Contrôle Continu Bac PC - El Joumaiel Hafid
5 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Quelle est la limite de la fonction $g(x)$ lorsque $x$ tend vers 0 ?

  • -1 (correct)
  • 1
  • 0
  • Pour quel domaine est définie la fonction $f(x)$ ?

  • $ ext{D} = ext{ℝ}^+$
  • $ ext{D} = orall x ext{ dans } ext{ℝ}$
  • $ ext{D} = ]0, +∞[$ (correct)
  • $ ext{D} = [0, +∞[$
  • Quelle est la forme de la limite de $f(x)$ lorsque $x$ tend vers +∞ ?

  • 1 (correct)
  • -1
  • 0
  • Quel est le tableau de variation de la fonction $g(x)$ si $g'(x)$ est positif sur $ ight]0, +∞ ight[$ ?

    <p>g croissante sur $]0, +∞[$</p> Signup and view all the answers

    Quelle est l'interprétation géométrique de la limite $ rac{(ln(x))^2}{x}$ lorsque $x$ tend vers +∞ ?

    <p>La courbe s'approche de l'axe des abscisses</p> Signup and view all the answers

    Study Notes

    Exercice 1 : Suites et Récurrences

    • Considération de la suite définie par ( (u_n) ) avec ( u_{n+1} = 7u_n + 3 ) ou ( u_{n+1} = 3u_n + 7 ) selon le cas.
    • Prouver par récurrence que ( \forall n \in \mathbb{N}, , u_n \geq \frac{1}{3}(1 + u_n)(1 - u_n) ).
    • Montrer que la différence ( u_{n+1} - u_n = 3u_n + 7 ) est toujours positive, indiquant que la suite est décroissante et convergente.
    • Définition de la suite ( (v_n) ) comme ( v_n = \frac{u_n + 1}{2} ), montrer que ( (v_n) ) est géométrique avec raison ( q ).
    • Exprimer ( v_n ) en fonction de ( n ) et déterminer ( \lim_{n\to\infty} u_n ).

    Exercice 2 : Fonction et Limites

    • Étudier la fonction ( g(x) = x^2 - 1 - 2\ln(x) ) sur ( ]0; +\infty[ ).
    • Calculer les limites ( \lim_{x \to 0} g(x) ) et ( \lim_{x \to +\infty} g(x) ) pour analyser le comportement de la fonction.
    • Trouver la dérivée ( g'(x) ) pour ( x \in ]0; +\infty[ ) et établir le tableau de variation de ( g ).
    • Deduire que ( g(x) \geq 0 ) pour tout ( x \in ]0; +\infty[ ).

    Fonction f : Étude et Limites

    • Définir la fonction ( f(x) = x - 1 + \frac{1}{x} ), déterminer son domaine de définition ( D_f ).
    • Calculer ( \lim_{x \to 0} f(x) ) et donner une interprétation géométrique.
    • Montrer que ( \lim_{x \to +\infty} \frac{(\ln(x))^2}{x} = 0 ).
    • Évaluer ( \lim_{x \to +\infty} f(x) ) et analyser ( \lim_{x \to +\infty} (f(x) - (x - 1)) ) avec une interprétation géométrique.
    • Étudier la position relative entre la courbe ( C_f ) et la droite ( y = x - 1 ).

    Dérivabilité de f

    • Prouver que ( \forall x \in D_f, , f'(x) = 0 ) pour comprendre le comportement de la fonction et ses extrema.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Description

    Ce quiz évalue vos connaissances en physique-chimie pour le bac PC. Préparez-vous pour l'examen avec des questions pratiques basées sur le programme. Assurez-vous de réviser les concepts clés pour réussir ce contrôle continu.

    More Like This

    BAC Sections 13 and 14 Quiz
    20 questions
    Bac 1 Psychologie Chapitre 1
    32 questions

    Bac 1 Psychologie Chapitre 1

    BetterThanExpectedAbstractArt avatar
    BetterThanExpectedAbstractArt
    Driving Safety and BAC Guidelines
    34 questions
    Use Quizgecko on...
    Browser
    Browser