Using the sum and difference of cosines formula, find the exact value of cos(π/12).

Question image

Understand the Problem

The question is asking to use the sum and difference of cosines formula to find the exact value of cos(π/12). This requires knowledge of trigonometric identities and how to apply them to derive the value.

Answer

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$
Answer for screen readers

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$

Steps to Solve

  1. Identify Angles for Cosine Formula

We can express $\frac{\pi}{12}$ as the difference of two angles whose cosine values are known. We can use: $$\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$

  1. Apply the Cosine Difference Formula

Using the cosine difference formula: $$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

Substituting $a = \frac{\pi}{3}$ and $b = \frac{\pi}{4}$: $$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$$

  1. Calculate Cosine and Sine Values

Next, we evaluate these trigonometric values:

  • $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$
  • $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$
  • $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$
  • $\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

Substituting these values into the equation: $$\cos\left(\frac{\pi}{12}\right) = \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)$$

  1. Simplify the Expression

Calculating the values:

  • First term: $\frac{1 \cdot \sqrt{2}}{2 \cdot 2} = \frac{\sqrt{2}}{4}$
  • Second term: $\frac{\sqrt{3} \cdot \sqrt{2}}{2 \cdot 2} = \frac{\sqrt{6}}{4}$

Combining both terms: $$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

  1. Final Result

Thus, we find: $$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$$

More Information

The exact value of $\cos\left(\frac{\pi}{12}\right)$ showcases how using trigonometric identities and known angle values can simplify complex expressions.

Tips

  • Forgetting to use the correct angles in the difference formula.
  • Miscalculating the sine and cosine values for the angles used.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser