491Chap1.pdf
Document Details
Uploaded by Deleted User
Full Transcript
Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issue...
Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Slides originally by Jiawei Han, Micheline Kamber, and Jian Pei Why Data Mining? The Explosive Growth of Data: from terabytes to petabytes Data collection and data availability Automated data collection tools, database systems, Web, computerized society Major sources of abundant data Business: Web, e-commerce, transactions, stocks, … Science: Remote sensing, bioinformatics, scientific simulation, … Society and everyone: news, digital cameras, YouTube We are drowning in data, but starving for knowledge! “Necessity is the mother of invention”—Data mining—Automated analysis of massive data sets Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary What Is Data Mining? Data mining (knowledge discovery from data) Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data Data mining: a misnomer? Alternative names Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc. Watch out: Is everything “data mining”? Simple search and query processing (Deductive) expert systems Knowledge Discovery (KDD) Process This is a view from typical database systems and data warehousing communities Pattern Evaluation Data mining plays an essential role in the knowledge discovery process Data Mining Task-relevant Data Data Warehouse Selection Data Cleaning Data Integration Databases Example: A Web Mining Framework Web mining usually involves Data cleaning Data integration from multiple sources Warehousing the data Data cube construction Data selection for data mining Data mining Presentation of the mining results Patterns and knowledge to be used or stored into knowledge- base Data Mining in Business Intelligence Increasing potential to support business decisions End User Decision Making Data Presentation Business Analyst Visualization Techniques Data Mining Data Analyst Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses DBA Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems KDD Process: A Typical View from ML and Statistics Input Data Data Pre- Data Post- Processing Mining Processing Data integration Pattern discovery Pattern evaluation Normalization Association & correlation Pattern selection Feature selection Classification Pattern interpretation Clustering Dimension reduction Pattern visualization Outlier analysis ………… This is a view from typical machine learning and statistics communities Which View Do You Prefer? Which view do you prefer? KDD vs. ML/Stat. vs. Business Intelligence Depending on the data, applications, and your focus Data Mining vs. Data Exploration Business intelligence view Warehouse, data cube, reporting but not much mining Business objects vs. data mining tools Supply chain example: mining vs. OLAP vs. presentation tools Data presentation vs. data exploration Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Multi-Dimensional View of Data Mining Data to be mined Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks Knowledge to be mined (or: Data mining functions) Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc. Descriptive vs. predictive data mining Multiple/integrated functions and mining at multiple levels Techniques utilized Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc. Applications adapted Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc. Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Data Mining: On What Kinds of Data? Database-oriented data sets and applications Relational database, data warehouse, transactional database Advanced data sets and advanced applications Data streams and sensor data Time-series data, temporal data, sequence data (incl. bio-sequences) Structure data, graphs, social networks and multi-linked data Object-relational databases Heterogeneous databases and legacy databases Spatial data and spatiotemporal data Multimedia database Text databases The World-Wide Web Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Data Mining Function: (1) Generalization Information integration and data warehouse construction Data cleaning, transformation, integration, and multidimensional data model Data cube technology Scalable methods for computing (i.e., materializing) multidimensional aggregates OLAP (online analytical processing) Multidimensional concept description: Characterization and discrimination Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet region Data Mining Function: (2) Association and Correlation Analysis Frequent patterns (or frequent itemsets) What items are frequently purchased together in your Walmart? Association, correlation vs. causality A typical association rule Diaper → Beer [0.5%, 75%] (support, confidence) Are strongly associated items also strongly correlated? How to mine such patterns and rules efficiently in large datasets? How to use such patterns for classification, clustering, and other applications? Data Mining Function: (3) Classification Classification and label prediction Construct models (functions) based on some training examples Describe and distinguish classes or concepts for future prediction E.g., classify countries based on (climate), or classify cars based on (gas mileage) Predict some unknown class labels Typical methods Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern- based classification, logistic regression, … Typical applications: Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, … Data Mining Function: (4) Cluster Analysis Unsupervised learning (i.e., Class label is unknown) Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns Principle: Maximizing intra-class similarity & minimizing interclass similarity Many methods and applications Data Mining Function: (5) Outlier Analysis Outlier analysis Outlier: A data object that does not comply with the general behavior of the data Noise or exception? ― One person’s garbage could be another person’s treasure Methods: by product of clustering or regression analysis, … Useful in fraud detection, rare events analysis Time and Ordering: Sequential Pattern, Trend and Evolution Analysis Sequence, trend and evolution analysis Trend, time-series, and deviation analysis: e.g., regression and value prediction Sequential pattern mining e.g., first buy digital camera, then buy large SD memory cards Periodicity analysis Motifs and biological sequence analysis Approximate and consecutive motifs Similarity-based analysis Mining data streams Ordered, time-varying, potentially infinite, data streams Structure and Network Analysis Graph mining Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments) Information network analysis Social networks: actors (objects, nodes) and relationships (edges) e.g., author networks in CS, terrorist networks Multiple heterogeneous networks A person could be multiple information networks: friends, family, classmates, … Links carry a lot of semantic information: Link mining Web mining Web is a big information network: from PageRank to Google Analysis of Web information networks Web community discovery, opinion mining, usage mining, … Evaluation of Knowledge Are all mined knowledge interesting? One can mine tremendous amount of “patterns” and knowledge Some may fit only certain dimension space (time, location, …) Some may not be representative, may be transient, … Evaluation of mined knowledge → directly mine only interesting knowledge? Descriptive vs. predictive Coverage Typicality vs. novelty Accuracy Timeliness … Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Data Mining: Confluence of Multiple Disciplines Machine Pattern Statistics Learning Recognition Applications Data Mining Visualization Algorithm Database High-Performance Technology Computing Why Confluence of Multiple Disciplines? Tremendous amount of data Algorithms must be highly scalable to handle such as tera-bytes of data High-dimensionality of data Micro-array may have tens of thousands of dimensions High complexity of data Data streams and sensor data Time-series data, temporal data, sequence data Structure data, graphs, social networks and multi-linked data Heterogeneous databases and legacy databases Spatial, spatiotemporal, multimedia, text and Web data Software programs, scientific simulations New and sophisticated applications Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Applications of Data Mining Web page analysis: from web page classification, clustering to PageRank & HITS algorithms Collaborative analysis & recommender systems Basket data analysis to targeted marketing Biological and medical data analysis: classification, cluster analysis (microarray data analysis), biological sequence analysis, biological network analysis Data mining and software engineering. From major dedicated data mining systems/tools (e.g., R, Python Packages, SAS, MS SQL-Server Analysis Manager, Oracle Data Mining Tools) to invisible data mining Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary Major Issues in Data Mining (1) Mining Methodology Mining various and new kinds of knowledge Mining knowledge in multi-dimensional space Data mining: An interdisciplinary effort Boosting the power of discovery in a networked environment Handling noise, uncertainty, and incompleteness of data Pattern evaluation and pattern- or constraint-guided mining User Interaction Interactive mining Incorporation of background knowledge Presentation and visualization of data mining results Major Issues in Data Mining (2) Efficiency and Scalability Efficiency and scalability of data mining algorithms Parallel, distributed, stream, and incremental mining methods Diversity of data types Handling complex types of data Mining dynamic, networked, and global data repositories Data mining and society Social impacts of data mining Privacy-preserving data mining Invisible data mining Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary A Brief History of Data Mining Society 1989 IJCAI Workshop on Knowledge Discovery in Databases Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991) 1991-1994 Workshops on Knowledge Discovery in Databases Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky- Shapiro, P. Smyth, and R. Uthurusamy, 1996) 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98) Journal of Data Mining and Knowledge Discovery (1997) ACM SIGKDD conferences since 1998 and SIGKDD Explorations More conferences on data mining PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), WSDM (2008), etc. ACM Transactions on KDD (2007) Conferences and Journals on Data Mining KDD Conferences ◼ Other related conferences ACM SIGKDD Int. Conf. on ◼ DB conferences: ACM SIGMOD, VLDB, Knowledge Discovery in ICDE, EDBT, ICDT, … Databases and Data Mining (KDD) ◼ Web and IR conferences: WWW, SIGIR, WSDM SIAM Data Mining Conf. (SDM) ◼ ML conferences: ICML, NIPS (IEEE) Int. Conf. on Data Mining ◼ PR conferences: CVPR, (ICDM) ◼ Journals European Conf. on Machine ◼ Data Mining and Knowledge Learning and Principles and Discovery (DAMI or DMKD) practices of Knowledge Discovery ◼ IEEE Trans. On Knowledge and Data and Data Mining (ECML-PKDD) Eng. (TKDE) Pacific-Asia Conf. on Knowledge ◼ KDD Explorations Discovery and Data Mining ◼ ACM Trans. on KDD (PAKDD) Int. Conf. on Web Search and Data Mining (WSDM) Where to Find References? DBLP, CiteSeer, Google Data mining and KDD (SIGKDD: CDROM) Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc. Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD Database systems (SIGMOD: ACM SIGMOD Anthology—CD ROM) Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., etc. AI & Machine Learning Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc. Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc. Web and IR Conferences: SIGIR, WWW, CIKM, etc. Journals: WWW: Internet and Web Information Systems, Statistics Conferences: Joint Stat. Meeting, etc. Journals: Annals of statistics, etc. Visualization Conference proceedings: CHI, ACM-SIGGraph, etc. Journals: IEEE Trans. visualization and computer graphics, etc. Summary Data mining: Discovering interesting patterns and knowledge from massive amount of data A natural evolution of science and information technology, in great demand, with wide applications A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation Mining can be performed in a variety of data Data mining functionalities: characterization, discrimination, association, classification, clustering, trend and outlier analysis, etc. Data mining technologies and applications Major issues in data mining