If A = [1 2; 3 1] show that A² - 2A - 5I = 0 where I is the 2x2 unit matrix.
Understand the Problem
The question is asking to prove that for the given matrix A, the equation A² - 2A - 5I = 0 holds true, where I is a 2x2 identity matrix. To solve this, we'll need to compute A², subtract 2A, and check if the result equals 5I.
Answer
The equation is satisfied: $$ A^2 - 2A - 5I = 0 $$
Answer for screen readers
The equation $A^2 - 2A - 5I = 0$ is proved true.
$$ A^2 - 2A - 5I = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} $$
Steps to Solve
- Calculate A²
First, compute the square of matrix $A$.
Given: $$ A = \begin{bmatrix} 1 & 2 \ 3 & 1 \end{bmatrix} $$
Calculating $A^2$: $$ A^2 = A \times A = \begin{bmatrix} 1 & 2 \ 3 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \ 3 & 1 \end{bmatrix} $$
Perform the multiplication:
- First row, first column: $(1 \cdot 1 + 2 \cdot 3) = 7$
- First row, second column: $(1 \cdot 2 + 2 \cdot 1) = 4$
- Second row, first column: $(3 \cdot 1 + 1 \cdot 3) = 6$
- Second row, second column: $(3 \cdot 2 + 1 \cdot 1) = 7$
Thus, $$ A^2 = \begin{bmatrix} 7 & 4 \ 6 & 7 \end{bmatrix} $$
- Calculate 2A
Now compute $2A$: $$ 2A = 2 \times \begin{bmatrix} 1 & 2 \ 3 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 \ 6 & 2 \end{bmatrix} $$
- Identify 5I
The identity matrix $I$ for a $2 \times 2$ matrix is: $$ I = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} $$
Now calculate $5I$: $$ 5I = 5 \times \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix} $$
- Combine the results and check the equation
Substituting into the equation $A^2 - 2A - 5I$: $$ A^2 - 2A - 5I = \begin{bmatrix} 7 & 4 \ 6 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 4 \ 6 & 2 \end{bmatrix} - \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix} $$
Calculating step by step:
-
Subtract $2A$: $$ \begin{bmatrix} 7 & 4 \ 6 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 4 \ 6 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix} $$
-
Now subtract $5I$: $$ \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix} - \begin{bmatrix} 5 & 0 \ 0 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} $$
Thus, $$ A^2 - 2A - 5I = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} = 0 $$
The equation $A^2 - 2A - 5I = 0$ is proved true.
$$ A^2 - 2A - 5I = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} $$
More Information
This shows that the matrix $A$ satisfies the quadratic matrix equation. Such equations often appear in linear algebra and systems of linear equations, and verifying them is a useful skill in matrix algebra.
Tips
- Miscalculating Matrix Multiplication: Ensure all calculations for matrix multiplications are step-by-step and check each entry.
- Incorrect Identity Matrix: Make sure to use the correct size for the identity matrix matching the dimensions of $A$.
- Skipping Steps: Review each step carefully to avoid confusion, especially when performing multi-step calculations.
AI-generated content may contain errors. Please verify critical information