Ingeniería Logística Capítulo 1 PDF

Summary

This document is a chapter on engineering logistics, covering the activities associated with the distribution, maintenance, and continued support of systems. The chapter also touches upon the concept of integrated logistics support, focusing on the entire life cycle, from planning to design and implementation.

Full Transcript

9 1 Introducción 10 INGENIERÍA LOGÍSTICA Esta es una monografía sobre «ingeniería logística», es decir, describe actividades de ingeniería asociadas con la distribución, el mantenimiento y apoyo continuado de los sistemas descritos en la pri...

9 1 Introducción 10 INGENIERÍA LOGÍSTICA Esta es una monografía sobre «ingeniería logística», es decir, describe actividades de ingeniería asociadas con la distribución, el mantenimiento y apoyo continuado de los sistemas descritos en la primera monografía de esta serie, Ingeniería de Sistemas. Históricamente, el concepto de «logística» tiene su origen en varias fuentes. En el sector de defensa, la logística está relacionada con un enfoque de ciclo de vida para el diseño y desarrollo de un sistema, de manera que éste pueda recibir apoyo rápido y económico a lo largo de su ciclo de vida programado. Se ha desarrollado el concepto de «apoyo logístico integrado» (Integrated Logistics Support, ILS), en el que se incluyen actividades de planificación, diseño, suministro y producción, mantenimiento y apoyo, retirada progresiva y reciclaje de materiales, y las funciones de gestión asociadas con cada actividad. El énfasis se centra en los «sistemas» y en el desarrollo de una infraestructura que les proporcione el apoyo suficiente a los sistemas operativos. La citada infraestructura tendrá en cuenta los niveles de mantenimiento y las funciones a desempeñar en cada nivel, necesidades de personal y formación, apoyo de suministros (repuestos/ recambios y requisitos adicionales de inventario), equipos de prueba y apoyo, instalaciones, requisitos de transporte y manipulación, recursos informáticos y datos de mantenimiento. En el sector comercial, la logística se aborda más bien desde una perspectiva de «negocios», estando orientada hacia el transporte y distribución de «productos consumibles», a diferencia de los sistemas. 11 Introducción Incluye actividades como la obtención y flujo de materiales no reparables, transporte y manipulación, distribución, almacenamiento y ventas de productos. Uno de sus objetivos consiste en desarrollar y gestionar el flujo entero de materiales, desde el suministro inicial (identificación de materias primas), por medio de la producción, el almacenamiento y la distribución final de productos destinados al consumo. Las consideraciones de ciclo de vida y las actividades relacionadas con el mantenimiento y apoyo de producto no suelen incluirse. Cuando la logística se plantea con una perspectiva general integrada, las actividades asociadas con el flujo de material de productos consumibles en el sector comercial también pueden aplicarse a los sistemas del sector de defensa. El diseño, desarrollo, producción, distribución y apoyo continuado de sistemas requiere que se tengan en cuenta los requisitos de flujo de materiales para artículos consumibles, así como las prácticas comerciales necesarias para apoyar estos artículos en el contexto de los objetivos del sistema en cuestión. Desde el punto de vista del autor, la logística constituye una amalgama de las dos facetas mencionadas, en un nivel integrado de apoyo mutuo. El objetivo de esta monografía es describir la logística desde un enfoque integrado de ciclo de vida, subrayando las actividades de ingeniería asociadas con la planificación inicial, la definición de requisitos, diseño y desarrollo, prueba y valoración, producción y distribución de sistemas. 1.1. Entorno actual La complejidad de los sistemas de hoy está creciendo debido a la incorporación de nuevas tecnologías en un entorno que cambia constantemente; el ciclo de vida de muchos sistemas actualmente en uso se está prolongando debido a la limitación de recursos y a la 12 INGENIERÍA LOGÍSTICA incapacidad de obtener sustitutos adecuados; gran número de estos sistemas no satisfacen las expectativas del usuario en términos de su funcionamiento y apoyo; parece que la base industrial se está debilitando (es decir, el número de suministradores de equipos, software, etc, está disminuyendo); y la competencia a nivel internacional está creciendo. Estos y otros factores relacionados provocan importantes retos en el entorno actual. Cuando abordamos la situación actual desde una perspectiva económica, encontramos con frecuencia que existe una falta de «visibilidad total del coste», lo cual se ve en el efecto «iceberg» ilustrado en la Figura 1. Para muchos sistemas, los costes de diseño y desarrollo son relativamente conocidos; sin embargo, los costes asociados con la operación y apoyo del sistema están en cierto modo ocultos. Esencialmente, la comunidad del diseño ha sabido tratar con gran éxito los aspectos de coste a corto plazo, pero no se ha ocupado suficientemente de los efectos a largo plazo. Al mismo tiempo, la 13 Introducción experiencia indica que gran parte del coste del ciclo de vida de un determinado sistema se atribuye a las actividades operativas y de apoyo en las fases de utilización de un programa (por ejemplo, hasta un 75% del coste total puede atribuirse al mantenimiento del sistema y a las actividades de apoyo). Adicionalmente, cuando se analizan las relaciones causa-efecto, nos encontramos con que una proporción importante del coste del ciclo de vida de un determinado sistema se debe a decisiones tomadas durante las fases de planificación preliminar y diseño conceptual. Las decisiones relativas a los requisitos operativos (por ejemplo, el número y ubicación de los emplazamientos previstos), políticas de mantenimiento y apoyo (dos escalones frente a tres niveles de mantenimiento), asignaciones de actividades manuales y/o automatizadas, esquemas de empaquetado de equipo y software, técnicas de diagnóstico, selección de materiales, conceptos del nivel de reparación, etc., tienen una repercusión importante en el coste total del ciclo de vida. Refiriéndonos a la Figura 1, gran parte de los costes ocultos de utilización se deben a las actividades de mantenimiento y apoyo, y los requisitos de estas actividades se generan básicamente como resultado del diseño inicial y de las decisiones iniciales de gestión. De este modo, mientras se intentan reducir los costes iniciales de un proyecto, muchas de las decisiones tomadas en esta fase pueden resultar catastróficas a largo plazo. En otras palabras, la oportunidad de reducir los costes totales es mayor durante las primeras fases del desarrollo del sistema. La Figura 2 ilustra las relaciones entre los costes a lo largo del ciclo de vida. La situación se ve agravada en muchos casos por la falta de un «método disciplinado» en la adquisición de nuevos sistemas y/o modificación o rediseño de la ingeniería de los sistemas existentes. Los ingenieros de diseño, en general, no tratan todos los elementos de un sistema como una entidad única (lo cual significa incluir la infraestructura de apoyo, esencial para asegurar que el sistema cumpla la misión prevista). Además, existe una tendencia a «diseñar-ahora- 14 INGENIERÍA LOGÍSTICA arreglar-después» utilizando el método abajo-arriba; es decir, se diseñan los elementos principales del sistema ahora, y luego se incorporarán los cambios y se considerarán los aspectos de apoyo. A lo largo de los años, la logística ha sido considerada como posterior al diseño, y las actividades relacionadas con ella no han gozado de gran popularidad, sino que se han implementado en las fases de utilización y la importancia que se les ha concedido por parte de la dirección no ha tenido el nivel adecuado. La experiencia ha demostrado que los métodos de gestión prevalentes en muchos casos han sido perjudiciales. La Figura 3 muestra los efectos aproximados de una planificación preliminar del ciclo de vida, a diferencia de los programas que contemplan los aspectos de soportabilidad en una fase posterior. Por tanto, es preciso que las prioridades futuras para el diseño y desarrollo del sistema sean: (1) mejorar los métodos de definición los requisitos de sistemas, de acuerdo con las verdaderas necesidades del usuario, al principio de la fase del diseño conceptual, y considerar 15 Introducción las prestaciones, la efectividad y todas las características esenciales de los sistemas de manera integrada (incluyendo los requisitos logísticos específicos); (2) considerar el sistema en su totalidad, sus principales componentes orientados a la misión y sus elementos de apoyo desde una perspectiva de ciclo de vida; (3) organizar e integrar las actividades necesarias relacionadas con la logística en la tarea principal del diseño del sistema, simultáneamente y de manera oportuna; y (4) establecer un método disciplinado que incluya las previsiones necesarias para la revisión, evaluación y realimentación con el fin de asegurar que la logística (y el diseño en cuanto a soportabilidad) reciba un tratamiento adecuado en el proceso global de adquisición del sistema. Resumiendo, estas áreas prioritarias son inherentes al proceso de ingeniería de sistemas descrito en la primera monografía de esta serie. El concepto de apoyo logístico integrado pone en práctica un enfoque integrado de «ciclo de vida» al apoyo de sistemas, dando 16 INGENIERÍA LOGÍSTICA énfasis a las primeras fases en la adquisición de sistemas. Dentro del marco completo de apoyo logístico integrado, se encuentran aquellas actividades relacionadas con la ingeniería que desempeñan un papel esencial en las fases iniciales del diseño y desarrollo de sistemas, ya que proporcionan al usuario sistemas que pueden recibir un apoyo rápido y económico durante toda su vida útil prevista; es decir, el diseño de un sistema para que éste pueda ser mantenido. La ingeniería logística, según la definimos en esta monografía, incluye estas primeras actividades de diseño, como uno de los muchos aspectos de ingeniería de sistemas. Es esencial que estos requisitos sean satisfechos en la práctica, si queremos desarrollar y producir sistemas rentables en el futuro. 1.2. Algunos términos y definiciones Antes de profundizar en cuestiones concretas relacionadas con la «ingeniería logística», conviene definir algunos conceptos clave: A) Ingeniería de sistemas. En términos generales, la ingeniería de sistemas es «la aplicación efectiva de métodos científicos y de ingeniería con el fin de transformar una necesidad operativa en una configuración definida de un sistema mediante un proceso iterativo arriba-abajo de definición de requisitos, análisis y asignación funcional, síntesis, optimización del diseño, prueba y evaluación». Está orientada al proceso e incluye las previsiones esenciales de realimentación y control. La ingeniería de sistemas puede definirse también como «la aplicación de métodos científicos y de ingeniería para: (a) transformar una necesidad operativa en la descripción de los parámetros de prestaciones de un sistema y en su configuración, mediante la utilización de un proceso iterativo de definición, síntesis, análisis, diseño, prueba y evaluación; (b) integrar los parámetros técnicos relacionados y asegurar la compatibilidad de todas las interrelaciones físicas, 17 Introducción funcionales y del sistema completo; y (c) integrar los aspectos de fiabilidad, mantenibilidad, seguridad, supervivencia, de personal y otros similares en el proceso global de ingeniería para conseguir los objetivos técnicos, de coste y de calendario fijados». La «soportabilidad» es una de las principales características del diseño que ha de integrarse a través del proceso de ingeniería de sistemas; las actividades relacionadas con la ingeniería logística deben integrarse adecuadamente con otras disciplinas relacionadas con el diseño. B) Apoyo logístico integrado (Integrated Logistic Support, ILS). En el sector de defensa, el ILS se define como «un método disciplinado, unificado e iterativo relativo a las actividades de gestión y técnicas necesarias para: (a) desarrollar los requisitos de apoyo relacionados de manera consistente con los objetivos de apresto, los de diseño y las relaciones de éstos entre sí; (b) integrar de forma efectiva las consideraciones de apoyo en el diseño del sistema y equipo; (c) identificar el método más rentable de apoyar el sistema en el campo; y (d) asegurar el desarrollo y la adquisición de los elementos necesarios para la estructura de apoyo». El ILS abarca el ciclo de vida entero del sistema e incluye actividades de planificación, diseño y desarrollo, suministro y producción/construcción, transporte y distribución, utilización y apoyo del sistema, desecho y reciclaje y las funciones de gestión asociadas con cada área. Los elementos concretos del ILS están identificados en la Figura 4. Mientras que los conceptos y actividades relativos al ILS se derivan principalmente del sector de defensa, sus principios pueden aplicarse y adaptarse a las necesidades concretas de cualquier tipo de sistema, incluídos los sistemas de transportes, de comunicaciones, una fábrica comercial, un sistema de distribución de información, etc. C) Ingeniería logística. La ingeniería logística incluye las fun- 18 INGENIERÍA LOGÍSTICA 19 Introducción ciones básicas relacionadas con el diseño, implementadas de acuer- do con los objetivos del ILS. Esta puede incluir : (a) la definición inicial de los requisitos de apoyo del sistema (forma parte de la tarea de definición de requisitos dentro del campo de la ingeniería de siste- mas); (b) el desarrollo de criterios de entrada para el diseño no sólo de los elementos del sistema relativos a la misión, sino también de la infraestructura de apoyo (entrada de datos para las especificaciones de diseño y suministro); (c) la evaluación sobre la marcha de configu- raciones alternativas de diseño, mediante la elaboración de estudios interrelacionados, la optimización y la revisión formal del diseño (esto es, las tareas cotidianas de integración del diseño relativas a la soportabilidad del sistema); (d) la determinación de los requisitos de recursos para el apoyo, a partir de una configuración determinada del diseño (cantidad de recursos humanos, niveles de especialización, recambios y repuestos, equipos de prueba y apoyo, instalaciones, trans- porte, datos y recursos informáticos); y (e) la evaluación sobre la mar- cha de la infraestructura global de apoyo con el fin de asegurar una mejora continua del proceso, por medio de procedimientos iterativos de medición, evaluación y recomendaciones (obtención de datos, eva- luación y capacidad de mejorar el proceso). La realización de estas funciones y de otras relacionadas constituye básicamente el alcance de la «ingeniería logística». Existen, por supuesto, muchas tareas adicionales relacionadas con el aprovisionamiento y obtención de recambios y repuestos, la obtención de equipos de prueba y apoyo, la preparación de manuales técnicos, la gestión continuada de las instalaciones y el almacenamiento de las necesidades de inventario, etc., que están incluidas dentro del marco global de ILS, aunque no profundizaremos en ellas en el presente estudio. D) Análisis de apoyo logístico (Logistic Support Analysis, LSA). En el sector defensa, el LSA se define como la aplicación selectiva de métodos científicos y de ingeniería desarrollados durante la fase de adquisición, como parte del proceso de ingeniería de sistemas, cuyos 20 INGENIERÍA LOGÍSTICA objetivos son: (a) facilitar la influencia de las consideraciones de apoyo en el diseño; (b) definir aquellos requisitos de apoyo relacionados íntimamente con el diseño y entre sí; (c) adquirir el apoyo necesario; y (d) proporcionar el apoyo necesario durante la fase operativa del sistema a un coste mínimo. El LSA es inherente a las distintas funciones de la ingeniería logística, y les proporciona apoyo. En opinión del autor, el LSA se define como un proceso analítico continuo (incorporado como parte del trabajo global de análisis en la ingeniería de sistemas), que utiliza varias herramientas informáticas para apoyar el diseño y desarrollo de la ingeniería. Se destaca la integración de las herramientas y técnicas que, a su vez, complementan las actividades de ingeniería logística. E) Registro de análisis de apoyo logístico (Logistic Support Analysis Record, LSAR). El LSAR se refiere a los datos (y a la base de datos) que recogen los resultados del LSA. Este incluye el método analítico que conduce a la determinación y definición de los requisitos de apoyo del sistema, siendo el LSAR el registro que recoge los resultados. Desgraciadamente, en muchas ocasiones se presta mayor atención a los datos y al formato adecuados que al ‘proceso’ inicial que debe seguirse para el desarrollo de dichos datos. F) Adquisición y apoyo continuo durante el ciclo de vida (Continuous Acquisition and Life-Cycle Support, CALS). De acuerdo con la sexta monografía de esta serie, CALS se refiere a la aplicación de tecnología informática al conjunto global de las actividades logísticas. En los últimos años, se ha empezado a conceder importancia al desarrollo y procesado de datos, principalmente en formato digital, con el objetivo de reducir el tiempo de preparación y procesado, eliminando redundancias, acortando el proceso de adquisición del sistema y reduciendo los costes globales del programa. Existen aplicaciones específicas para la automatización de publicaciones técnicas, la preparación de datos digitales para el aprovisionamiento de recambios/repuestos, y para el desarrollo de datos de diseño que definen productos en formato digital. 21 Introducción G) Fiabilidad. La fiabilidad se refiere a las características in- herentes al diseño del sistema relativas a la capacidad de dicho siste- ma para desempeñar una función o misión designada. Específicamente, la fiabilidad puede definirse como la probabilidad de que un sistema o producto funcione de forma satisfactoria durante un período de tiempo determinado, en unas condiciones operativas específicas. La fiabi- lidad abarca aquellas actividades, realizadas como parte del proceso de ingeniería de sistemas, que están orientadas a la tarea de asegurar que el producto final sea fiable y satisfaga las necesidades del usua- rio. Dichas actividades pueden incluir la realización de modelos de fiabilidad, la asignación de requisitos, las predicciones de fiabilidad (R, MTBF, l), análisis (FTA, FMECA, RCM, etc.), la revisión del diseño, las pruebas de fiabilidad, y la obtención y el análisis de datos de fallos. La fiabilidad, que influye de manera significativa en la frecuencia del mantenimiento y en los recursos necesarios para el apoyo del sis- tema, es uno de los principales factores de entrada en el diseño para soportabilidad. Las funciones de fiabilidad deben ser parte integrante de las actividades de ingeniería logística. La fiabilidad recibe un tratamiento más detallado en la octava monografía de esta serie. H) Mantenibilidad. La mantenibilidad se refiere a las características inherentes al diseño relativas a la facilidad, precisión, seguridad y economía en la realización de actividades de mantenimiento. En el sentido más amplio, la mantenibilidad puede medirse en términos de una combinación de tiempos de mantenimiento (Mct, Mpt, M, ADL, LDT, MDT), horas de trabajo de personal (MLH/ OH), factores de frecuencia de mantenimiento (MTBM, MTBR), coste de mantenimiento, y factores relacionados de apoyo logístico. En cuanto al «tiempo» se refiere, puede definirse como la probabilidad de que un elemento pueda conservarse en una condición específica o volver a tener esta condición gracias al mantenimiento realizado por personal especializado, utilizando unos procedimientos y recursos correctos y al nivel adecuado. 22 INGENIERÍA LOGÍSTICA La ingeniería de mantenibilidad incluye aquellas actividades de diseño, realizadas como parte del proceso de ingeniería del sistema, con el fin de asegurar que el producto final es mantenible y satisface las necesidades del consumidor. Dichas actividades pueden incluir la realización de modelos y análisis de mantenibilidad, asignación de requisitos, predicción de mantenibilidad, análisis de ingeniería de mantenimiento (FMECA, RCM, análisis de tareas, análisis de nivel de reparación), revisión de diseño, demostración de mantenibilidad y obtención de datos de mantenimiento. La mantenibilidad, que se basa en la fiabilidad e influye de manera significativa en la frecuencia y en los recursos necesarios para la realización de las tareas de mantenimiento, es uno de los principales factores de entrada en el diseño para la soportabilidad del sistema. Las funciones de ingeniería de mantenimiento han de ser una parte integrante de las actividades de ingeniería logística. En la práctica, gran número de las actividades especificadas para el análisis de apoyo logístico se realizan mediante programas formales de fiabilidad y mantenibilidad. Por tanto, podemos concluir que existe cierto grado de dependencia entre ambas áreas. Para un tratamiento más detallado de la mantenibilidad y del mantenimiento, véanse las monografías novena y décima de esta serie [12,22]. I) Ingeniería de factores humanos. Ocurre con frecuencia que en el diseño y desarrollo de un sistema se concede bastante importancia tanto al hardware como al software, y escasa o nula al factor humano. Para que el sistema sea completo deben considerarse el ser humano y las interfaces existentes entre éste y los demás elementos del sistema (por ejemplo, equipos, software, instalaciones, datos, etc). Además de las funciones operativas, existen una serie de tareas de mantenimiento y apoyo que serán realizadas por personas. El factor 23 Introducción humano, también denominado «ergonomía» o «ingeniería humana», se refiere al diseño de un sistema o producto cuya operación y mantenimiento resulte fácil, eficiente y segura. El «diseño para el hombre» considera una combinación de factores antropométricos (características físicas del ser humano), factores sensoriales (oído, emplazamiento, sensación), factores fisiológicos (efectos externos del entorno en el rendimiento del hombre) y factores psicológicos (emociones, actitud, motivación). La presente monografía considera de particular interés incluir el hombre como elemento de la infraestructura de mantenimento y apoyo. La ingeniería de factores humanos incluye aquellas actividades relacionadas con el diseño, realizadas como parte del proceso de ingeniería de sistemas, con el fin de asegurar el óptimo funcionamiento de las interfaces finales entre el hombre y el resto de los elementos del sistema en términos de operación y apoyo del sistema. Las actividades mencionadas pueden incluir el análisis de factores humanos y la asignación de requisitos, el análisis detallado de tareas, el desarrollo de diagramas de secuencias operativas y de mantenimento, el análisis de errores, el desarrollo de necesidades de formación, la revisión del diseño, y la prueba y evaluación del personal. Las actividades descritas deben ser integradas, de forma adecuada, con las actividades de ingeniería logística; en particular, en cuanto a la definición de los requisitos de personal (número y nivel de especialización) y para la capacitación de personal (tipo de capacitación, ayudas/equipos de capacitación, instalaciones y datos). La decimotercera monografía de esta serie desarrolla la cuestión del factor humano con mayor profundidad. J) Ingeniería de software. El software, gracias las tendencias actuales y al constante desarrollo de la tecnología informática, se está convirtiendo (si es que no lo es ya) en un elemento de peso en la configuración de muchos sistemas. La experiencia reciente indica que las consideraciones de software son inherentes al diseño y al desarrollo de más del cincuenta por ciento (50%) de los sistemas actuales. El software puede dividirse en tres áreas : 24 INGENIERÍA LOGÍSTICA a) software que constituye un componente relacionado con la misión del sistema y que es necesario para el funcionamiento del mismo. Desde el punto de vista logístico, es necesario mantener este software durante el ciclo de vida programado. b) software necesario para realizar funciones de mantenimiento del sistema (por ejemplo, métodos de diagnóstico, programas de seguimiento de condiciones). Una de las funciones de la ingeniería logística consiste en el desarrollo inicial y posterior mantenimiento de este software. c) software necesario para apoyar las actividades relacionadas con el programa (por ejemplo, el relativo a los distintos modelos informáticos utilizados en los análisis de diseño, el relativo a la preparación y procesado de distintas categorías de datos de diseño, de acuerdo con los requisitos CALS). Además, estas actividades relativas al apoyo del sistema deben integrarse en las actividades de ingeniería logística. La monografía decimoprimera de esta serie se ocupa con detalle de la ingeniería de software. 1.3. Los elementos de la logística Los principales elementos logísticos están definidos en los puntos 2 a 9 de la Figura 4. Estos elementos han de ser asignados y «proyectados» en el contexto de una «infraestructura» como la de la Figura 5. Respecto a esta Figura, debemos definir en primer lugar los requisitos operativos del sistema (es decir, la distribución o el despliegue de los elementos del sistema, perfiles de utilización, prestaciones y factores de efectividad, etc.) Dados los requisitos operativos, es necesario desarrollar el concepto de mantenimiento. Éste constituye una serie inicial de ilustraciones y manifestaciones sobre cómo debe 25 Introducción ser diseñado el sistema para que sea sostenible. El concepto de mantenimiento, desarrollado como parte del proceso de diseño conceptual, incluye la identificación de los niveles de mantenimiento (dos, tres o más niveles en los que debe realizarse el mantenimiento), la asignación de las responsabilidades del mantenimiento (por ejemplo, usuario, suministrador, u otra parte o combinaciones de los mismos), los factores de efectividad («métricas») asociados con los diversos elementos de apoyo, criterios de diseño relativos a la infraestructura de apoyo, etc. Analizaremos estas áreas de actividad en la Sección 3.1. El concepto de mantenimiento del sistema proporciona una línea de referencia para la definición de los requisitos logísticos, es decir, el diseño de los principales componentes relacionados con la misión de soportabilidad, y el diseño de la infraestructura de apoyo. Esta línea se amplía a través del análisis funcional (esto es, la identificación de las funciones de mantenimiento), la asignación de requisitos, realización del análisis de apoyo logístico, etc. 26 INGENIERÍA LOGÍSTICA 27 Introducción En cualquier caso, los dos principales elementos del sistema y la infraestructura de apoyo deben contemplarse de forma integrada en todos sus aspectos, ya que el diseño de los elementos principales del sistema tendrá un impacto considerable sobre las estructuras de apoyo, y los elementos logísticos tendrán el efecto de realimentar los elementos principales. La Figura 6 muestra estas interrelaciones. Además, la red entera (ver Figura 5) debe considerarse como un todo, ya que la efectividad del apoyo proporcionado al nivel de mantenimiento organizativo depende de los recursos proporcionados al nivel intermedio, el cual, a su vez, depende de los recursos proporcionados al nivel de fabricante. Existe una tendencia generalizada a tratar solamente estos aspectos a nivel organizativo, sin considerar el impacto que puedan tener en los otros niveles, lo cual puede resultar bastante costoso. Por tanto, no sólo es necesario definir los requisitos logísticos específicos sino también examinar las interfaces entre los principales equipos/software y los elementos de apoyo en el marco de la infraestructura global de apoyo ilustrada en la Figura 5.

Use Quizgecko on...
Browser
Browser