor cercanía al extremo 5ʹ (Fig. 6-20). Estos genes muestran conservación genética en el humano, que cuenta con cuatro copias –HOXA, HOXB, HOXC y HOXD– que se disponen y expresan como los de la Drosophila. De este modo, cada cúmulo se ubica en un cromosoma independiente, y los genes de cada grupo se numeran del 1 al 13 ERRNVPHGLFRVRUJ 152 ERRNVPHGLFRVRUJ (Fig. 6-20). Los genes que tienen el mismo número pero pertenecen a cúmulos distintos forman un grupo parálogo, como HOXA4, HOXB4, HOXC4 y HOXD4. El patrón de expresión de estos genes, junto con la evidencia de experimentos de tipo knock-out, en los que se crean ratones que carecen de uno o más de estos genes, respalda la hipótesis de que participan en la definición de patrones cráneo-caudal de los derivados de las tres capas germinales. Por ejemplo, en los somitas y las vértebras existe un patrón de expresión superpuesto del código HOX, en que los genes localizados en mayor cercanía al extremo 3’ en cada cúmulo se expresan en los segmentos más craneales y regulan su desarrollo (Fig. 6-20). ERRNVPHGLFRVRUJ 153 ERRNVPHGLFRVRUJ FIGURA 6-20 Dibujo que muestra la disposición de los genes de homeosecuencia de las clases Antennapedia (ANT-C) y Bithorax (BX-C) en la Drosophila, junto con los genes homólogos conservados de las mismas clases en el humano. A lo largo de la evolución esos genes se han duplicado, de tal modo que los humanos cuentan con cuatro copias dispuestas en cuatro cromosomas distintos. La homología entre los genes de la Drosophila y los propios de cada cúmulo de genes humanos se indica utilizando colores. Los genes que tienen el mismo número, pero se ubican en distintos cromosomas, constituyen un grupo parálogo. La expresión de los genes sigue una dirección cráneo-caudal, desde el extremo 3ʹ (que se expresa antes) hasta el extremo 5ʹ (que se expresa más tarde), como se indica en los diagramas de los embriones de mosca y ratón. El ácido retinoico (AR) modula la expresión de estos genes, siendo los ubicados en el extremo 3ʹ más susceptibles al compuesto. ASPECTO EXTERNO DURANTE EL SEGUNDO MES Al final de la cuarta semana, cuando el embrión tiene alrededor de 28 somitas, las principales características externas son los somitas y los arcos faríngeos (Fig. 6-21). Por ello, la edad del embrión suele expresarse en función de los somitas (Cuadro 6-2, p. 82). Puesto que el conteo de los somitas se hace más difícil durante el segundo mes del desarrollo, la edad se relaciona entonces con la longitud cefalocaudal (LCC) y se expresa en milímetros (Cuadro 6-3). La LCC corresponde a la medida entre el vértex del cráneo y el punto medio entre los ápices de las nalgas. FIGURA 6-21 A. Vista lateral de un embrión humano de 28 somitas. Las características externas principales son los arcos faríngeos y los somitas. Obsérvense las protuberancias pericárdica y del hígado. B. Mismo embrión fotografiado desde otro ángulo, para mostrar el tamaño del saco vitelino. Durante el segundo mes el aspecto exterior del embrión se modifica por el incrmento del tamaño de su cabeza y la formación de extremidades, cara, oídos, nariz y ojos. Al inicio de la quinta semana aparecen las yemas en forma de paleta de las extremidades superiores e inferiores (Fig. 6-22). Las primeras se localizan en posición dorsal a la protuberancia pericárdica, desde el nivel del cuarto somita cervical hasta los primeros somitas torácicos, lo que explica que ERRNVPHGLFRVRUJ 154 ERRNVPHGLFRVRUJ sean inervadas por el plexo braquial. Las yemas de las extremidades inferiores aparecen poco después, justo por debajo del punto de anclaje del cordón umbilical, a la altura de los somitas lumbares y sacros superiores. Al continuar el crecimiento, los extremos distales de las yemas se aplanan y una constricción perimetral las separa del segmento proximal de configuración más cilíndrica (Fig. 6-23). Pronto aparecen en la región distal de las yemas cuatro surcos radiales que separan cinco zonas un poco más voluminosas, lo que anuncia la formación de los dedos (Fig. 6-23). Cuadro 6-3 Longitud cefalocaudal correlacionada con la edad aproximada en semanas Longitud cefalocaudal (mm) Edad aproximada (semanas) 5–8 5 10–14 6 17–22 7 28–30 8 Esos surcos, conocidos como radios, aparecen en primer lugar en la región de la mano y poco después en los pies, ya que las extremidades superiores tienen un desarrollo un poco más avanzado que las inferiores. Mientras se forman los dedos de las manos y los pies (Fig. 6-24), una segunda constricción divide la región proximal de las yemas en dos segmentos y pueden reconocerse así las tres partes que caracterizan a las extremidades del adulto (Fig. 6-25). ERRNVPHGLFRVRUJ 155 ERRNVPHGLFRVRUJ FIGURA 6-22 Embrión humano (longitud cefalocaudal: 9.8 mm; quinta semana) (29.9X). Las extremidades anteriores tienen forma de paleta. ERRNVPHGLFRVRUJ 156 ERRNVPHGLFRVRUJ FIGURA 6-23 Embrión humano (longitud cefalocaudal, 13 mm; sexta semana) en que se aprecia el saco vitelino dentro de la cavidad coriónica. ERRNVPHGLFRVRUJ 157 ERRNVPHGLFRVRUJ FIGURA 6-24 Embrión humano (longitud cefalocaudal: 21 mm; séptima semana) (4X). Se abrió el saco coriónico para mostrar al embrión dentro de su saco amniótico. Se aprecian con claridad el saco vitelino, el cordón umbilical y los vasos en la placa coriónica de la placenta. Obsérvese el tamaño de la cabeza en comparación con el del resto del cuerpo. ERRNVPHGLFRVRUJ 158 ERRNVPHGLFRVRUJ FIGURA 6-25 Embrión humano (longitud cefalocaudal: 25 mm; séptima a octava semanas). Se abrieron el corion y el amnios. Obsérvese el tamaño de la cabeza, el ojo, el pabellón auricular, los dedos de los pies bien formados, el abultamiento del cordón umbilical generado por las asas intestinales, y el saco vitelino dentro de la cavidad coriónica. Correlaciones clínicas Malformaciones congénitas Casi todos los órganos y sistemas principales se forman entre la tercera y la octava semanas. Esta etapa, crítica para un desarrollo normal, se denomina por ende periodo de organogénesis o embriogénesis. Poblaciones de células troncales están estableciendo los primordios de cada órgano, y estas interacciones son sensibles a factores genéticos y ambientales. Es así que en el periodo comprendido entre la tercera y la octava semanas se originan muchos defectos congénitos estructurales macroscópicos. Por desgracia la madre pudiera no reconocer que está embarazada durante este periodo crítico, en particular durante la tercera y la cuarta semanas, en que existe aún más vulnerabilidad. En consecuencia, pudiera no evitar factores nocivos, como el humo del tabaco y el alcohol. El conocimiento relativo a los eventos principales de la organogénesis es relevante para identificar el momento en que se indujo un defecto específico y, al mismo tiempo, identificar las causas posibles de la malformación (v. el Cap. 9). ERRNVPHGLFRVRUJ 159 ERRNVPHGLFRVRUJ RESUMEN El periodo embrionario, que se verifica de la tercera a la octava semanas del desarrollo, es aquél en que cada una de las tres capas germinales, ectodermo, mesodermo y endodermo, dan origen a sus propios tejidos y sistemas orgánicos. Como resultado de la formación de los órganos se establecen las características principales del cuerpo (Cuadro 6-4, p. 94). La capa germinal ectodérmica genera los órganos y las estructuras que mantienen el contacto con el mundo exterior: Sistema nervioso central Sistema nervioso periférico Epitelio sensorial de los oídos, la nariz y los ojos Piel, incluidos el cabello y las uñas Glándulas hipófisis, mamarias y sudoríparas, y esmalte dental La inducción de la placa neural es regulada por la inactivación del factor de crecimiento BMP4. En la región craneal la inactivación depende de NOG, CHRD y folistatina, secretadas en el nodo, la notocorda y el mesodermo precordal. La inactivación de BMP4 en las regiones del rombencéfalo o encéfalo posterior y la médula espinal está a cargo de WNT3a y FGF. De no existir inactivación, la BMP4 hace que el ectodermo se transforme en epidermis y el mesodermo se ventralice para formar el mesodermo intermedio y de la placa lateral. ERRNVPHGLFRVRUJ 160 ERRNVPHGLFRVRUJ Componentes importantes de la placa germinal mesodérmica son el mesodermo paraxial, el intermedio y el de la placa lateral. El mesodermo paraxial forma los somitómeros, que dan origen al mesénquima de la cabeza y se organizan en somitas en los segmentos occipitales y caudales. Los somitas dan origen al miotoma (tejido muscular), el esclerotoma (cartílago y hueso) y el dermatoma (dermis), todos ellos tejidos de sostén del cuerpo. Las señales para la diferenciación de los somitas derivan de las estructuras circundantes, entre ellas notocorda, tubo neural y epidermis. La notocorda y la placa basal del tubo neural secretan SHH, que induce al esclerotoma. Se diferencian dos regiones que dan origen a los músculos. Una de ellas es inducida en la región dorsomedial del somita por las proteínas WNT secretadas por la porción dorsal del tubo neural. La otra es inducida en la región ventrolateral del somita por una combinación de BMP4 y FGF, secretados por ERRNVPHGLFRVRUJ 161 ERRNVPHGLFRVRUJ el mesodermo de la placa lateral, y por las proteínas WNT, secretadas por el ectodermo suprayacente. La mitad dorsal del somita se convierte en la dermis gracias a la acción de NT-3, que secreta el tubo neural dorsal (Fig. 6.12). El mesodermo también da origen al sistema vascular (esto es, corazón, arterias, venas, vasos linfáticos, y todas las células de la sangre y linfáticas). Además, constituye el sistema urogenital: riñones, gónadas y sus conductos (mas no a la vejiga). Por último el bazo y la corteza de las glándulas suprarrenales son derivados del mesodermo. La capa germinal endodérmica provee el revestimiento epitelial del tubo gastrointestinal, el aparato respiratorio y la vejiga urinaria. También constituye el parénquima de las glándulas tiroides y paratiroides, el hígado y el páncreas. Por último, la capa germinal endodérmica da origen a la cubierta epitelial de la cavidad timpánica y el conducto auditivo. La determinación de patrones cráneo-caudales del eje embrionario está bajo el control de los genes de homeosecuencia. Estos genes, que muestran conservación genética desde la Drosophila, están dispuestos en cuatro cúmulos –HOXA, HOXB, HOXC y HOXD– ubicados en cuatro cromosomas diferentes. Los genes cercanos al extremo 3ʹ del cromosoma controlan el desarrollo de las estructuras más craneales; los genes cercanos al extremo 5ʹ regulan la diferenciación de las estructuras más caudales. Juntos, regulan la determinación de patrones en el rombencéfalo y el eje embrionario (Fig. 6-20). Como consecuencia de la formación de los sistemas orgánicos y del rápido crecimiento del sistema nervioso central, el disco embrionario, en un inicio plano, comienza a elongarse y a desarrollar sus regiones cefálica y caudal (pliegues), que obligan al embrión a curvarse hasta adoptar la posición fetal. Se forman también los dos pliegues de la pared lateral del cuerpo, que crecen en dirección ventral y cierran la pared anterior del cuerpo. Este crecimiento y plegamiento tiran del amnios en dirección ventral, de modo que el embrión queda alojado dentro de la cavidad amniótica (Fig. 6-17). La comunicación con el saco vitelino y la placenta se conserva a través del conducto vitelino y del cordón umbilical, respectivamente. Problemas a resolver 1. Describa el proceso de neurulación e incluya las definiciones de pliegues neurales, tubo neural y cierre del tubo neural. ¿Dónde inicia el cierre del tubo neural y cómo avanza? ¿En qué semana de la gestación se completa el proceso? ¿Qué sucede si el tubo neural no cierra en su región craneal? ¿Y en la caudal? ¿Qué son los defectos del tubo neural y cómo puede evitarse la mayor parte de ellos? 2. ¿Cuál es el origen embrionario de las células de la cresta neural? ¿Derivan del ectodermo, del mesodermo o del endodermo? ¿A la formación de qué estructuras contribuyen? ¿Qué proteína es la responsable principal de su ERRNVPHGLFRVRUJ 162 ERRNVPHGLFRVRUJ inducción? 3. ¿A partir de qué capa germinal se forman los somitas? ¿Cómo están organizados y qué tejidos forman? 4. ¿Cuáles son los dos mecanismos por los que se generan los vasos sanguíneos? ¿Qué factor de crecimiento desempeña un papel decisivo en la fase temprana de formación de las células hemáticas y los vasos sanguíneos? ¿Qué tipo de tumor deriva de la proliferación anómala de los capilares sanguíneos? 5. ¿Cuáles son las subdivisiones principales del tubo intestinal y qué capa germinal les da origen? ¿Qué estructura forma una conexión entre el intestino medio y el saco vitelino? ¿Qué membranas cierran el tubo intestinal en la región craneal y la caudal? 6. ¿Por qué es el periodo comprendido entre la tercera y la octava semanas de la embriogénesis tan importante para el desarrollo normal y por qué hay en él susceptibilidad a la inducción de defectos estructurales? ERRNVPHGLFRVRUJ 163