Using the sum and difference of cosines formula, find the exact value of cos(π/12).
Understand the Problem
The question is asking to use the sum and difference of cosines formula to find the exact value of cos(π/12). This requires knowledge of trigonometric identities and how to apply them to derive the value.
Answer
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
Answer for screen readers
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
Steps to Solve
- Identify Angles for Cosine Formula
We can express $\frac{\pi}{12}$ as the difference of two angles whose cosine values are known. We can use: $$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$
- Apply the Cosine Difference Formula
Using the cosine difference formula: $$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$
Substituting $a = \frac{\pi}{3}$ and $b = \frac{\pi}{4}$: $$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$$
- Calculate Cosine and Sine Values
Next, we evaluate these trigonometric values:
- $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$
- $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
- $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$
- $\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
Substituting these values into the equation: $$\cos\left(\frac{\pi}{12}\right) = \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)$$
- Simplify the Expression
Calculating the values:
- First term: $\frac{1 \cdot \sqrt{2}}{2 \cdot 2} = \frac{\sqrt{2}}{4}$
- Second term: $\frac{\sqrt{3} \cdot \sqrt{2}}{2 \cdot 2} = \frac{\sqrt{6}}{4}$
Combining both terms: $$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}$$
- Final Result
Thus, we find: $$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
More Information
The exact value of $\cos\left(\frac{\pi}{12}\right)$ showcases how using trigonometric identities and known angle values can simplify complex expressions.
Tips
- Forgetting to use the correct angles in the difference formula.
- Miscalculating the sine and cosine values for the angles used.
AI-generated content may contain errors. Please verify critical information