4. (a) Evaluate: Lt (1/x^2) tan x as x approaches 0. (b) Calculate the approximate value of √26 to three decimal places by Taylor's expansion. 5. (a) State and prove Lagrange's mea... 4. (a) Evaluate: Lt (1/x^2) tan x as x approaches 0. (b) Calculate the approximate value of √26 to three decimal places by Taylor's expansion. 5. (a) State and prove Lagrange's mean value theorem. (b) Verify Rolle's theorem for the function e^x sin x in [0, π]. 6. (a) Examine the curve y = x^4 - 2x^3 + 1 for concavity upwards, concavity downwards and points of inflexion.

Question image

Understand the Problem

प्रश्न लिमिट्स, टेलर के विस्तार और मूल्य सिद्धांत से संबंधित हैं। यह हमें पहले और दूसरे प्रश्न में टेलेर के विस्तार का उपयोग करके निकालने और कई गणितीय सिद्धांतों को प्रस्तुत करने के लिए निर्देशित करता है।

Answer

The limit diverges, and the approximate value of $\sqrt{26}$ is $5.100$.
Answer for screen readers

The limit diverges, and the approximate value of $\sqrt{26}$ is $5.100$.

Steps to Solve

  1. Limit Calculation Setup
    We need to evaluate the limit:
    $$ \lim_{x \to 0} \left(\frac{1}{x^2}\right) \tan x $$

  2. Substituting Taylor Series for $\tan x$
    Using the Taylor series expansion for $\tan x$ around $x = 0$:
    $$ \tan x = x + \frac{x^3}{3} + O(x^5) $$

  3. Plug in the Series into the Limit
    Substituting the Taylor series into the limit expression:
    $$ \lim_{x \to 0} \left(\frac{1}{x^2}\right) \left(x + \frac{x^3}{3} + O(x^5)\right) $$

  4. Simplifying the Expression
    This gives:
    $$ \lim_{x \to 0} \left( \frac{1}{x^2} \cdot x + \frac{1}{x^2} \cdot \frac{x^3}{3} + \frac{1}{x^2} \cdot O(x^5) \right) $$
    Which simplifies to:
    $$ \lim_{x \to 0} \left( \frac{1}{x} + \frac{x}{3} + O(x^3) \right) $$

  5. Evaluating the Limit
    As $x \to 0$:
    The first term $\frac{1}{x}$ goes to $\infty$. Thus, the limit diverges.

  6. Approximate Value of $\sqrt{26}$ using Taylor Series
    Next, expanding the function $\sqrt{x}$ around $x=25$:
    Using the expansion:
    $$ \sqrt{x} \approx 5 + \frac{1}{2\sqrt{25}}(x - 25) $$

  7. Plug in $x = 26$
    Now, substituting $x = 26$:
    $$ \sqrt{26} \approx 5 + \frac{1}{10}(26 - 25) = 5 + 0.1 = 5.1 $$

  8. Rounding Off to Three Decimal Places
    Thus, the approximate value of $\sqrt{26}$ to three decimal places is:
    $$ \sqrt{26} \approx 5.100 $$

The limit diverges, and the approximate value of $\sqrt{26}$ is $5.100$.

More Information

In calculus, limits often lead to infinite values under specific conditions. Taylor series expansions are powerful tools for approximating functions near a certain point.

Tips

  • Ignoring the leading term while approximating in limits can lead to incorrect conclusions.
  • Misapplying the Taylor series for functions that are not smooth (not differentiable) in the vicinity.
Thank you for voting!
Use Quizgecko on...
Browser
Browser