ENGR 207 Fluid Mechanics: Applications of Momentum Principle PDF

Document Details

OptimisticRainbowObsidian7325

Uploaded by OptimisticRainbowObsidian7325

Zewail City of Science and Technology

Safwat Mahmoud

Tags

fluid mechanics momentum principle finite control volume engineering

Summary

These lecture notes cover applications of the momentum principle in fluid mechanics, focusing on various scenarios such as free jets striking plates, sudden expansion and contraction in pipes, and bends. The document explains the theoretical concepts and provides examples, making it suitable for undergraduate engineering students studying fluid mechanics.

Full Transcript

# ENGR 207 Fluid Mechanics ## *Chapter Four: Finite Control Volume Analysis* ### **4. Application on Momentum Principle** - Safwat Mahmoud, PhD, PMP® - Associate Professor of Sanitary & Environmental Engineering, Cairo University - Adjunct Faculty in the Environmental Engineering Program - Zewail...

# ENGR 207 Fluid Mechanics ## *Chapter Four: Finite Control Volume Analysis* ### **4. Application on Momentum Principle** - Safwat Mahmoud, PhD, PMP® - Associate Professor of Sanitary & Environmental Engineering, Cairo University - Adjunct Faculty in the Environmental Engineering Program - Zewail City ## **CONTENT** - Law of conservation of momentum - Control volume concept - Applications - Free Jet Strikes Plate - Sudden Expansion and Contraction - Bends ## **The Law of Conservation of Momentum** - States that a body in motion cannot gain or lose momentum unless some external force(s) is applied. - The classical statement of this law is Newton's Second Law of Motion, i.e. - **force(s) = rate of change of momentum** ## **Principle of Momentum** - Momentum *M* = *mv* - Rate of Momentum: $$\frac{dM}{dt}=\frac{d}{dt}(mv)=\frac{d}{dt}(ma)=F$$ - **The rate of change of momentum is equal to the force applied.** - $$F=\frac{d}{dt}(ρV v)=\frac{d}{dt}(ρV)v$$ - *ρ* is constant for incompressible fluid. - $$F=ρQv$$ ## **Principle of the Momentum (Cont.)** - For this stream tube, the change of momentum of fluid ABCD: - = momentum of fluid A'AB'B - momentum of fluid CC'D'D - = *mv<sub>1</sub>- mv<sub>2</sub>* = *ρV*v<sub>1</sub>- *ρV*v<sub>2</sub>* - = *ρQ*v<sub>1</sub>*dt - *ρQ*v<sub>2</sub>*dt - Rate of change of momentum between AB and CD = *ρQ*(v<sub>1</sub>-v<sub>2</sub>*) - (F)<sub>from fluid</sub> = *ρQ*[v<sub>in</sub>-v<sub>out</sub>]* - Remember: **ρQ=m** ## **The Control Volume (CV) Concept** - Equations for flow, forces, and the energy will be written for **a fixed control volume of fluid** (e.g. a section of pipe). - **A properly drawn and labeled CV is an immense help in problem-solving.** - (F)<sub>from fluid</sub> = *ρQ*[v<sub>in</sub>-v<sub>out</sub>]* - **Forces resulting from fluid and affecting adjacent bodies.** - (F)<sub>on fluid</sub> = *ρQ*[v<sub>out</sub>-v<sub>in</sub>]* - **Forces on the fluid from adjacent bodies.** - The difference in velocities (*v<sub>in</sub>- v<sub>out</sub>*) represents the change in momentum of the fluid. This change in momentum results in a force being exerted on the surrounding bodies. ## **Applications: Free Jet Strikes Plate** ### Assumptions; - 1. **The plate is smooth(frictionless)** - the force in the plate direction equals zero. - 2. **There is no impact** - *Q<sub>1</sub> = Q<sub>2</sub>+Q<sub>3</sub>* - 3. **Water strikes the plate and leaves it with the same velocity.** ## **Free Jet on Flat & Curved Plates** ## **Applications: Flat Plate** ### **1) Fixed plate (Stationary)** - *V* is the jet velocity. - In the X-Direction: - *F<sub>x</sub>* = *ρQ*[v<sub>in</sub> -v<sub>out</sub>]* - F<sub>x</sub> = *ρa<sub>1</sub>*V[V-0]= [*ρa<sub>1</sub>*[V<sup>2</sup>] - In the Y-Direction: - *F<sub>y</sub>* = *ρQ*[v<sub>in</sub>-v<sub>out</sub>]* = 0 - *F<sub>y</sub>* = 0 - [*ρQ<sub>2</sub>*v - *ρQ<sub>3</sub>*v] = 0 - *Q<sub>2</sub>* = *Q<sub>3</sub>*= *Q*/2* - *Q* = *a*V* ## **Example 1** - Given a tank discharging 0.4 m³/s to a plate, as shown in the figure. Calculate the required horizontal force *F* to hold the plate in position. - **Solution:** - Applying Bernoulli's equation between points *A* and *B*: - *P<sub>A</sub>*/γ + *z<sub>A</sub>*/g + *V<sub>A</sub><sup>2</sup>*/(2g) = *P<sub>B</sub>*/γ + *z<sub>B</sub>*/g + *V<sub>B</sub><sup>2</sup>*/(2g) - *V<sub>B</sub>* = √2*P<sub>A</sub>*/ρ = √2*75000/1000 = 12.3 m/s - *F* = *ρQ*V = 1000 * 0.4 * 12.3 = **4.9 kN** ## **Applications: (a) Flat Plate** ### **2) Single moving plate** - *V* is the jet velocity. - *v* is the velocity of the moving plate. - *v<sub>r</sub>* = *V-v* = relative velocity = velocity at which water hits the plate. - *F<sub>x</sub>* = *ρQ*[v<sub>in</sub> - v<sub>out</sub>]* - *F<sub>x</sub>* = *ρa<sub>1</sub>*v<sub>r</sub>*[v<sub>r</sub>-0]* - *F<sub>x</sub>* = *ρa<sub>1</sub>*[V - v]<sup>2</sup>* - **Pay attention:** *Q<sub>1</sub>* not *Q* ### **3) Series of moving plates** - *F<sub>n</sub>* = *ρQ*[v<sub>in</sub> -v<sub>out,n</sub>]* - = *ρQ*[v<sub>r</sub> - 0]* - = *Q*[v-v]* / *g* - *Q* = *Q* for total vanes - Note: Work done (W.D) = *F*d - Power = W.D/t = Rate of Work Done = *F*d/t - Output power = W.D/t = *F<sub>x</sub>*v = *ρQ*[V -v]*v ## **Applications: (a) Flat Plate (Cont.)** - Output power = W.D/t = *F<sub>x</sub>*v = *ρQ*[V-v]*v - Input power = W.D/t = (1/2)*mv<sup>2</sup>= (1/2)*ρQV<sup>2</sup>= *ρQ*V<sup>2</sup>/2 - Efficiency (η) = (O.P)/(I.P)= 2[V-v]v/V<sup>2</sup> - To get maximum efficiency, differentiate with respect to *v*: - For η<sub>max</sub>: - *dn/dv* = 2[V-2v]v/V<sup>2</sup>=0 - *V*=2*v* - η<sub>max</sub>= 2[2*v*-v]v/4v<sup>2</sup>= 0.5 = 50% ## **Summary** | Parameter | Flat Plate | Curved Plate | | ------------- | ------------- | ------------- | | Fixed Plate | *F<sub>x</sub>* = *ρQ*V | *F<sub>x</sub>*= *ρQ*V*(1-cosθ) *<br>*F<sub>y</sub>* = *ρQ*(-v*sinθ)* | |. |. |. | | Moving Plate | *F<sub>x</sub>* = *ρQ*v<sub>r</sub> | *F<sub>x</sub>*= *ρQ*v<sub>r</sub>*(1-cosθ) *<br>*F<sub>y</sub>* = *ρQ*(-v<sub>r</sub>*sinθ)*| |. |. |. | | Series of Moving Plates | *F<sub>n</sub>* = *ρQ*v<sub>r</sub> *<br> η= 2V-v/V<sup>2</sup>* | *F<sub>n</sub>*= *ρQ*v*(1-cosθ) *<br> η= 2V-v/V<sup>2</sup>*(1-cosθ)* | ## **Applications: (b) Curved Plate** ### **1) Fixed plate (Stationary) ** - *V* is the jet velocity - *F<sub>x</sub>*= *ρQ*[v<sub>in,x</sub> - v<sub>out,x</sub>]* - *F<sub>x</sub>*= *ρQ*(V - Vcosθ) = *ρa<sub>1</sub>*V(V - Vcosθ) - *F<sub>y</sub>*= *ρQ*(0 - Vsindθ) = *ρa<sub>1</sub>*V(0 - Vsindθ) ### **2) Single moving curved plate** - *v* is the velocity of the moving plate. - *v<sub>r</sub>* = *V-v* = relative velocity = velocity at which water hits the plate. - *F<sub>x</sub>* = *ρQ*[v<sub>in,x</sub> - v<sub>out,x</sub>]* - *F<sub>x</sub>*= *ρa<sub>1</sub>*v<sub>r</sub>*[v<sub>r</sub>- v<sub>r</sub>cosθ]* - *F<sub>y</sub>*= *ρa<sub>1</sub>*v<sub>r</sub>*[0-v<sub>r</sub>sinθ]* - W.D/t = *F<sub>x</sub>* = *F<sub>x</sub>*v ## **Application: (b) Curved Plate** ### **3) Series of moving curved plates** - *F<sub>x</sub>* = *ρQ*[v<sub>r</sub> - v<sub>r</sub>cosθ]* - *F<sub>x</sub>* = *ρQ*[V-v]*(1-cosθ) - W.D/t = *O.P* = *ρQ*[V-v]*(1-cosθ)*v - *I.P* = W.D/t = *ρQ*V<sup>2</sup>/2 - η = (O.P)/(I.P) = 2[V-v]*(1-cosθ)v/V<sup>2</sup> ## **Applications: (b) Curved Plate (Cont.)** - For η<sub>max</sub>: - 2[V-2v]*(1-cosθ)v/V<sup>2</sup>=0 - (1-cosθ)≠0 - V - 2v =0 - V=2v - η<sub>max</sub>= 2[2v-v]*(1-cosθ)v/4v<sup>2</sup> = 0.5(1-cosθ) ## **Summary** | Parameter | Flat Plate | Curved Plate | | ------------- | ------------- | ------------- | | Fixed Plate | *F<sub>x</sub>* = *ρQ*V | *F<sub>x</sub>*= *ρQ*V*(1-cosθ) *<br>*F<sub>y</sub>* = *ρQ*(-v*sinθ)* | |. |. |. | | Moving Plate | *F<sub>x</sub>* = *ρQ*v<sub>r</sub> | *F<sub>x</sub>*= *ρQ*v<sub>r</sub>*(1-cosθ) *<br>*F<sub>y</sub>* = *ρQ*(-v<sub>r</sub>*sinθ)*| |. |. |. | | Series of Moving Plates | *F<sub>n</sub>* = *ρQ*v<sub>r</sub> *<br> η= 2V-v/V<sup>2</sup>* | *F<sub>n</sub>*= *ρQ*v*(1-cosθ) *<br> η= 2V-v/V<sup>2</sup>*(1-cosθ)* | ## **Sudden Enlargement and Contraction** ### **Losses in Sudden Enlargement** - To calculate the losses due to sudden enlargement: - Applying B.E between points 1, 2 - *P<sub>1</sub>*/γ + *V<sub>1</sub><sup>2</sup>*/(2g) = *P<sub>2</sub>*/γ + *V<sub>2</sub><sup>2</sup>*/(2g) + *h<sub>1</sub>* - *h<sub>1</sub>* = (*P<sub>1</sub>* - *P<sub>2</sub>*)/γ + (*V<sub>1</sub><sup>2</sup>*/(2g) - *V<sub>2</sub><sup>2</sup>*/(2g) - **(F)<sub>on fluid</sub>** = **ρQ*[v<sub>out</sub> - v<sub>in</sub>]*** - **Forces on the fluid from adjacent bodies** - *F<sub>1</sub> - F<sub>2</sub>* = *Q*[v<sub>out</sub>-v<sub>in</sub>]*/g - *P<sub>1</sub>*A<sub>1</sub> + *p*(A2 - A<sub>1</sub>)- *P<sub>2</sub>*A<sub>2</sub> = *Q*[v<sub>2</sub> - v<sub>1</sub>]*/g - **but p'=P<sub>1</sub>** (from experiments) - *P<sub>1</sub>*A<sub>1</sub> + *P<sub>1</sub>*A<sub>2</sub> -*P<sub>1</sub>*A<sub>1</sub> - *P<sub>2</sub>*A<sub>2</sub> = *Q*[v<sub>2</sub> - v<sub>1</sub>]*/g - (*P<sub>1</sub>* - *P<sub>2</sub>*)A<sub>2</sub> = *Q*A<sub>2</sub>[v<sub>2</sub><sup>2</sup> - v<sub>1</sub><sup>2</sup>]*/g - *P<sub>1</sub>*/γ - *P<sub>2</sub>*/γ = *Q*V<sub>2</sub><sup>2</sup>*/g - *QV<sub>1</sub><sup>2</sup>*/g - **From (1) & (2)** - *h<sub>l</sub>* = *V<sub>1</sub><sup>2</sup>*/g - *V<sub>1</sub>V<sub>2</sub>*/g + *V<sub>2</sub><sup>2</sup>*/(2g) - *V<sub>2</sub><sup>2</sup>*/(2g) - *h<sub>l</sub>* = (*V<sub>1</sub>* - *V<sub>2</sub>*)<sup>2</sup>/(2g) ### **Losses in Sudden Contraction** - Losses are mainly due to sudden enlargement between A<sub>c</sub> and A<sub>2</sub>: - *h<sub>l</sub>* = (*V<sub>c</sub> -*V<sub>2</sub>*)<sup>2</sup>/(2g) - *h<sub>l</sub>* = [(*A<sub>2</sub>*/A<sub>c</sub> -1) * V<sub>2</sub><sup>2</sup>/(2g)]= [(*C<sub>c</sub>* -1)* *V<sub>2</sub><sup>2</sup>*/(2g)] = k*V<sub>2</sub><sup>2</sup>*/(2g) - *k* = *φ*(D<sub>1</sub>/D<sub>2</sub>)<1.0 - A<sub>c</sub>K = A<sub>2</sub>V<sub>2</sub> - C<sub>c</sub> = A<sub>c</sub>/A<sub>2</sub> ## **Bends** - Sharp bends result in separation downstream of the bend. - The turbulence in the separation zone causes flow resistance. - Greater radius of bend reduces flow resistance. ## **Vertical Bend** - Control Volume = abcd - **For x direction:** - *P<sub>1</sub>*A<sub>1</sub> - *P<sub>2</sub>*A<sub>2</sub>cosθ - *F<sub>x</sub>* = *ρQ*(v<sub>out,x</sub> - v<sub>in,x</sub>) - **(F<sub>x</sub>)<sub>on fluid</sub>** = *P<sub>1</sub>*A<sub>1</sub> -*P<sub>2</sub>*A<sub>2</sub>cosθ - *Q/g*[v<sub>2</sub>cosθ - v<sub>1</sub>] - **For z direction:** - -*P<sub>2</sub>*A<sub>2</sub>sinθ - W + *F<sub>z</sub>* = *ρQ*(v<sub>out,z</sub> - v<sub>in,z</sub>) - **(F<sub>z</sub>)<sub>on fluid</sub>** = - *P<sub>2</sub>*A<sub>2</sub>sinθ + W + *Q/g*[v<sub>2</sub>sinθ - 0.0] - *F<sub>T</sub>* = √*F<sub>x</sub><sup>2</sup>* + *F<sub>z</sub><sup>2</sup>* - tanα = *F<sub>z</sub>*/ *F<sub>x</sub>* - **(F<sub>x</sub>) <sub>on bend</sub>** = - *P<sub>1</sub>*A<sub>1</sub> + *P<sub>2</sub>*A<sub>2</sub>cosθ + *Q/g*[v<sub>2</sub>cosθ - v<sub>1</sub>] - **(F<sub>z</sub>)<sub> on bend</sub>** = -*P<sub>2</sub>*A<sub>2</sub>sinθ - W - *Q/g*[v<sub>2</sub>sinθ - 0.0] - **If the bend is horizontal, the weight W is not included.** ## **Example** - Find the x and y components of the force required to hold the bend shown below in place. Pressure p<sub>1</sub> and p<sub>2</sub> are gauge pressures. - **Solution:** - **Momentum Equation:** - ∑F<sub>x</sub> = m(-V<sub>2</sub>-V<sub>1</sub>) - *P<sub>1</sub>*A<sub>1</sub> + F<sub>x</sub> + *P<sub>2</sub>*A<sub>2</sub> = *m*(-V<sub>2</sub> - V<sub>1</sub>) - F<sub>x</sub> = *m*(-V<sub>2</sub> - V<sub>1</sub>) - *P<sub>1</sub>*A<sub>1</sub> - *P<sub>2</sub>*A<sub>2</sub> - **Mass Flow Rate** - *m* = *ρAV<sub>1</sub>* = 998*π/4*0.2<sup>2</sup>*10 = 314.16kg/sec - **Horizontal Force** - *F<sub>x</sub>* = *m*(-V<sub>2</sub> - V<sub>1</sub>) - *P<sub>1</sub>*A<sub>1</sub> - *P<sub>2</sub>*A<sub>2</sub> - *F<sub>x</sub>*= 314.16(-10-10) - 140000*π/2*0.2<sup>2</sup>- 120000*π/2*0.2<sup>2</sup> - *F<sub>x</sub>* = -14451 N - **Vertical Force:** - *F<sub>y</sub>*= 0 - **F<sub>x</sub>** = -14451 N - force acting by bend on fluid. - **F<sub>x</sub>** = 14451 N- force acting by bend on fluid. - **F<sub>x</sub>** = 14451 N - force acting on bend by fluid. - **F<sub>x</sub>**= 14451 N - force required to hold bend in place. ## **Thank You** Any Questions?

Use Quizgecko on...
Browser
Browser