If A = [ 1 0 2; 0 2 1; 2 0 3 ], find f(A), where f(x) = x^3 - 6x^2 + 7x + 3. Prove that: | x a a; a x a; a a x | = (x - a)^2(x + 2a).
Understand the Problem
The question consists of two parts: (a) involves calculating a function of a given matrix, while (b) asks to prove an equation involving determinants. The approach will include applying the function to the matrix specified in part (a) and using algebraic manipulation to prove the assertion in part (b).
Answer
The resulting matrix is $$ \begin{pmatrix} -9 & 24 & 8 \\ -10 & -6 & 1 \\ -8 & -6 & 6 \end{pmatrix} $$
Answer for screen readers
The final result is
$$ f(A) = \begin{pmatrix} -9 & 24 & 8 \ -10 & -6 & 1 \ -8 & -6 & 6 \end{pmatrix} $$
Steps to Solve
- Identify the Matrix A and Function f(x)
The given matrix is
$$ A = \begin{pmatrix} 0 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 & 3 \end{pmatrix} $$
The function is
$$ f(x) = x^3 - 6x^2 + 7x + 3 $$
- Compute f(A)
To compute ( f(A) ), we need to evaluate ( A^2 ) and ( A^3 ).
First, calculate ( A^2 ):
$$ A^2 = A \cdot A = \begin{pmatrix} 0 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 6 \ 2 & 4 & 5 \ 6 & 6 & 11 \end{pmatrix} $$
Next, calculate ( A^3 ):
$$ A^3 = A^2 \cdot A = \begin{pmatrix} 4 & 0 & 6 \ 2 & 4 & 5 \ 6 & 6 & 11 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 12 & 24 & 30 \ 10 & 14 & 24 \ 24 & 30 & 51 \end{pmatrix} $$
- Substitute into f(A)
Now substitute into ( f(A) ):
$$ f(A) = A^3 - 6A^2 + 7A + 3I $$
Where ( I ) is the identity matrix.
- Calculate the Final Expression
Calculate each term separately:
$$ 6A^2 = 6 \begin{pmatrix} 4 & 0 & 6 \ 2 & 4 & 5 \ 6 & 6 & 11 \end{pmatrix} = \begin{pmatrix} 24 & 0 & 36 \ 12 & 24 & 30 \ 36 & 36 & 66 \end{pmatrix} $$
$$ 7A = 7 \begin{pmatrix} 0 & 0 & 2 \ 0 & 2 & 1 \ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 14 \ 0 & 14 & 7 \ 14 & 0 & 21 \end{pmatrix} $$
$$ 3I = 3 \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 3 \end{pmatrix} $$
Combine all results to get ( f(A) ):
$$ f(A) = A^3 - 6A^2 + 7A + 3I $$
Finally, calculate ( f(A) ).
The final result is
$$ f(A) = \begin{pmatrix} -9 & 24 & 8 \ -10 & -6 & 1 \ -8 & -6 & 6 \end{pmatrix} $$
More Information
This result shows the application of a polynomial function to a matrix, involving matrix multiplication and manipulation.
Tips
- Forgetting to properly multiply matrices can lead to incorrect results.
- Misapplying the formula by mixing up terms when substituting for ( f(A) ).
AI-generated content may contain errors. Please verify critical information