Informatique-industriel.pdf
Document Details
Uploaded by Deleted User
Full Transcript
Informatique Industrielle Cours Master SIS Micro-contrôleurs Microchip Intervenants : Marc Allain - [email protected] Julien Marot - [email protected] Coordonnées Marc Allain [Maîtr...
Informatique Industrielle Cours Master SIS Micro-contrôleurs Microchip Intervenants : Marc Allain - [email protected] Julien Marot - [email protected] Coordonnées Marc Allain [Maître de conférence] [email protected] Equipe physique et traitement d'image, Institut Fresnel, bureau 215 Julien Marot [Maître de conférence] [email protected] Equipe Groupe Signaux Multidimensionnels Institut Fresnel, bureau 237 Note : les intervenants sont sur le domaine Universitaire de St-Jérôme. 2 Organisation de l'enseignement Contenu horaire : 20 h de cours + 10 h de TD [Julien Marot] (≃10x 3h) Présentation de l'informatique industrielle, des systèmes micro- programmés (architecture, principes généraux,...). Étude d'un micro- contrôleur Microchip PIC 18F4520. Programmation en langage Assembleur et langage C. 35 h de travaux pratiques [Allain & Marot] (12x 4h) Mise en pratique des connaissances sur la carte de démonstration PICDEM2 plus. Utilisation du micro-contrôleur Microchip PIC 18F4520. ! Merci d'être à l'heure en cours / TP ! 3 ! Contrôle des connaissances Vous êtes principalement évalués sur la base des TP (15 points/20) (1) Avant toute chose, vous devez rédiger un algorigramme, (2) les programmes écrits doivent être commentés, (3) vérification des programmes en simulation et sur carte d'essai, (4) chaque étudiant sera noté individuellement ; nous évaluerons la participation de chacun au sein d'un binôme constitué. Examen (5 points/20) : contrôle des connaissances avec poly de cours, sans calculatrice, sur les notions vues en cours (exercices inclus) et en TP. 4 « Boite à outils » Les différentes bases de numérotation (binaire, octal, décimal, hexadécimal) Conversions et opérations sur les nombres binaires Notions d'électronique numérique (fonctions logiques combinatoires et séquentielles) Notion de programmation (algorigramme, concept de variable, fonction, etc.) 5 Objectifs du cours L'objectif de ce cours est de vous rendre capable de choisir, de programmer, d'utiliser un micro-contrôleur et plus généralement de vous transmettre une culture des systèmes micro-programmés. Non dédié à un microcontrôleur Notions d'architecture [des systèmes micro-programmés] Éléments constitutifs [d'un système micro-programmé] Fonctionnement [d'un système micro-programmé] Éléments de choix [d'un système micro-programmé] Dédié à un microcontrôleur Connaissances des différents types d'instruction Notion d'interruption Programmation en Assembleur Programmation en langage C 6 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées au microcontrôleur (timer, PWM, etc.) 7 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 L'informatique industrielle « L'informatique industrielle est une branche de l'informatique appliquée qui couvre l'ensemble des techniques de conception et de programmation, de systèmes informatisés à vocation industrielle, qui ne sont pas des ordinateurs. » (Source : Wikipédia) Source : Ascom S.A. 8 L'informatique industrielle Domaines d'applications : Alarme, automobile, aviation, instrumentation, médicale, téléphonie mobile, terminaux de paiement pour carte bancaire... 9 Image fournie par Microchip L'informatique industrielle Applications : Automates, robotique, Mesures de grandeurs physiques, Systèmes temps-réel, Systèmes embarqués. Source : Ascom S.A. 10 Les différents systèmes programmables Les circuits spécialisés ou ASIC (Application Specific Integrated Circuit) : Les circuits spécialisés sont des circuits spécialisés dès leur conception pour une application donnée. Exemples : DSP (Digital Signal Processing), co-processeur arithmétique, processeur 3-D, contrôleur de bus,... Source : Texas Instruments Source : NVidia Avantages : Inconvénients : Très rapide Faible modularité Consommation moindre Possibilité d'évolution limité Optimisé pour une application Coût 11 Les différents systèmes programmables Les systèmes en logique programmée et/ou en logique programmable sont connus sous la désignation de PLD (programmable logic device, circuit logique programmable) FPGA (field-programmable gate array, réseau de portes programmables in-situ), PAL (programmable array logic, réseau logique programmable),... Source : Altera Source : Altera « Un circuit logique programmable, ou réseau logique programmable, est un circuit intégré logique qui peut être reprogrammé après sa fabrication. Il est composé de nombreuses cellules logiques élémentaires pouvant être librement assemblé.» (Wikipédia) Avantages : Inconvénients : Forte modularité Mise en oeuvre plus complexe Rapidité Coûts de développement élevé 12 Les différents systèmes programmables Les systèmes micro-programmés : Les micro-contrôleurs sont typiquement des systèmes micro-programmés. Micro-contrôleur Microchip PIC16F690 en boîtier DIL20 Un micro-contrôleur est un : « Circuit intégré comprenant essentiellement un microprocesseur, ses mémoires, et des éléments personnalisés selon l'application. » (Arrêté français du 14 septembre 1990 relatif à la terminologie des composants électroniques.) Un micro-contrôleur contient un microprocesseur. Avantages : Inconvénients : Mise en oeuvre simple Plus lent Coûts de développement réduits Utilisation sous optimale 13 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 14 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Deux types de processeurs CISC : Complex Instruction Set Computer Grand nombre d'instructions, Type de processeur le plus répandu RISC : Reduced Instruction Set Computer Nombre d'instructions réduit (sélection des instructions pour une exécution plus rapide) Décodage des instructions plus rapide 15 Évolution et Loi de Moore Intel Pentium 4 Northwood C (2002) architecture interne 32 bits fréquence d’horloge 2,4/3,4 Ghz (bus processeur : 200Mhz) plus de 42 millions de transistors, gravés en 0,13 µm 450 MIPS Source : Intel Source : Intel Intel 8086 (1978) architecture interne 16 bits bus 16 bits fréquence d'horloge 4,77/10 Mhz 16 39 000 transistors, gravés en 3µm Source : Wikipédia 0,33/0,75 MIPS Évolution et Loi de Moore Intel Core i7 Gulftown (2011) architecture interne 64 bits 4/6 coeurs fréquence d'horloge 3,46 Ghz Fréquence de bus: 3,2 GHz Fréquence de transfert des données 25.6 Gb/sec. 1,17 Milliards de transistors, gravés en 32nm 6000 MIPS « The wall » : limite industrielle et physique, 20 nm Intel Pentium 4 Northwood C (2002) architecture interne 32 bits performance / Watt consommé fréquence d’horloge 2,4/3,4 Ghz Fréquence de bus: 0,2 GHz plus de 42 millions de transistors, gravés en 0,13 µm 17 450 MIPS Source : Wikipédia Les structures des systèmes micro-programmés Les différents bus d'un système micro-programmés « Un bus est un jeu de lignes partagées pour l’échange de mots numériques. » (Traité de l’électronique, Paul Horowitz & Winfield Hill) Définition : Un bus permet de faire transiter (liaison série/parallèle) des informations codées en binaire entre deux points. Typiquement les informations sont regroupés en mots : octet (8 bits), word (16 bits) ou double word (32 bits). Caractéristiques d'un bus: nombres de lignes, fréquence de transfert. 18 « Largeur du bus » 8 Unidirectionnel Bidirectionnel Issu de la documentation technique du PIC16F628 19 Structures des systèmes micro-programmés Il existe 3 Types de bus : Bus de données : permet de transférer entre composants des données, ex. : résultat d'une opération, valeur d'une variable, etc. Bus d'adresses : permet de transférer entre composants des adresses, ex. : adresse d'une case mémoire, etc. Bus de contrôle : permet l'échange entre les composants d'informations de contrôle [bus rarement représenté sur les schémas]. ex. : périphérique prêt/occupé, erreur/exécution réussie, etc. Définition : Une adresse est un nombre binaire qui indique un emplacement dans une zone mémoire 20 Structures des systèmes micro-programmés Structure de Von Neumann Extraits du cours intitulé « Les systèmes micro-programmés » Structure de Harvard La différence se situe au niveau de la séparation ou non des mémoires programmes et données. La structure de Harvard permet de transférer données et instruction simultanément, ce qui permet un gain de performances. 21 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 22 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Savoir lire le schéma bloc d’un micro- contrôleur ? Issu de la documentation technique du PIC16F628 23 Savoir lire le schéma bloc d’un micro- contrôleur Les mémoires : RAM (Random Access Mem.) mémoire rapide qui permet de stocker temporairement des données. ROM (Read Only Memory) mémoire à lecture seule, programmée à vie. EEPROM (Elec. Erasable Programmable Read Only Memory) mémoire lente qui permet de 24 stocker des données même après coupure de l’alim. Savoir lire le schéma bloc d’un micro- contrôleur PC (Program Counter) Registre(case mémoire) ALU Multiplexeur Décodeur d’instructions horloge Stack (pile) LIFO (Last In First Out) FIFO (First In First Out) 25 Savoir lire le schéma bloc d’un micro- contrôleur Registre (case mémoire) ALU PC (Program Counter) Multiplexeur Décodeur d’instructions horloge Stack (pile) LIFO (Last In First Out) FIFO (First In First Out) Issu de la documentation technique du PIC16F628 26 Savoir lire le schéma bloc d’un micro- contrôleur Ports d’entrées/sorties USART (Universal Synchronous Asynch. ReceiverTransmitter) interface de communication série, CCP (Capture/Compare/PWM) Modulation en largeur d'impulsions Timer Comparateur CAN/CNA Référence de tension Module HF Liaison USB,... 27 Les éléments de choix Caractéristiques électriques : Architecture : Fréquence d’horloge ALU (8, 16, 32, 64 bits) Tensions d’alimentation Structure du processeur (Harvard, Von Neumann) Consommation d’énergie, modes faible Type de processeur (RISC, CISC) consommation d’énergie,... Taille des mémoires programme et donnée Nombre de ports d’entrée/sortie Caractéristiques physiques : Type de boîtier : DIL, PLCC,... Fonctionnalités : Fonctions analogiques : CAN, CNA, Comparateur,... Fonctions de timing : Timer, Watchdog,... Fonctions de communication : UART (Communication série), USB, I2C,... Facilité de programmation : In-Circuit Serial Programming, Self Programming,... Mise en oeuvre, maintenance : Coût de développement : outils de développement, formation,... Suivi du micro-contrôleur : production suivie, disponibilité, composant obsolète,... 28 Source : Microchip Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 29 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Binaire, octal, décimal et hexadécimal On rappelle tout d'abord les différentes bases qui nous seront utiles : le binaire (base 2) est constitué de 2 chiffres : 0, 1 l'octal (base 8), est constitué de 8 chiffres : 0, 1, 2, 3, 4, 5, 6, 7 le décimal (base 10), est constitué de 10 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 l'hexadécimal (base 16), est constitué de 16 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Remarque : pour connaître la base associée à un nombre, on le note entre parenthèse avec en indice une lettre b,o,d ou h selon qu'il s'agit d'un codage binaire, octal, décimal ou hexadécimal. Par exemple, (1001)b, (3F1)h ou (128)d. 30 Codes pondérés Dans une base donnée, le nombre s'exprime comme une somme pondérée. Par exemple, le nombre 128 décimale (base 10) est constitué de 3 chiffres : le chiffre 8 est affecté du poids de 1 (unités) le chiffre 2 est affecté du poids de 10 (dizaines) « Un Zéro » le chiffre 1 est affecté du poids de 100 (centaines) « Un Zéro Zéro» Le nombre peut donc s'écrire 1 x 100 + 2 x 10 + 8 x 1 = (128)d Chiffre Poids 31 Codes pondérés Le nombre 10 binaire (base 2) est constitué de 2 chiffres : le chiffre 0 est affecté du poids de 1 le chiffre 1 est affecté du poids de 10 (exprimé en base 2) Le nombre peut donc s'écrire 1 x 10 + 0 x 1 = (10)b Chiffre Poids Remarque : le nombre 10 binaire ne s'exprime pas dix car ceci sous-entend que le nombre est exprimé en décimal... 32 Codes pondérés Dans une base donnée, le nombre s'exprime comme une somme pondérée. Par exemple, le nombre 1F8 hexadécimal (base 16) est constitué de 3 chiffres : le chiffre 8 est affecté du poids de 1 (unités) le chiffre F est affecté du poids de 10 (dizaines) le chiffre 1 est affecté du poids de 100 (centaines) Le nombre peut donc s'écrire 1 x 100 + F x 10 + 8 x 1 = (1F8)h Conversion binaire-hexadécimal : le codage hexadecimal a été créé afin d'alléger l'exploitation des nombres binaires. Il permet en particulier une conversion simple par regroupement des bits par 4 en partant de la droite, chaque paquet étant alors simple à convertir : 0001 1111 1000 1 F 8 = (1F8)h 33 Conversion Conversion en décimal : développement en somme de puissances de la base. (1 0 0 1)b 3 2 1 0 1×2 0×2 0×2 1×2 Soit 3 2 1 0 1×2 0×2 0×2 1×2 =81=9 b (3 2 F)h 2 1 0 3×16 2×16 15 ×16 2 1 0 3×16 2×16 15 ×16 =768 32 15 =815 b 34 Conversion décimal binaire : division par 2 successives... (14)d 2 (14)d = (1 1 1 0)b 0 7 2 1 3 2 Se ns 1 1 d el ec tu re... Conversion décimal hexadécimal : division par 16 successives... (282)d 16 (282)d = (11A)h 17 16 10=A Se 1 1 ns de l ec tu re... 35 Binaire, octal, décimal et hexadécimal Exercices 1 : convertir en décimal les chiffres binaires suivants : (111)b, (1010)b, (1001 1110)b Exercices 2 : convertir en binaire les chiffres décimaux suivants : 8, 12, 256, 1023 Exercices 3 : convertir en hexadécimal les chiffres binaires suivants : (111)b, (1010)b, (1001 1110)b Exercices 4 : convertir en hexadécimal les chiffres décimaux suivants : 8, 12, 67, 256, 1023, 12341 36 Binaire, octal, décimal et hexadécimal Pour indiquer le signe d’un nombre binaire, on ajoute un bit en tête du nombre. On peut ainsi coder les entier relatifs et les nombres réels. Bit de signe Un octet (8bits) : 1 0 0 1 0 1 0 0 = -108 (decimal) LSB : Low Significant Bit MSB : Most Significant Bit Un octet (8 bits) Un mot ou word (16 bits) Un double mot ou double word (32 bits) 37 Opérations arithmétiques binaires Les techniques de calcul des opérations arithmétiques peuvent être transposées du décimal au binaire. Addition : V = A + B, Exemple : (0110)b + (0101)b = (1011)b Multiplication : V = A x B, Exemple : (0110)b. (0101)b = (011110)b Soustraction : V = A – B, Pour calculer V, on calcule la somme entre A et le complément à deux de B Exemple : (0110)b – (0101)b = (0001)b NOTEZ BIEN QUE... Une multiplication (division) par 2 correspond à un décalage à gauche (à droite). Complément à deux : remplacer les un par des zéros (et vice-versa), puis ajouter 1. Exemple : (1011) donne (0100)b + (1)b = (0101)b 38 Exercices 1 : effectuez les additions binaires suivantes Exercices 2 : Exercices 3 : Exercices 4 : divisez (multipliez) par deux (0100)b, (1000101)b, (3F)h, (FF)h. 39 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 40 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Instructions Un jeu d’instruction est un ensemble d’opérations directement réalisables sur un système micro-programmé donné. Par exemple : le PIC18F4520 (RISC) possède un jeu d’instructions composé de 75 instructions. L’exécution d’une instruction peut nécessiter un ou plusieurs cycles d’horloges suivant la complexité de l'instruction. NOTE : Un cycle d’horloge correspond à une période de l’horloge (signal de référence temporelle). La fréquence d’horloge est le nombre de cycles effectués par une horloge en une seconde. 41 Instructions Une instruction est composée au minimum de deux parties: Instruction = OPCODE + opérande(s) OPCODE (Operation CODE) : partie d’une instruction qui précise quelle opération doit être réalisée Extrait du datasheet (documentation technique) du PIC18F4520. 42 Pipeline et flot d’instructions 3 étapes pour l'exécution d'une instruction : ✔ Lecture de l’instruction (1) ✔ Décodage de l’instruction (2) ✔ Exécution de l’instruction (3) Temps 1 2 3 1 2 3 1 2 3 Création d’un pipeline => permet une exécution plus rapide des instructions Temps 1 2 3 1 2 3 1 2 3 43 Les différents modes d'adressage La nature et le nombre d’opérandes qui constituent une instruction déterminent le mode d’adressage de l’instruction. On distingue 4 modes d’adressage principaux. L‘adressage inhérent : il n’y a pas d’opérande ! ex : NOP, RESET, CLRWDT ; Description de l'instruction RESET extraite de la notice technique (le « datasheet ») du PIC 18F4520 [micro- contrôleur utilisé en TP]. ATTENTION : Un nombre important d'information utiles figure sur ces fiches... 44 Les différents modes d'adressage La nature et le nombre d’opérandes qui constituent une instruction détermine le mode d’adressage de l’instruction. On distingue 4 modes d’adressage principaux. L’adressage immédiat : l’opérande est une valeur ex : MOVLW 5Ah ; Nombres de cycles nécessaires à l'exécution Exécution de l'instruction (pipeline à 4 niveaux) 45 Les différents modes d'adressage La nature et le nombre d’opérandes qui constituent une instruction détermine le mode d’adressage de l’instruction. On distingue 4 modes d’adressage principaux. L’adressage direct (étendu) : l’opérande est l’adresse (bits de poids faibles de l'adresse complète) de la donnée dans la page mémoire active. ex : ADDWF 000Fh, En mode direct étendu : on transmet l'adresse complète 46 Les différents modes d'adressage La nature et le nombre d’opérandes qui constituent une instruction détermine le mode d’adressage de l’instruction. On distingue 4 modes d’adressage principaux. l’adressage indirect (indexé) : l’opérande est l’adresse d’un registre qui contient l’adresse de la donnée. En mode indirect indexé, on ajoute un décalage par rapport à l’adresse. NOTE : Il existe de nombreux autres modes d’adressage (ex. implicite, inhérent, relatif) : leur nombre varie en fonction du constructeur et du micro-contrôleur ! 47 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 48 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Logique combinatoire et séquentielle La compréhension du fonctionnement d'un microcontrôleur s'appuie sur des connaissances élémentaires de logique combinatoire et séquentielle. un système est dit combinatoire si l'état (logique) des sorties ne dépend que de l'état (logique) présent appliqué à ses entrées. un système est dit séquentiel si l'état (logique) de la sortie du système à l'instant t dépend de l'état (logique) présent appliqué aux entrées et des états de la sortie dans le passé. 49 Table de vérité Considérons tout d'abord le cas de la logique combinatoire à 1 sortie (le cas à plusieurs sorties n'est pas très différent). Pour connaître l'état du système aux divers combinaisons logiques des entrées on construit la table de vérité qui exprime la valeur de la sortie s en fonction de toutes les configurations possible des entrées binaires (Ei), cf. ci-dessous. E1 E2 E1 E2 E3 On notera que pour une fonction logique à une seule variable d'entrée, il existe 22=4 combinaisons de sorties. E1 De même, pour deux variables d'entrées, il existe 24=16 combinaisons de sorties. E1 E2 50 Opérateurs élémentaires Dans ces configurations, on extrait typiquement 6 fonctions logiques d'intérêt que sont les opérateurs NON (une entrée), ET, OU, ET-NON, OU-NON, et OU-EXCLUSIF (deux entrées). E E1 E2 E1 E2 NON OU ET E1 E2 E1 E2 E1 E2 OU-EX ET-NON OU-NON Les opérateurs ET-NON et OU-NON forment un groupe complet, c.à.d. que toute fonction logique complexe peut être construite sur la base de l'une de ces fonctions élémentaires. 51 Algèbre de BOOLE Les opérateurs logiques élémentaires permettent la construction d'une algèbre dite « algèbre de Boole ». Ainsi, si on considère deux entrées binaires A et B, on adopte alors la convention suivante pour construire des équations logiques : A⋅B=AB NON A ET-NON, AB=A⋅B A⋅B A B ET OU-NON, A B A ⊕B OU, OU-EXCLUSIF Les différentes opérations bénéficient des propriétés suivantes Associativité : Commutativité : A⋅B⋅C= A⋅B⋅C A⋅B =B⋅A A⋅B=B⋅A A B C= A BC A B= B A A B= B A A ⊕B ⊕C = A ⊕B ⊕C A ⊕B= B ⊕A Distributivité : Lois de De Morgan : A B⋅C = A B ⋅ AC A⋅B= AB A⋅ BC = A⋅B A⋅C A B= A⋅B 52 Le chronogramme Dans les microcontrôleurs, les états du système changent en fonction d'une base de temps qui est l'horloge. Ceci conduit naturellement à introduire les chronogrammes comme outil d'analyse des états logiques d'un système. Le chronogramme a pour objet de tracer l'état binaire de la (des) sortie(s) en fonction de l'évolution au cours du temps de l'état des entrées. Ceci est illustré ci-dessous. 53 Les bascules asynchrones Pour l'essentiel, une bascule asynchrone est une fonction « mémoire » qui est commandée. Ce type de fonction est notamment utilisé pour créer des registres du microcontrôleur. Le verrou D (Latch D) Le verrou D (ou bascule D asynchrone) est très répandu : elle copie en sortie l'état de l'entrée D uniquement si sa commande C est active ; dans le cas contraire, l'état en sortie Q est celui précédent, cf. chronogramme. D C 54 Exercice : étude de la bascule RS Écrire la table de vérité et compléter le chronogramme pour le verrou RS ci-dessous. R S Q Q 55 Les bascules synchrones Une bascule synchrone est une bascule qui ne change d'état que sur front montant ou descendant appliqué sur son entrée de commande. Ce type de bascule est à la base du fonctionnement du microcontrôleur. La Bascule D (Flip-Flop D) C'est la version synchrone du verrou D ! D C 56 Les bascules synchrones La Bascule JK (Jump-Knock out) J K 57 Structures des ports d’entrées/sorties Un port d’entrées/sorties est par définition un port bidirectionnel. De fait, il est donc nécessaire de configurer la direction du port (in ou out). Dans le microcontrôleur, des registres spécifiques sont dédiés à la gestion de ces ports... 58 Extrait de la documentation technique du PIC18F4520 de Microchip. Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 59 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Les registres Un registre 8 bits est synonyme d'un ensemble de 8 cases mémoire. De nombreux registres sont utilisés pour gérer le microcontrôleur. Le registre W (accumulateur) Le compteur programme (PC) Le registre d’état (Flags) Les registres de configuration : les registres de directions pour les ports d’entrées/sorties (TRIS, SFR), les registres de gestion des interruptions, de gestion de la mémoire (BSR, GPR, etc.) ATTENTION : tous les registres du microcontrôleur ne sont pas représentés sur le schéma... 60 Par exemple : le registre d'état Le registre d'état (Status Register) contient des bits d'informations sur les opérations arithmétiques menées par l'ALU (ex., le dépassement de format après avoir demandé l'addition de deux valeurs 8 bits). 61 Phase de démarrage du micro-contrôleur Suite à une opération de remise à zéro (RESET), le micro-contrôleur effectue une phase de démarrage : 1/ RESET : il peut être déclenché par la mise sous tension du micro-contrôleur, la réception d’un signal sur la broche RESET du micro-contrôleur, une instruction de RESET,... 2/ Initialisation du micro-contrôleur : le micro-contrôleur effectue une temporisation afin de garantir la stabilité des signaux d’horloge. 3/ Effacement des registres : le micro-contrôleur efface le contenu des registres (variable en fonction du « mode de RESET » que vous effectuez). 4/ Lecture du vecteur RESET Le micro-contrôleur lit l’adresse du programme principal dans la mémoire programme. 5/ Début de l’exécution du programme principal. 62 Organisation de la mémoire programme Compteur de programme (PC) le compteur de programme Pile (Stack) une pile pour gérer les appels programmes et les interruptions Vecteur Reset pointeur vers l’adresse mémoire du début du programme principal Vecteurs d'interruption pointeur vers l’adresse mémoire du programme à exécuter en cas d’interruptions Mémoire programme zone mémoire réservée au stockage des programmes écrits par l’utilisateur Remarque : Un pointeur est une variable contenant une adresse mémoire. 63 Exécution d’une instruction Adressage inhérent L’instruction ne comporte pas d’opérande et agit implicitement sur un registre. Exemples : SLEEP, RESET, NOP Adressage immédiat L’instruction comporte une opérande et agit explicitement sur un registre Exemples : ADDLW, MOVLW Déroulement: (1) Le compteur programme indique l’adresse de l’instruction suivante dans la mémoire programme. (2) L’instruction est lue et stockée dans le registre d’instruction. (3) Puis elle est décodée par le module de décodage et de contrôle des instructions. (4) Finalement elle est exécutée. 64 Exécution d’une instruction Adressage direct (étendu) L’instruction comporte une opérande qui indique l’adresse mémoire sur laquelle s’effectue l’opération. Exemples : CLRF (direct), MOVFF (étendu) Déroulement: (1) Lecture de l’instruction dans la mémoire programme à l'adresse pointée par le compteur programme. (2) Lecture de l’instruction et décodage. (3) Pour l’adressage direct, l’opérande ? constitue la partie basse de l’adresse mémoire sur laquelle s’effectue l’opération, la partie haute est complétée avec le registre BSR. (3') Pour l’adressage étendu, l’opérande est l’adresse complète de la case mémoire sur laquelle s’effectue l’opération. (4) Finalement l’instruction est exécutée sur la case mémoire pointée. 65 Organisation de la mémoire données BSR (Bank Select Register) Permet de pré-sélectionner la page pour un accès mémoire plus rapide. => notion de pagination de la mémoire GPR (General Purpose Registers) Espaces mémoires qui permet le stockage de données temporaires (variable,...) Access Bank pointeurs vers des zones mémoires SFR (Special Function Registers) Registres de contrôle et d’état pour les 66 périphériques (notamment...) Pagination de la mémoire « La pagination de la mémoire consiste à diviser la mémoire en blocs (pages) de longueur fixe. » (Source : Comment Ça Marche) Une adresse mémoire est alors divisée en deux parties : Partie haute Partie Basse Dans le cas d’une instruction avec adressage direct, on transmet seulement la partie basse de l’adresse. Le micro-contrôleur utilise le registre BSR pour compléter l’adresse. Attention !! En adressage direct, on doit s’assurer que l’on travaille dans la bonne page mémoire. 67 Exécution d’une instruction Adressage direct (étendu) L’instruction comporte une opérande qui indique l’adresse mémoire sur laquelle s’effectue l’opération. Exemples : CLRF (direct), MOVFF (étendu) Déroulement: (1) Lecture de l’instruction dans la mémoire programme à l'adresse pointée par le compteur programme. (2) Lecture de l’instruction et décodage. (3) Pour l’adressage direct, l’opérande constitue la partie basse de l’adresse mémoire sur laquelle s’effectue l’opération, la partie haute est complétée avec le registre BSR. (3') Pour l’adressage étendu, l’opérande est l’adresse complète de la case mémoire sur laquelle s’effectue l’opération. (4) Finalement l’instruction est exécutée sur la case mémoire pointée. 68 Exécution d’une instruction Adressage indirect (indexé) L’instruction comporte une opérande indiquant un pointeur, c.à.d. une adresse de la case mémoire sur laquelle s’effectue l’opération. Exemples : ADDWF, INDF1, 1 Déroulement: (1) Lecture de l’instruction dans la mémoire programme à l'adresse pointée par le compteur programme. (2) Lecture de l’instruction et décodage. (3) La valeur de l’opérande indique le pointeur à utiliser. (4) La valeur pointée est lue (avec un éventuel décalage en mémoire). (5) Finalement l’instruction est exécutée sur la valeur pointée. 69 70 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 71 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Conception d'un système embarqué Formellement, la conception d'un système embarqué basé sur un microcontrôleur peut être décomposée en 3 étapes distinctes. (1) Le développement matériel s'appuie sur un cahier des charges, c.à.d. la définition des fonctionnalités et des performances du système. Cette étape doit permettre de spécifier les caractéristiques du microcontrôleur, de ses périphériques et de l'électronique associée. (2) Le développement logiciel s'appuie sur l'étape précédente pour construire un algorigramme, puis le code qui va être testé. Cette étape requiert que vous choisissiez le langage (assembleur et/ou évolué) que vous utiliserez sur des bases objectives, par exemple de manière à optimiser le temps de développement, la facilité de maintenance, le nombre d'opérations, etc. (3) La phase de test doit être menée pour vérifier que le cahier des charges initial est bien rempli. Cette phase de test « finale » n'empêche pas d'avoir mené des tests séparés lors des phases de développement matériel et logiciel. 72 Chacune de ces trois étapes précédente peut être relativement complexe et mobiliser des moyens financiers et humains conséquents. Par ailleurs, le test à une étape peut remettre en cause les choix fait à une étape précédente : en pratique, on est donc plutôt confronté à un cycle de conception plutôt qu'à un enchaînement parfaitement séquentiel ! Développement matériel Développement logiciel Tests du système complet 73 Le développement du logiciel La construction d'un code machine exécutable s'appuie sur un certain nombre de composantes (fichiers sources, librairies) qui suivent le diagramme organisationnel ci-dessous. (1) Les fichiers sources écrits dans un langage assembleur et/ou évolué doivent permettent au système embarqué d'effectuer les tâches requises. (2) Le compilateur et/ou l'assembleur a pour rôle de convertir les instructions des sources en langage machine. (3) L'éditeur de lien permet de construire un exécutable à partir des objets issus soit des sources soit de librairies pré-existantes. 74 La programmation en Assembleur Le langage Assembleur (abrégé ASM) est un langage de programmation de bas-niveau, qui fait la correspondance entre des instructions en langage machine (mots binaires) et des symboles appelés mnémoniques plus simples à utiliser. Source : Microchip Le langage Assembleur est un langage compilé, c'est à dire : 1. L’utilisateur écrit son programme en langage Assembleur. Ce fichier est assemblé pour traduire le programme en langage machine (avec éventuellement des améliorations). 2. Le programme en langage machine est alors utilisé pour programmer le micro-contrôleur, c.à.d. qu'il est transféré dans la mémoire (programme) pour être exécuté. 75 Les types d’instructions en Assembleur A. Les instructions propres au micro-contrôleur : Les instructions de transfert : movlw, movf,... Les instructions arithmétiques : decf, addwf,... Les instructions logiques : xorlw, andlw,... Les instructions de branchement : bz (branch if zero), bra (branch always),... B. Les instructions pré-processeur permettent au programmeur de donner des indications au compilateur, elles sont destinées au PC et non pas au micro-contrôleur ! Il existe différents types d’instruction pré-processeur : les instructions de contrôle : org = début du programme, end = fin du programme, etc. ; les instructions conditionnelles : if, else, endif, etc. ; les instructions relatives aux données : res = réservation d’espace mémoire, etc. ; les instructions pour les macros 76 Algorigrammes La description du programme par un algorigramme permet de : gagner en efficacité lors de la phase de codage du programme, d’optimiser la structure du programme, de clarifier le fonctionnement du programme, le rendre compréhensible à une personne extérieure. Début, Fin, Sous-programme Interruption Initialisation Test d'une condition Faux Instruction Vrai 77 Premier programme en assembleur Début Broche 2 à 7 du PORTB en sortie Broche 1 du PORTB en entrée RAZ du PORTB Broche 1 à 4 du PORTB en E/S numérique Broche 1 du PORTB à l'état haut ? Broche 2 du PORTB Broche 2 du PORTB à l'état haut à l'état bas 78 Structure d’un programme en assembleur Dans un programme en assembleur, on peut distinguer une partie préliminaire qui est systématique c.à.d. qui ne change pas d'un programme à l'autre. ; ; Filename : premier_programme.asm ; ; Description :Recopie de l'état de la broche 1 du PORTB ; sur la broche 2 du PORTB ; ; Author: Eric Magraner ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2006/07 Début list p=18f4520 ; Définition du micro-contrôleur utilisé #include ; Définitions des emplacements mémoires des registres ; La configuration du micro-contrôleur est définie avec MPLAB ; (Logiciel de développement Microchip) 79 La première partie concerne l'en-tête qui définit, le plus clairement possible, la fonction du programme ainsi que divers informations permettant de gérer l'historique du code (auteur, date d'écritures et de modifications, numéro de version, etc.) ; Filename : premier_programme.asm ; ; Description : Recopie de l'état de la broche 1 du PORTB ; sur la broche 2 du PORTB ; ; Author: Eric Magraner ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2006/07 Début list p=18f4520 ; Définition du micro-contrôleur utilisé #include ; Définitions des emplacements mémoires des registres ; et configurations matérielles par défaut #include ; Modification des configurations matérielles par défaut 80 La déclaration du micro-contrôleur permet au compilateur de générer un code machine qui soit compréhensible pour le microcontrôleur que vous souhaitez programmer. ; ; Filename : premier_programme.asm ; ; Description : Recopie de l'état de la broche 1 du PORTB ; sur la broche 2 du PORTB ; ; Author: Eric Magraner ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2006/07 list p=18f4520 Début ; Définition du micro-contrôleur utilisé #include ; Définitions des emplacements mémoires des registres ; et configurations matérielles par défaut #include ; Modification des configurations matérielles par défaut 81 Une directive au pré-processeur demande l'inclusion d'un fichier de définition spécifique au microcontrôleur qui définit certaines configurations matérielles par défaut et permet de simplifier l'écriture des programmes, cf. transparent suivant. ; Filename : premier_programme.asm ; ; Description : Recopie de l'état de la broche 1 du PORTB ; sur la broche 2 du PORTB ; ; Author: Eric Magraner ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2006/07 list p=18f4520 Début ; Définition du micro-contrôleur utilisé #include ; Définitions des emplacements mémoires des registres ; et configurations matérielles par défaut #include ; Modification des configurations matérielles par défaut 82 Extrait du fichier p18f4510.inc de définitions propre au micro-contrôleur ;----- Register Files PORTA EQU H'0F80' PORTB EQU H'0F81' PORTC EQU H'0F82' PORTD EQU H'0F83' PORTE EQU H'0F84' LATA EQU H'0F89' LATB EQU H'0F8A' LATC EQU H'0F8B' LATD EQU H'0F8C' LATE EQU H'0F8D'...... 83 Une directive au pré-processeur supplémentaire peut être spécifiée de manière à modifier la configuration par défaut établie dans p18f4510.inc. Note : pour savoir comment modifier ces configurations, il faut aller voir le fichier p18f4510.inc. ; Filename : premier_programme.asm ; ; Description :Recopie de l'état de la broche 1 du PORTB ; sur la broche 2 du PORTB ; ; Author: Eric Magraner ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2006/07 list p=18f4520 Début ; Définition du micro-contrôleur utilisé #include ; Définitions des emplacements mémoires des registres ; et configurations matérielles par défaut ; #include ; Modification des configurations matérielles par défaut 84 Exemple de ce que pourrait être le fichier MA_CONFIG.inc ;----- Utilisation de l'oscillateur ;----- en mode haute vitesse CONFIG OSC = HS 85 On peut distinguer ensuite une seconde partie qui correspond à la configuration des éléments du microcontrôleur qui entrent directement en jeu dans la fonction réalisée... La première opération consiste systématiquement à initialiser le vecteur RESET. Notez que cette étape n'a pas été notée dans l'algorigramme (ce qui pourrait être considéré comme une lacune...). Broche 2 à 7 du PORTB en sortie Broche 1 du PORTB en entrée RAZ du PORTB Broche 1 à 4 du PORTB en E/S numérique org h'0000' ; initialisation du vecteur RESET goto init init clrf PORTB movlw b'00000001' movwf TRISB ; Configuration de la direction ; du PORTB. Broche 1 en entrée. ; Broche 2 à 8 en sortie clrf LATB movlw 0Fh movwf ADCON1 ; Configuration des broches 1 à 4 ; du PORTB en E/S numérique 86 La seconde opération correspond à la configuration du PORT B telle que décrite par l'algorigramme... Cette configuration est directement fourni par le Datasheet du PIC 18F4520... Broche 2 à 7 du PORTB en sortie Broche 1 du PORTB en entrée RAZ du PORTB Broche 1 à 4 du PORTB en E/S numérique org h'0000' ; initialisation du vecteur RESET goto init init clrf PORTB movlw b'00000001' movwf TRISB ; Configuration de la direction ; du PORTB. Broche 1 en entrée. ; Broche 2 à 8 en sortie clrf LATB movlw 0Fh movwf ADCON1 ; Configuration des broches 1 à 4 ; du PORTB en E/S numérique 87 La troisième partie du programme est dédiée à la réalisation de la fonction principale, c.à.d. la boucle et le test. Broche 1 du PORTB à l'état haut ? Broche 2 du Broche 2 du PORTB PORTB à l'état haut à l'état bas boucle btfss PORTB,0 ; Broche 1 du PORTB à l'état haut ? ; saute l'instruction suivante si ; état haut goto eteindre allumer bsf PORTB,1 ; Broche 2 du PORTB à l'état haut goto boucle eteindre bcf PORTB,1 ; Broche 2 du PORTB à l'état bas goto boucle END 88 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 89 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Les interruptions « Une interruption est un arrêt temporaire de l'exécution normale d'un programme informatique par le microprocesseur afin d'exécuter un autre programme (appelé routine d'interruption). Les interruptions matérielles sont utilisées lorsqu'il est nécessaire de pouvoir réagir en temps réel à un événement asynchrone, ou bien, de manière plus générale, afin d'économiser le temps d'exécution lié à une boucle de consultation (polling loop).» (Source : Wikipédia) Une interruption peut avoir différentes sources : périphérique d’entrée/sortie, timer, watchdog (cf. explications plus loin),... Les interruptions sont utilisées pour avertir le micro-contrôleur quand une condition est remplie. En utilisant les interruptions, on évite que le micro-contrôleur reste en attente inutilement (pooling-loop), elles permettent de gérer les événements asynchrones. 90 Les interruptions Les interruptions sont, en général, contrôlées par 3 bits : Un bit de flag indique qu’une interruption a été déclenchée et indique la source. Un bit de validation permet à l’utilisateur d’activer ou non une interruption. Un bit de priorité permet de sélectionner la priorité (haute/basse) de l’interruption. Gestion des priorités : Il existe des interruptions de priorité hautes et basses. À chaque type de priorité correspond un vecteur d’interruption et donc potentiellement une gestion différente des interruptions suivant leur priorité. 91 Schéma de la logique d’interruption Ce schéma permet de comprendre - le fonctionnement de la logique d’interruption, - la priorité accordée à une interruption, - la configuration de la logique à mettre en place pour l’application souhaitée On notera notamment que si une interruption de haute priorité est en concurrence avec une interruption de basse priorité, l’interruption de haute priorité « prend la main ». 92 Déroulement d'une interruption (1). Réception de l’interruption : le micro-contrôleur reçoit une interruption. (2). Sauvegarde des données (sauvergarde du contexte) : le micro-contrôleur sauve une partie variable (en fonction du type d’interruption) de son état interne dans la pile, notamment l’adresse dans la mémoire programme où le micro-contrôleur s’est arrêté. (3). Lecture de l’adresse du vecteur d’interruption et chargement dans le PC. (4). Exécution de la routine d’interruption, Attention !! L’utilisateur doit penser à effectuer une sauvegarde de données du programme principal pour ne pas les effacer pendant la routine d’interruption et également à supprimer le flag d’interruption qui a déclenché l’interruption. (5). Rétablissement des données : le micro-contrôleur rétablit les données stockées dans la pile. (6). Le micro-contrôleur reprend son fonctionnement normal... 93 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 94 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Premier programme avec interruption Début Interruption Broche 2 à 7 du PORTB en sortie Sauvegarde du contexte Broche 1 du PORTB en entrée Identification de l'interruption RAZ du PORTB Broche 1 à 4 du PORTB en E/S numérique Interruption à chaque front montant sur la broche 1 du PORTB Suppression du flag d'interruption NOP Change l'état de la broche 2 du PORTB Restauration du contexte Fin Retour au programme principal 95 Le début d'un programme en assembleur, avec interruption, reste très proche de celui d'une version sans interruption. On peut tout de même remarquer des directives de réservation d'emplacements mémoire en prévision de la sauvegarde du contexte lors de l'interruption. ; Filename : premier_programme_interruption.asm ; Change l'état de la broche 2 du PORTB à chaque front ; montant sur la broche 1 du PORTB (gestion par interruption ; Author: Eric Magraner ; Company: Université Paul Cézanne ; Revision: 1.00 ; Date: 2006/07 list p=18f4520 ; Définition du micro-contrôleur utilisé Début #include ; Définitions des emplacements mémoires des registres ; et configurations matérielles par défaut #include ; Modification des configurations matérielles par défaut W_TEMP RES 1 ; Réservation d'un octet en mémoire STATUS_TEMPRES 1 ; Réservation d'un octet en mémoire BSR_TEMP RES 1 ; Réservation d'un octet en mémoire 96 Du code du programme principal, on distingue les étapes classiques d'initialisation du vecteur RESET et du PORT B. On note aussi les parties propres aux interruptions : initialisation du vecteur et du registre d'INTERRUPTION. org h'0000' ; Init. du vecteur RESET goto init org h'0008' ; Init. du vecteur INTERRUPTION goto routine_interruption init clrf PORTB movlw b'00000001' movwf TRISB ; Config. de la dir. du PORTB Broche 2 à 7 du PORTB en sortie Broche 1 du PORTB en entrée RAZ du PORTB clrf LATB Broche 1 à 4 du PORTB en E/S numérique Interruption à chaque front montant sur la broche 1 du PORTB movlw 0Fh movwf ADCON1 ; Broche 1à4 du PORTB en E/S num. movlw b'10010000'; 0x90 -> w NOP movwf INTCON ; w -> INTCON (Init. du registre d'interrup.) Finboucle nop goto boucle END 97 Le registre d'interruption INTCON permet, d'une part d'activer les interruptions (bit 7), et d'autre part d'activer le mode interruption externes INT0 (bit 4). Dans ce cas, l'interruption sera détectée sur la broche 0 du port B (cf. datasheet). 98 Le déclenchement d'une interruption conduit le microcontrôleur à sauver l'adresse de l'instruction courante dans la pile, puis à charger le vecteur d'interruption dans le PC. Dès lors, il est systématiquement nécessaire de (1) sauvegarder le contexte et (2) identifier l'origine de l'interruption. routine_interruption ; Sauvegarde du contexte movwf W_TEMP ; Sauvegarde de W movff STATUS, STATUS_TEMP ; Sauvegarde de STATUS Interruption movff BSR, BSR_TEMP ; Sauvegarde de BSR ; identification de l'origine de l'interruption Sauvegarde du contexte Identification de l'interruption btfsc INTCON,1 goto interruption_INT0 bra restauration_contexte 99 Il faut ensuite systématiquement (3) mettre à zéro le bit d'interruption puis, (4) exécuter la fonction pour laquelle l'interruption a été prévue, et enfin (4) faire la restauration du contexte (5) et retourner au programme principal. interruption_INT0 Suppression du flag d'interruption bcf INTCON,1 ; Suppression du flag d'interruption Change l'état de la broche 2 movlw 0x02 ; 0x02 -> w du PORTB xorwf PORTB ; w xor PORTB -> PORTB goto restauration_contexte Restauration du contexte Retour au prog. principal ; Restauration du contexte restauration_contexte movff BSR_TEMP, BSR ; Restauration de BSR movff W_TEMP, W ; Restauration de W movff STATUS_TEMP, STATUS ; Restauration de STATUS retfie 100 Structure générale d’un programme Reset Vector Interrupt Vector Début du programme Début de la routine d’interruption Déclarations Sauvegarde des données Identification de l’interruption et suppression du flag d’interruption Configuration Routine d’interruption Programme principal Rétablissement des données Fin Retour au programme principal 101 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 102 Presentation du langage C pour le microcontrôleur / spécificité pour le PIC 18F4520 Fonctions intégrées du PIC 18F4520 Les microcontrôleurs intégrent des fonctionnalités qu'il est souvent utile de connaître pour gagner du temps de développement. Par exemple, le PIC18F4520 intègre les « modules » suivants : Les compteurs................................................................... Timer Les modules « Capture Compare PWM »............................. CCP Les comparateurs................................................................. Comparator Les modules de conversion analogique/numérique.............. CAN/CNA Les chiens-de-garde........................................................ Watchdog Les différents modes de gestion de l'alimentation ! Une présentation complète des différentes fonctions sort du cadre de ce cours. Nous nous limiterons à ici à la présentation du module TIMER que nous utiliserons en TP... 103 La fonctionnalité « Timer » Les timers sont des registres incrémentés à chaque réalisation d’un événement, la valeur de ces registres pouvant être pré-positionnée à une valeur initiale. Les événements qui commandent l'incrémentation sont un cycle d’horloge, c'est la fonction « timer » ; un front montant sur une broche en entrée, c'est la fonction « counter ». Il en découle que le module timer peut remplir les fonctions suivantes, Utilisation « timer » : permet de fournir une référence temporelle à partir de l’horloge du micro-contrôleur, notamment dans le cadre d’applications temps réel. Utilisation « counter » : sert à compter un nombre d’événements asynchrones sur une broche d’entrée du micro-contrôleur. 104 Illustration par un exemple simple... Cahier des charges : On cherche à utiliser le « module timer » du microcontrôleur pour faire clignoter une LED connectée sur le port RB1. La période est fixée à une fréquence de 1 Hz. Une méthode générale... (1) Lire dans la documentation (data-sheet) la section traitant du module. (2) Déduisez-en les registres à configurer lors de la phase d'initialisation. (3) Construisez l'algorigramme préalable à l'écriture du programme. (4) Écrivez le programme assembleur, testez-le et débuggez-le... 105 Extrait du data-sheet du PIC18F4520, p. 123-125 106 Extrait du data-sheet du PIC18F4520, p. 123-125 107 Questions : (1) Expliquez comment fonctionne le module TIMER0 ? Comment peut-on l'utiliser pour faire basculer la sortie RB1 toute les 0.5 seconde ? (2) Donnez les valeurs d'initialisation des différentes registres pour rentrer dans le cahier des charges. (3) Construisez l'algorigramme préalable à l'écriture du microcode. (4) Finalement, écrivez le programme en assembleur. (5) Évaluez l'erreur sur la période associée au temps d'exécution du code et modifiez les registres en conséquence. 108 Algorigramme R ! T E É MPL CO Début A NOP Fin 109 Programme assembleur E R! T P LÉ O M AC ; Filename : timer0.asm ; ; Description : Génération d'un signal carré sur la ; broche 1 du PORTB par utilisation du module TIMER0 ; ; Author: ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2007/09 Début 110 Programme assembleur [suite] E R! T PLÉ O M AC 111 Capture, Compare, PWM Les modules CCPM possède trois modes de fonctionnement : capture Le mode capture déclenche une action si un événement pré-déterminé apparaît (ex : changement d’état sur une broche). Utilisé avec les timers, ce module peut compter les temps d'arrivées. compare Le mode compare effectue une comparaison permanente entre le contenu d’un timer et une valeur donnée pour déclencher une action si ces contenus sont égaux. Pulse width modulation (PWM) Le mode PWM génère un signal rectangulaire de fréquence et de rapport cyclique choisis par l’utilisateur. 112 Illustration par un exemple simple... Cahier des charges : On cherche à utiliser le « module CCP » du microcontrôleur pour générer un signal rectangulaire sur la broche RC2. La période du PWM est fixée à une fréquence de 600 Hz et le rapport cyclique à 0,5. Questions : (1) Expliquez comment les modules CCP1 et TIMER2 fonctionnent ensemble pour produire un signal rectangulaire de période et de rapport cyclique donné. (2) Identifiez les registres à initialiser et les valeurs associées. (3) Construisez l'algorigramme et écrivez le programme assembleur. 113 Algorigramme R ! T E É MPL CO Début A NOP Fin 114 Programme assembleur E R! T P LÉ O M AC ; Filename : pwm0.asm ; ; Description : Génération d'un signal carré sur la ; broche 2 du PORTC par utilisation du module PWM ; ; Author: ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2007/09 Début 115 Les comparateurs Les comparateurs permettent de comparer le signal analogique présent sur un broche du micro-contrôleur à une valeur de référence. Cette valeur de référence peut être soit un signal analogique dont on fait l'acquisition sur une autre broche du micro-contrôleur (convertisseur analogique - numérique), soit une tension de référence générée en interne par le micro- contrôleur à l’aide du module de génération de tension de référence. Ce principe de fonctionnement décrit ci-contre permet typiquement d'effectuer une commande de type tout-ou-rien (TOR). 116 Illustration par un exemple simple... Cahier des charges : On reprend le cahier des charges posé pour faire clignoter un LED branché sur RB0 (cf., illustration du module TIMER p.XX) mais on cherche maintenant à ajuster la fréquence de clignotement en fonction d'une tension présentée sur la broche RA3 du microcontrôleur. La fréquence sera de 300Hz si la tension est de inférieure à VDD/2 et de 600 Hz si elle est supérieure à VDD/2. Questions : (1) On utilise une référence interne de tension pour générer la valeur de VDD/2. Expliquez comment le module de tension de référence peut être configuré pour cela. Expliquez ensuite comment le module de comparaison peut être utilisé pour réaliser le cahier des charges. (2) Identifiez les registres à initialiser et les valeurs associées. (3) Construisez l'algorigramme et écrivez le programme assembleur. 117 Algorigramme R ! T E É MPL CO A 118 Programme assembleur E R! T P LÉ O M AC ; Filename : comparator.asm ; ; Description : Génération d'un signal carré sur la ; broche RB0 par TIMER0 et ajustement de la fréquence en ; fonction d'une comparaison à une tension de référence. ; ; Author: ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2007/09 Début 119 Programme assembleur [suite] E R! T PLÉ O M AC 120 Module de conversion analogique/numérique Le module de conversion analogique/numérique permet de convertir le signal analogique présent sur une broche du micro-contrôleur en un signal numérique. Les paramètres à prendre en compte pour la numérisation d’un signal sont la pleine échelle du module de conversion A/N Indique la plage de tension admissible en entrée du module. la dynamique Indique le nombre de bits utilisés pour coder une valeur analogique en numérique. la fréquence d’échantillonnage Notes : (1) la pleine échelle et la dynamique permettent de calculer la résolution en tension du module de conversion A/N ; (2) la fréquence d'échantillonnage doit respecter le (fameux) « théorème de Shannon » ; cf cours de traitement du signal. 121 Illustration par un exemple simple... Cahier des charges : On reprend le cahier des charges posé pour générer un signal rectangulaire avec le module PWM mais on cherche maintenant à ajuster en continu la fréquence de manière à ce qu'elle soit proportionnelle à la tension présentée sur la broche RA0. Pour permettre l'ajustement en continu de la tension, on déclenchera la conversion par interruption du TIMER0 automatiquement tous les 1/100 secondes. Questions : (1) Lisez la documentation et expliquez le fonctionnement du CAN sur la base de la figure 19-1. Reprenez la relation entre la valeur du registre PR2 qui gère la fréquence et calculez les valeurs extrêmes de fréquence atteignables. Déduisez de ce qui précède la valeur du prescaler pour obtenir des fréquences prises entre 244 Hz et 60 Khz. La relation entre la conversion et la fréquence est-elle linéaire ? Sachant que le CAN est un convertisseur 10 bits et que PR2 est un registre 8 bits, quels sont les bits du CAN que vous allez utiliser ? Quel sera l'inconvénient éventuel ? 122 Illustration par un exemple simple... Questions : (1) Identifiez les registres à initialiser et les valeurs associées. (2) Construisez l'algorigramme et écrivez le programme assembleur. 123 Algorigramme R ! T E É MPL CO A 124 Programme assembleur E R! T P LÉ O M AC ; Filename : CAN.asm ; ; Description : Génération d'un signal carré sur la ; par le module PWM avec ajustement de la fréquence en ; continu par conversion AN sur broche AN0. ; ; Author: ; Company: Universite Paul Cezanne ; Revision: 1.00 ; Date: 2007/09 Début 125 Programme assembleur [suite] E R! T PLÉ O M AC 126 Le « chien de garde » (Watchdog) Une watchdog (WDT) est un dispositif de protection pour éviter que le micro- contrôleur ne se bloque. Une watchdog effectue un redémarrage du système (RESET) si une action définie n’est pas effectuée dans un délai donné. Concrètement, l’utilisateur affecte une valeur à un registre (Watchdog Postscaler), qui définit une durée temporelle (timeout). Périodiquement le micro-contrôleur va incrémenter un registre (Watchdog counter). Si ce registre est plein (overflow), le micro- contrôleur effectue un re-démarrage. Pour que le micro-contrôleur ne redémarre pas, le programme doit périodiquement ré- initialiser le registre (Watchdog counter). 127 Les différents modes de fonctionnement En plus du mode de fonctionnement par défaut (Primary Run Mode), les micro- contrôleurs possèdent de nombreux autres modes de fonctionnement. L'existence de ces modes vise principalement à réduire la consommation d'énergie qui est une contrainte forte pour les systèmes embarqués. On notera principalement trois modes de fonctionnement : run mode --- mode de fonctionnement par défaut du micro-contrôleur, toutes les fonctions sont activées, la consommation d'énergie est maximale. sleep mode --- le micro-contrôleur est placé en mode sommeil, la consommation d'énergie est minimale, le micro-contrôleur peut-être réveillé par une interruption, IDLE mode --- le processeur du micro-contrôleur est arrêté, plus aucune instruction n'est exécutée, l'utilisateur peut choisir de désactiver des fonctions du micro-contrôleur afin de diminuer la consommation d'énergie. Les fonctions activées restantes fonctionnent normalement et peuvent réveiller le micro-contrôleur par une interruption. 128 Plan Présentation de l'informatique industrielle et des systèmes micro-programmés Architecture des micro-contrôleurs Présentation des différents éléments d'un micro-contrôleur, éléments de choix Rappels sur les nombres binaires et les différents codages Les instructions Rappels sur la logique combinatoire et séquentielle Étude du fonctionnement d'un micro-contrôleur : le PIC 18F4520 Programmation en Assembleur -- Rappel sur les algorigrammes Présentation des interruptions Étude d'un programme en Assembleur avec gestion des interruptions Présentation de fonctions intégrées (timer, PWM, etc.) 129 Presentation du langage C pour le µ-contrôleur / spécificité PIC 18F4520 Langage C & microcontrôleur De plus en plus, les programmes pour micro-contrôleur sont écrits en langage C. Ce langage permet de développer rapidement des programmes, des bibliothèques qui pourront être ensuite utilisées sur différentes machines. Pourquoi un langage tel que le C ? Universel : il n’est pas dédié à une application ! Moderne : structuré, déclaratif, récursif, avec structures de contrôle et de déclaration. Proche de la machine : manipulations de bits, pointeurs, possibilité d'incorporer de l'assembleur, etc. Portable : le même code peut être utilisé sur plusieurs machines [il faut toutefois faire attention à ne pas créer des fonctions spécifiques à une machine]. Extensible : il est possible de créer des bibliothèques ou d'en incorporer. 130 Documentation Microchip : « MPLAB C18 C COMPILER USER'S GUIDE (DS51288J) » Construction d'un exécutable (1) Alors que l'assembleur fait une conversion directe de mnémoniques en langage machine, le compilateur C doit construire le code machine à partir d'une syntaxe de plus haut niveau. Le recours à des librairies pré-compilées est permis par l'éditeur de lien qui construit un exécutable à partir des différents fichiers objets. Bibliothèque pré- Bibliothèques C Fichiers header compilée Source du main() #include main(){ fichier texte fichier texte fichier objet int MAX, cpt; *.c *.h *.o MAX = 0x45; for(cpt=0; cpt< MAX; cpt++) } PRE-PROCESSEUR COMPILATEUR ÉDITEUR DE LIENS (C18) Lie tous les fichiers objets Remplace les #define et Transforme le source C et crée un exécutable effectue les #include en un fichier objet (code machine) Un code compilé est systématiquement plus lent et plus ! gourmand en mémoire qu'un code assemblé ! Exécutable 131 Construction d'un exécutable (2) Assembleur et compilateur peuvent néanmoins être utilisés pour construire un seul exécutable, cf. ci-dessous. Là encore, l'éditeur de lien s'occupe de construire le code machine exécutable à partir des différents fichiers objets. Entrées (sources) Compilateur C (ici Assembleur C18) Fichiers pré compilés Construction de librairies Scriptes de configuration de l'éditeur de lien Éditeur de liens