Week 13- Cardiovascular System (Lec) PDF
Document Details
Uploaded by Deleted User
Cyruz H. Estacio, RMT, ASCPI
Tags
Summary
These lecture notes cover the cardiovascular system, including the function and anatomy of the heart, blood vessels, and heart sounds. They provide a basic understanding of the cardiovascular system for students.
Full Transcript
Cardiovascular system HAPP111- Lecture Class Cyruz H. Estacio, RMT, ASCPi Function Cardiovascular System The major function of the cardiovascular system is transportation Anatomy of the Heart Functions of the Heart ❖Managing blood supply. ❖Producing blood pr...
Cardiovascular system HAPP111- Lecture Class Cyruz H. Estacio, RMT, ASCPi Function Cardiovascular System The major function of the cardiovascular system is transportation Anatomy of the Heart Functions of the Heart ❖Managing blood supply. ❖Producing blood pressure. ❖Securing one-way blood flow. ❖Transmitting blood. Heart Structure and Functions ❑ Weight. Approximately the size of a person’s fist, the hollow, cone-shaped heart weighs less than a pound. ❑ Mediastinum. Snugly enclosed within the inferior mediastinum, the medial cavity of the thorax, the heart is flanked on each side by the lungs. ❑ Apex. Pointed apex is directed toward the left hip and rests on the diaphragm, approximately at the level of the fifth intercostal space. ❑ Base. Broad posterosuperior aspect, or base, from which the great vessels of the body emerge, points toward the right shoulder and lies beneath the second rib. Heart Structure and Functions ❑ Pericardium. The heart is enclosed in a double-walled sac called the pericardium and is the outermost layer of the heart. ▪ Fibrous pericardium. The loosely fitting superficial part of this sac is referred to as the fibrous pericardium, which helps protect the heart and anchors it to surrounding structures such as the diaphragm and sternum. ▪ Serous pericardium. Deep to the fibrous pericardium is the slippery, two-layer serous pericardium, where its parietal layer lines the interior of the fibrous pericardium. Layers of the Heart ❑ Epicardium. The epicardium or the visceral and outermost layer is actually a part of the heart wall. ❑ Myocardium. The myocardium consists of thick bundles of cardiac muscle twisted and whirled into ringlike arrangements and it is the layer that actually contracts. ❑ Endocardium. The endocardium is the innermost layer of the heart and is a thin, glistening sheet of endothelium hat lines the heart chambers. Chambers of the Heart ❑ Receiving chambers. The two superior atria are primarily the receiving chambers, they play a lighter role in the pumping activity of the heart. ❑ Discharging chambers. The two inferior, thick-walled ventricles are the discharging chambers, or actual pumps of the heart wherein when they contract, blood is propelled out of the heart and into the circulation. ❑ Septum. The septum that divides the heart longitudinally is referred to as either the interventricular septum or the interatrial septum, depending on which chamber it separates. Associated Great Vessels ❑ Superior and inferior vena cava. The heart receives relatively oxygen-poor blood from the veins of the body through the large superior and inferior vena cava and pumps it through the pulmonary trunk. ❑ Pulmonary arteries. The pulmonary trunk splits into the right and left pulmonary arteries, which carry blood to the lungs, where oxygen is picked up and carbon dioxide is unloaded. ❑ Pulmonary veins. Oxygen-rich blood drains from the lungs and is returned to the left side of the heart through the four pulmonary veins. ❑ Aorta. Blood returned to the left side of the heart is pumped out of the heart into the aorta from which the systemic arteries branch to supply essentially all body tissues. Heart Valves Heart Valves Operation of the AV valves ❑ Atrioventricular valves. Atrioventricular or AV valves are located between the atrial and ventricular chambers on each side, and they prevent backflow into the atria when the ventricles contract. ▪ Bicuspid valves. The left AV valve- the bicuspid or mitral valve, consists of two flaps, or cusps, of endocardium. ▪ Tricuspid valve. The right AV valve, the tricuspid valve, has three flaps. Heart Valves Operation of the Semilunar valves ❑ Semilunar valve. The second set of valves, the semilunar valves, guards the bases of the two large arteries leaving the ventricular chambers, thus they are known as the pulmonary and aortic semilunar valves. ▪ Pulmonary SV – lies between the right ventricle and the pulmonary artery and has three cusps. ▪ Aortic SV – lies between the left ventricle and the aorta and has three cusps Blood Vessels ❑ Arteries. As the heart beats, blood is propelled into large arteries leaving the heart. ❑ Arterioles. It then moves into successively smaller and smaller arteries and then into arterioles, which feed the capillary beds in the tissues. ❑ Veins. Capillary beds are drained by venules, which in turn empty into veins that finally empty into the great veins entering the heart. Blood Vessels Tunics Structure of Blood Vessels ❑ Tunica intima. The tunica intima, which lines the lumen, or interior, of the vessels, is a thin layer of endothelium resting on a basement membrane and decreases friction as blood flows through the vessel lumen. ❑ Tunica media. The tunica media is the bulky middle coat which mostly consists of smooth muscle and elastic fibers that constrict or dilate, making the blood pressure increase or decrease. ❑ Tunica externa. The tunica externa is the outermost tunic composed largely of fibrous connective tissue, and its function is basically to support and protect the vessels. Major Arteries of SYSTEMIC CIRCULATION ❑Arterial Branches- Ascending Aorta ❖Coronary arteries. The only branches of the ascending aorta are the right and left coronary arteries, which serve the heart. Major Arteries of SYSTEMIC CIRCULATION ❑Arterial Branches- Aortic Arch ❖ Brachiocephalic trunk. The brachiocephalic trunk, the first branch off the aortic arch, splits into the right common carotid artery and right subclavian artery. ❖ Left common carotid artery. The left common carotid artery is the second branch off the aortic arch and it divides, forming the left internal carotid, which serves the brain, and the left external carotid, which serves the skin and muscles of the head and neck. Major Arteries of SYSTEMIC CIRCULATION ❑ Arterial Branches of the Aortic Arch…cont ❖ Left subclavian artery. The third branch of the aortic arch, the left subclavian artery, gives off an important branch- the vertebral artery, which serves part of the brain. ❖ Axillary artery. In the axilla, the subclavian artery becomes the axillary artery. ❖ Brachial artery. the subclavian artery continues into the arm as the brachial artery, which supplies the arm. ❖ Radial and ulnar arteries. At the elbow, the brachial artery splits to form the radial and ulnar arteries, which serve the forearm. Major Arteries of SYSTEMIC CIRCULATION ❑Arterial Branches- Thoracic Aorta ❖Intercostal arteries. Ten pairs of intercostal arteries supply the muscles of the thorax wall. Major Arteries of SYSTEMIC CIRCULATION ❑Arterial Branches- Abdominal Aorta ❖ Celiac trunk. The celiac trunk is the first branch of the abdominal aorta and has three branches: the left gastric artery supplies the stomach; the splenic artery supplies the spleen, and the common hepatic artery supplies the liver. ❖ Superior mesenteric artery. The unpaired superior mesenteric artery supplies most of the small intestine and the first half of the large intestine or colon. ❖ Renal arteries. The renal arteries serve the kidneys. Major Arteries of SYSTEMIC CIRCULATION ❑ Arterial Branches- Abdominal Aorta- cont.. ❖ Gonadal arteries. The gonadal arteries supply the gonads, and they are called ovarian arteries in females while in males they are testicular arteries. ❖ Lumbar arteries. The lumbar arteries are several pairs of arteries serving the heavy muscles of the abdomen and trunk walls. ❖ Inferior mesenteric artery. The inferior mesenteric artery is a small, unpaired artery supplying the second half of the large intestine. ❖ Common iliac arteries. The common iliac arteries are the final branches of the abdominal aorta. Major Veins of SYSTEMIC CIRCULATION ❑Veins Draining into the Superior Vena Cava ❖ Radial and ulnar veins. The radial and ulnar veins are deep veins draining the forearm. ❖ Cephalic vein. The cephalic vein provides for the superficial drainage of the lateral aspect of the arm and empties into the axillary vein. ❖ Basilic vein. The basilic vein is a superficial vein that drains the medial aspect of the arm and empties into the brachial vein proximally. ❖ Median cubital vein. The basilic and cephalic veins are joined at the anterior aspect of the elbow by the median cubital vein, often chosen as the site for blood removal for the purpose of blood testing. Major Veins of SYSTEMIC CIRCULATION ❑ Veins Draining into the Superior Vena Cava- cont… ❖ Subclavian vein. The subclavian vein receives venous blood from the arm through the axillary vein and from the skin and muscles of the head through the external jugular vein. ❖ Vertebral vein. The vertebral vein drains the posterior part of the head. ❖ Internal jugular vein. The internal jugular vein drains the dural sinuses of the brain. ❖ Brachiocephalic veins. The right and left brachiocephalic veins are large veins that receive venous drainage from the subclavian, vertebral, and internal jugular veins on their respective sides. ❖ Azygos vein. The azygos vein is a single vein that drains the thorax and enters the superior vena cava just before it joins the heart. Major Veins of SYSTEMIC CIRCULATION ❑Veins Draining into the Inferior Vena Cava ❖ Tibial veins. The anterior and posterior tibial veins and the fibular vein drain the leg. ❖ Great saphenous veins. The great saphenous veins are the longest veins in the body. ❖ Common iliac vein. Each common iliac vein is formed by the union of the external iliac vein and the internal iliac vein which drains the pelvis. Major Veins of SYSTEMIC CIRCULATION ❑ Veins Draining into the Inferior Vena Cava- cont… ❖ Gonadal vein. The right gonadal vein drains the right ovary in females and the right testicles in males. ❖ Renal veins. The right and left renal veins drain the kidneys. ❖ Hepatic portal vein. The hepatic portal vein is a single vein that drains the digestive tract organs and carries this blood through the liver before it enters the systemic circulation. ❖ Hepatic veins. The hepatic veins drain the liver. Physiology of the HEART ❑Intrinsic Conduction System of the Heart ❖ Cardiac muscle cells. Cardiac muscle cells can and do contract spontaneously and independently, even if all nervous connections are severed. ❖ Rhythms. Although cardiac muscles can beat independently, the muscle cells in the different areas of the heart have different rhythms. ❖ Intrinsic conduction system. The intrinsic conduction system, or the nodal system, that is built into the heart tissue sets the basic rhythm. Physiology of the HEART ❑ Intrinsic Conduction System of the Heart- cont.. ❖ Composition. The intrinsic conduction system is composed of a special tissue found nowhere else in the body. ❖ Function. This system causes heart muscle depolarization in only one direction- from the atria to the ventricles. ❖ Sinoatrial (SA) node. The SA node has the highest rate of depolarization in the whole system, so it can start the beat and set the pace for the whole heart. Physiology of the HEART ❑ Intrinsic Conduction System of the Heart- cont.. ❖ Atrial contraction. From the SA node, the impulse spread through the atria to the AV node, and then the atria contract. ❖ Ventricular contraction. It then passes through the AV bundle, the bundle branches, and the Purkinje fibers, resulting in a “wringing” contraction of the ventricles that begins at the heart apex and moves toward the atria. ❖ Ejection. This contraction effectively ejects blood superiorly into the large arteries leaving the heart. Physiology of the HEART ❑The Pathway of the Conduction System ❖ SA node. The depolarization wave is initiated by the sinoatrial node. ❖ Atrial myocardium. The wave then successively passes through the atrial myocardium. ❖ Atrioventricular node. The depolarization wave then spreads to the AV node, and then the atria contract. Physiology of the HEART ❑The Pathway of the Conduction System ❖ AV bundle. It then passes rapidly through the AV bundle. ❖ Bundle branches and Purkinje fibers. The wave then continues on through the right and left bundle branches, and then to the Purkinje fibers in the ventricular walls, resulting in a contraction that ejects blood, leaving the heart. ❑The Pathway of the Physiology of the HEART Conduction System Physiology of the HEART ❑Cardiac Cycle and Heart Sounds ❖ Systole. Systole means heart contraction. ❖ Diastole. Diastole means heart relaxation. ❖ Cardiac cycle. The term cardiac cycle refers to the events of one complete heart beat, during which both atria and ventricles contract and then relax. ❖ Length. The average heart beats approximately 75 times per minute, so the length of the cardiac cycle is normally about 0.8 second. Physiology of the HEART ❑Cardiac Cycle and Heart Sounds ❖ Mid-to-late diastole. The cycle starts with the heart in complete relaxation; the pressure in the heart is low, and blood is flowing passively into and through the atria into the ventricles from the pulmonary and systemic circulations ❖ Ventricular systole. Shortly after, the ventricular contraction begins, and the pressure within the ventricles increases rapidly, closing the AV valves ❖ Early diastole. At the end of systole, the ventricles relax, the semilunar valves snap shut, and for a moment the ventricles are completely closed chambers ❑Cardiac Cycle and Physiology of the HEART Heart Sounds Physiology of the HEART ❑Cardiac Output ❖ Stroke volume. Stroke volume is the volume of blood pumped out by a ventricle with each heartbeat. ❖ Regulation of stroke volume. According to Starling’s law of the heart, the critical factor controlling stroke volume is how much the cardiac muscle cells are stretched just before they contract. ❖ Factors modifying basic heart rate. The most important external influence on heart rate is the activity of the autonomic nervous system, physical factors (age, gender, exercise, and body temperature), as well as various hormones and ions Physiology of the HEART ❑Physiology of Circulation ❑Cardiovascular Vital Signs ❖ Arterial pulse. The alternating expansion and recoil of an artery that occurs with each beat of the left ventricle creates a pressure wave-a pulse- that travels through the entire arterial system. ❖ Normal pulse rate. Normally, the pulse rate (pressure surges per minute) equals the heart rate, so the pulse averages 70 to 76 (60-100) beats per minute in a normal resting person. ❖ Pressure points. There are several clinically important arterial pulse points, and these are the same points that are compressed to stop blood flow into distal tissues during hemorrhage, referred to as pressure points. ❖ Blood pressure. Blood pressure is the pressure the blood exerts against the inner walls of the blood vessels, and it is the force that keeps blood circulating continuously even between heartbeats. Physiology of the HEART ❑Physiology of Circulation ❑Cardiovascular Vital Signs ❖ Arterial pulse. The alternating expansion and recoil of an artery that occurs with each beat of the left ventricle creates a pressure wave-a pulse- that travels through the entire arterial system. Physiology of the HEART ❑Physiology of Circulation ❑Cardiovascular Vital Signs ❖ Blood pressure. Blood pressure is the pressure the blood exerts against the inner walls of the blood vessels, and it is the force that keeps blood circulating continuously even between heartbeats. Physiology of the HEART ❑Physiology of Circulation ❑Cardiovascular Vital Signs Physiology of the HEART ❑Physiology of Circulation ❑Cardiovascular Vital Signs ❖ Blood pressure gradient. The pressure is highest in the large arteries and continues to drop throughout the systemic and pulmonary pathways, reaching either zero or negative pressure at the venae cavae. ❖ Measuring blood pressure. Because the heart alternately contracts and relaxes, the off-and-on flow of the blood into the arteries causes the blood pressure to rise and fall during each beat, thus, two arterial blood pressure measurements are usually made. ❖ Peripheral resistance. Peripheral resistance is the amount of friction the blood encounters as it flows through the blood vessels. ❖ Neural factors. The parasympathetic division of the autonomic nervous system has little or no effect on blood pressure, but the sympathetic division has the major action of causing vasoconstriction or narrowing of the blood vessels, which increases blood pressure. Physiology of the HEART ❑Physiology of Circulation ❑Cardiovascular Vital Signs ❖ Renal factors. The kidneys play a major role in regulating arterial blood pressure by altering blood volume, so when blood pressure increases beyond normal, the kidneys allow more water to leave the body in the urine, then blood volume decreases which in turn decreases blood pressure. ❖ Temperature. In general, cold has a vasoconstricting effect, while heat has a vasodilating effect. ❖ Chemicals. Epinephrine increases both heart rate and blood pressure; nicotine increases blood pressure by causing vasoconstriction; alcohol and histamine cause vasodilation and decreased blood pressure. ❖ Diet. Although medical opinions tend to change and are at odds from time to time, it is generally believed that a diet low in salt, saturated fats, and cholesterol help to prevent hypertension, or high blood pressure. Physiology of the HEART ❑Physiology of Circulation ❑Blood Circulation Through the Heart ❖ Entrance to the heart. Blood enters the heart through two large veins, the inferior and superior vena cava, emptying oxygen-poor blood from the body into the right atrium of the heart. ❖ Atrial contraction. As the atrium contracts, blood flows from the right atrium to the right ventricle through the open tricuspid valve. ❖ Closure of the tricuspid valve. When the ventricle is full, the tricuspid valve shuts to prevent blood from flowing Pathway of Blood in the backward into the atria while the ventricle contracts. HEART Physiology of the HEART ❑Physiology of Circulation ❑ Blood Circulation Through the Heart- cont… ❖ Ventricle contraction. As the ventricle contracts, blood leaves the heart through the pulmonic valve, into the pulmonary artery and to the lungs where it is oxygenated. ❖ Oxygen-rich blood circulates. The pulmonary vein empties oxygen-rich blood from the lungs into the left atrium of the heart. ❖ Opening of the mitral valve. As the atrium contracts, blood flows from your left atrium into your left ventricle Pathway of through the open mitral valve. Blood in the HEART Physiology of the HEART ❑Physiology of Circulation ❑ Blood Circulation Through the Heart- cont… ❖ Prevention of backflow. When the ventricle is full, the mitral valve shuts. This prevents blood from flowing backward into the atrium while the ventricle contracts. ❖ Blood flow to systemic circulation. As the ventricle contracts, blood leaves the heart through the aortic valve, into the aorta and to the body. Pathway of Blood in the HEART Physiology of the HEART ❑Physiology of Circulation ❑Capillary Exchange of Gases and Nutrients ❖ Capillary network. Capillaries form an intricate network among the body’s cells such that no substance has to diffuse very far to enter or leave a cell. ❖ Routes. Basically, substances leaving or entering the blood may take one of four routes across the plasma membranes of the single layer of endothelial cells forming the capillary wall. ❖ Lipid-soluble substances. As with all cells, substances can diffuse directly through their plasma membranes if the substances are lipid-soluble. Physiology of the HEART ❑Physiology of Circulation ❑Capillary Exchange of Gases and Nutrients ❖ Lipid-insoluble substances. Certain lipid-insoluble substances may enter or leave the blood and/or pass through the plasma membranes within vesicles, that is, by endocytosis or exocytosis. ❖ Intercellular clefts. Limited passage of fluid and small solutes is allowed by intercellular clefts (gaps or areas of plasma membrane not joined by tight junctions), so most of our capillaries have intercellular clefts. ❖ Fenestrated capillaries. Very free passage of small solutes and fluid is allowed by fenestrated capillaries, and these unique capillaries are found where absorption is a priority or where filtration occurs. Pathophysiology of the HEART ❖ Homeostatic Imbalances of the Heart Prosthetic aortic heart valve. ❑ Pericarditis- Inflammation of the pericardium often results in a decrease in the already small amount of serous fluid. ❑ Incompetent valve – forces the heart to pump and repump the same blood because the valve does not close properly and blood backflows ❑ Valvular stenosis – the valve flaps become stiff, often because of repeated bacterial infection of the endocardium (endocarditis). This forces the heart to contract more vigorously than normal ❑ Heart block – ventricles begin to beat at their own rate, which is much slower, due to damage to the AV node ❑ Ischemia – lack of adequate blood supply to the heart muscles may lead to fibrillation ❑ Fibrillation – rapid uncoordinated shuddering of the heart muscles which makes the heart totally useless as a pump and is a major cause of death from heart attacks in adults Pathophysiology of the HEART ❖ Homeostatic Imbalances of the Heart-cont.. ❑ Angina Pectoris- myocardium is deprived of oxygen often result in crushing chest pain which may result to MI or Myocardial Infarction (Heart Attack). ❑ Heart Murmurs- Abnormal or unusual heart sounds- indicate valve problems ❑ Congestive Heart Failure (CHF)- typically develops over time and is caused by the weakening of the heart caused by coronary atherosclerosis, hypertension, or numerous myocardial infarctions. ❑ orthostatic hypotension- temporary low blood pressure and dizziness when abrupt standing from a reclining or sitting position Pathophysiology of the HEART ❖ Homeostatic Imbalances of the Heart-cont.. ❑ Chronic hypertension- common and dangerous disease that warns of increased peripheral resistance. Although it progresses without symptoms for the first 10 to 20 years, it slowly and surely strains the heart and damages the arteries. ❑ Congenital heart defects account for about half of infant deaths resulting from all congenital defects. END of SLIDE For listening