Chemical Foundations PDF
Document Details
Uploaded by UnparalleledGroup8297
AASTMT
Tags
Summary
This document provides an introduction to the fundamental concepts of chemistry. It covers different perspectives on chemistry, ranging from the theoretical to the practical. The document also defines chemistry, elements and compounds, and discusses the macroscopic and microscopic views of matter.
Full Transcript
Chemical Foundations Chemistry is a very universal and dynamically-changing subject to be confined to a fixed definition; it might be better to think of chemistry more as a point of view that places its major focus on the structure and properties of substances— particular kinds of matter— and espec...
Chemical Foundations Chemistry is a very universal and dynamically-changing subject to be confined to a fixed definition; it might be better to think of chemistry more as a point of view that places its major focus on the structure and properties of substances— particular kinds of matter— and especially on the changes they undergo. The real importance of Chemistry is that it serves as the interface to practically all of the other sciences, as well as to many other areas of human endeavor. For this reason, Chemistry is often said (at least by chemists!) to be the "central science". Chemistry can be "central" in a much more personal way: with a solid background in Chemistry, you will find it far easier to migrate into other fields as your interests develop. So just what is chemistry? Do you remember the story about the group of blind men who encountered an elephant? Each one moved his hands over a different part of the elephant's body— the trunk, an ear, or a leg— and came up with an entirely different description of the beast. Chemistry can similarly be approached in different ways, each yielding a different, valid, and yet hopelessly incomplete view of the subject. Thus we can view chemistry from multiple standpoints ranging from the theoretical to the eminently practical: Mainly theoretical Mainly practical Why do particular combinations of atoms What are the properties of a certain hold together, but not others? compound? How can I predict the shape of a molecule? How can I prepare a certain compound? Why are some reactions slow, while others Does a certain reaction proceed to occur rapidly? completion? How can I determine the composition of an Is a certain reaction possible? unknown substance? Chemistry is the study of substances; their properties, structure, and the changes they undergo. Micro-macro: the forest or the trees Chemistry, like all the natural sciences, begins with the direct observation of nature — in this case, of matter. But when we look at matter in bulk, we see only the "forest", not the "trees" — the atoms and molecules of which matter is composed of — whose properties ultimately determine the nature and behavior of the matter we are looking at. This dichotomy between what we can and cannot directly see constitutes two contrasting views which run through all of chemistry, which we call macroscopic and microscopic. In the context of Chemistry, "microscopic" implies the atomic or subatomic levels which cannot be seen directly (even with a microscope!) whereas "macroscopic" implies things that we can know by direct observations of physical properties such as mass, volume, etc. The following table provides a conceptual overview of Chemical science according to the macroscopic/microscopic dichotomy we have discussed above. It is of course only one of the many ways of looking at the subject, but you may find it helpful in organizing the many facts and ideas that you will encounter in your study of Chemistry. We will organize the discussion in this lesson along similar lines. realm macroscopic view microscopic view structures of solids, molecules, composition formulas, mixtures and atoms particle sizes, masses and properties intensive properties of bulk matter interactions change (energetics) energetics and equilibrium statistics of energy distribution change (dynamics) kinetics (rates of reactions) mechanisms Chemical composition Mixture or "pure substance" ? In science it is necessary to know what we are talking about, so before we can begin to consider matter from a chemical point of view, we need to know its composition; whether it is a single substance, or a mixture? (We will get into the details of the definitions later, but for the moment you probably have a fair understanding of the distinction; think of a sample of salt (sodium chloride) as opposed to a solution of salt in water— a mixture of salt and water.) Elements and compounds It has been known for at least a thousand years that some substances can be broken down by heating or chemical treatment into "simpler" ones, but there is always a limit; we eventually get substances known as elements that cannot be reduced to any simpler forms by ordinary chemical or physical means. What is our criterion for "simpler"? The most observable (and therefore macroscopic) property is the weight. The idea of a minimal unit of chemical identity that we call an element developed from experimental observations of the relative weights of substances involved in chemical reactions. For example, the compound mercuric oxide can be broken down by heating into two other substances: 2HgO→2Hg+O2 but the two products, metallic mercury and dioxygen, cannot be decomposed into simpler substances, so they must be elements. Elements and atoms The definition of an element given above is an operational one; a certain result (or in this case, a non-result!) of a procedure that might lead to the decomposition of a substance into lighter units will tentatively place that substance into one of the categories: element or compound. Because this operation is carried out on bulk matter, the concept of the element is also a macroscopic one. The atom, by contrast, is a microscopic concept which in modern chemistry relates the unique character of every chemical element to an actual physical particle.The idea of the atom as the smallest particle of matter had its origins in Greek philosophy around 400 BCE but was controversial from the start (both Plato and Aristotle maintained that matter was infinitely divisible.) It was not until 1803 that John Dalton proposed a rational atomic theory to explain the facts of chemical combination as they were then known, thus being the first to employ macroscopic evidence to illuminate the microscopic world. It wasn't until the 1900s that the atomic theory became universally accepted. In the 1920's it became possible to measure the sizes and masses of atoms, and in the 1970's techniques were developed that produced images of individual atoms. Formula and structure The formula of a substance expresses the relative number of atoms of each element it contains. Because the formula can be determined by experiments on bulk matter, it is a macroscopic concept even though it is expressed in terms of atoms. What the ordinary chemical formula does not tell us is the order in which the component atoms are connected, whether they are grouped into discrete units (molecules) or are two- or three dimensional extended structures, as is the case with solids such as ordinary salt. The microscopic aspect of composition is the structure, which gives detailed relative locations (in two or three dimensional space) of each atom within the minimum collection needed to define the structure of the substance. Macroscopic Microscopic Substances are defined at the macroscopic The elements hydrogen and oxygen combine level by their formulas or compositions, and to form a compound whose composition is at the microscopic level by their structures. expressed by the formula H2O. The molecule of water has the structure shown here. Chemical substances that cannot be broken down into simpler ones are known as elements. The actual physical particles of which elements are composed are atoms or molecules Sulfur – the element in its orthorhombic crystalline form. molecule is an octagonal ring of sulfur atoms. The crystal shown at the left is composed of an ordered array of these molecules. Compounds and molecules As we indicated above, a compound is a substance containing more than one element. Since the concept of an element is macroscopic and the distinction between elements and compounds was recognized long before the existence of physical atoms was accepted, the concept of a compound must also be a macroscopic one that makes no assumptions about the nature of the ultimate. Thus when carbon burns in the presence of oxygen, the product carbon dioxide can be shown by (macroscopic) weight measurements to contain both of the original elements: C + O2 ⟶ CO2 10.0 g + 26.7 g = 36.7 g One of the important characteristics of a compound is that the proportions by weight of each element in a given compound are constant. For example, no matter what weight of carbon dioxide we have, the percentage of carbon it contains is (10.0 / 36.7) = 0.27, or 27%. Molecules A molecule is an assembly of atoms having a fixed composition, structure, and distinctive, measurable properties. "Molecule" refers to a kind of particle, and is therefore a microscopic concept. Even at the end of the 19th century, when compounds and their formulas had long been in use, some prominent chemists doubted that molecules (or atoms) were any more than a convenient model. Molecules suddenly became real in 1905, when Albert Einstein showed that Brownian motion, the irregular microscopic movements of tiny pollen grains floating in water, could be directly attributed to collisions with molecule-sized particles. Finally, we get to see one! In 2009, IBM scientists in Switzerland succeeded in imaging a real molecule, using a technique known as atomic force microscopy in which an atoms thin metallic probe is drawn ever-so-slightly above the surface of an immobilized pentacene molecule cooled to nearly absolute zero. In order to improve the image quality, a molecule of carbon monoxide was placed on the end of the probe. The image produced by the AFM probe is shown at the very bottom. What is actually being imaged is the surface of the electron clouds of the molecule, which consists of six hexagonal rings of carbon atoms with hydrogen on its periphery. The tiny bumps that correspond to these hydrogen atoms attest to the remarkable resolution of this experiment Computer-model of Nicotine molecule C10H14N2 by Ronald Perry Confused about the distinction between molecules and compounds? A molecule but not a compound - Ozone, O3, is not a compound because it contains only a single element. This well-known molecule is a compound because it contains more than one element. Ordinary solid salt is a compound but not a molecule. It is built from interpenetrating lattices of sodium and chloride ions that extend indefinitely. Chemicals Compose Ordinary Things Chemistry is the branch of science dealing with the structure, composition, properties, and the reactive characteristics of matter. Matter is anything that has mass and occupies space. Thus, chemistry is the study of literally everything around us—the liquids that we drink, the gases we breathe, the composition of everything from the plastic case on your phone to the earth beneath your feet. Moreover, chemistry is the study of the transformation of matter. Crude oil is transformed into more useful petroleum products, such as gasoline and kerosene, by the process of refining. Some of these products are further transformed into plastics. Crude metal ores are transformed into metals, that can then be fashioned into everything from foil to automobiles. Potential drugs are identified from natural sources, isolated and then prepared in the laboratory. Their structures are systematically modified to produce the pharmaceuticals that have led to vast advances in modern medicine. Chemistry is at the center of all of these processes; chemists are the people that study the nature of matter and learn to design, predict, and control these chemical transformations. Within the branches of chemistry you will find several apparent subdivisions. Inorganic chemistry, historically, focused on minerals and metals found in the earth, while organic chemistry dealt with carbon-containing compounds that were first identified in living things. Biochemistry is an outgrowth of the application of organic chemistry to biology and relates to the chemical basis for living things. In the later chapters of this text we will explore organic and biochemistry in a bit more detail and you will notice examples of organic compounds scattered throughout the text. Today, the lines between the various fields have blurred significantly and a contemporary chemist is expected to have a broad background in all of these areas. Matter is defined as any substance that has mass. It is important to distinguish here between weight and mass. Weight is the result of the pull of gravity on an object. On the Moon, an object will weigh less than the same object on Earth because the pull of gravity is less on the Moon. The mass of an object, however, is an inherent property of that object and does not change, regardless of location, gravitational pull, or anything else. It is a property that is solely dependent on the quantity of matter within the object. Contemporary theories suggests that matter is composed of atoms. Atoms themselves are constructed from neutrons, protons and electrons, along with an ever-increasing array of other subatomic particles. We will focus on the neutron, a particle having no charge; the proton, which carries a positive charge; and the electron, which has a negative charge. Atoms are incredibly small. To give you an idea of the size of an atom, a single copper penny contains approximately 28,000,000,000,000,000,000,000 atoms (that’s 28 sextillion). Because atoms and subatomic particles are so small, their mass is not readily measured using pounds, ounces, grams or any other scale that we would use on larger objects. Instead, the mass of atoms and subatomic particles is measured using atomic mass units (abbreviated amu). The atomic mass unit is based on a scale that relates the mass of different types of atoms to each other (using the most common form of the element carbon as a standard). The amu scale gives us a convenient means to describe the masses of individual atoms and to do quantitative measurements concerning atoms and their reactions. Within an atom, the neutron and proton both have a mass of one amu; the electron has a much smaller mass (about 0.0005 amu). Atomic theory places the neutron and the proton in the center of the atom in the nucleus. In an atom, the nucleus is very small, very dense, carries a positive charge (from the protons) and contains virtually all of the mass of the atom. Electrons are placed in a diffuse cloud surrounding the nucleus. The electron cloud carries a net negative charge (from the charge on the electrons) and in a neutral atom there are always as many electrons in this cloud as there are protons in the nucleus (the positive charges in the nucleus are balanced by the negative charges of the electrons, making the atom neutral). An atom is characterized by the number of neutrons, protons and electrons that it possesses. Today, we recognize at least 116 different types of atoms, each type having a different number of protons in its nucleus. These different types of atoms are called elements. The neutral element hydrogen (the lightest element) will always have one proton in its nucleus and one electron in the cloud surrounding the nucleus. The element helium will always have two protons in its nucleus. It is the number of protons in the nucleus of an atom that defines the identity of an element. Elements can, however, have differing numbers of neutrons in their nucleus. For example, stable helium nuclei exist that contain one, or two neutrons (but they all have two protons). These different types of helium atoms have different masses (3 or 4 amu) and they are called isotopes. For any given isotope, the sum of the numbers of protons and neutrons in the nucleus is called the mass number. All elements exist as a collection of isotopes, and the mass of an element that we use in chemistry, the atomic mass, is the average of the masses of these isotopes. For helium, there is approximately one isotope of Helium-3 for every one million isotopes of Helium-4, hence the average atomic mass is very close to 4 (4.002602). As different elements were discovered and named, abbreviations of their names were developed to allow for a convenient chemical shorthand. The abbreviation for an element is called its chemical symbol. A chemical symbol consists of one or two letters, and the relationship between the symbol and the name of the element is generally apparent. Thus helium has the chemical symbol He,nitrogen is N, and lithium is Li. Sometimes the symbol is less apparent but is decipherable; magnesium is Mg, strontium is Sr, and manganese is Mn. Symbols for elements that have been known since ancient times, however, are often based on Latin or Greek names and appear somewhat obscure from their modern English names. For example, copper is Cu (from cuprum), silver is Ag (from argentum), gold is Au (from aurum), and iron is Fe (from ferrum). Throughout your study of chemistry, you will routinely use chemical symbols and it is important that you begin the process of learning the names and chemical symbols for the common elements. By the time you complete General Chemistry, you will find that you are adept at naming and identifying virtually all of the 116 known elements. Table contains a starter list of common elements that you should begin learning now The chemical symbol for an element is often combined with information regarding the number of protons and neutrons in a particular isotope of that atom to give the atomic symbol. To write an atomic symbol, begin with the chemical symbol, then write the atomic number for the element (the number of protons in the nucleus) as a subscript, preceding the chemical symbol. Directly above this, as a superscript, write the mass number for the isotope, that is, the total number of protons and neutrons in the nucleus. Thus, for helium, the atomic number is 2 and there are two neutrons in the nucleus for the most common isotope, making the atomic symbol. In the definition of the atomic mass unit, the “most common isotope of carbon”, , is defined as having a mass of exactly 12 amu and the atomic masses of the remaining elements are based on their masses relative to this isotope. Chlorine (chemical symbol Cl) consists of two major isotopes, one with 18 neutrons (the most common, comprising 75.77% of natural chlorine atoms) and one with 20 neutrons (the remaining 24.23%). The atomic number of chlorine is 17 (it has 17 protons in its nucleus), therefore the chemical symbols for the two isotopes are and. When data is available regarding the natural abundance of various isotopes of an element, it is simple to calculate the average atomic mass. In the example above, was the most common isotope with an abundance of 75.77% and had an abundance of the remaining 24.23%. To calculate the average mass, first convert the percentages into fractions; that is, simply divide them by 100. Now, chlorine-35 represents a fraction of natural chlorine of 0.7577 and has a mass of 35 (the mass number). Multiplying these, we get (0.7577 × 35) = 26.51. To this, we need to add the fraction representing chlorine-37, or (0.2423 × 37) = 8.965; adding, (26.51 + 8.965) = 35.48, which is the weighted average atomic mass for chlorine. Whenever we do mass calculations involving elements or compounds (combinations of elements), we always need to use average atomic masses.