Mathematics1 (ENG 021) - Past Paper - New Ismailia National University - Sheet 3 - PDF
Document Details
Uploaded by FondSalmon7526
New Ismailia National University
New Ismailia National University
Dr. Amr H. Abdalla
Tags
Summary
This document is a mathematics exam paper from New Ismailia National University. It contains questions related to functions, graph of functions, trigonometry functions, domains, and range, and whether the following functions are even, odd, or neither (sinh, cosh, tanh).
Full Transcript
جامعة اإلسماعيلية الجديدة األهلية- كليــــــــة الهندســـــــة Faculty of Engineering – New Ismailia National University AIEP PROGRAM MATHEMATICS1 (ENG 021)...
جامعة اإلسماعيلية الجديدة األهلية- كليــــــــة الهندســـــــة Faculty of Engineering – New Ismailia National University AIEP PROGRAM MATHEMATICS1 (ENG 021) Dr. Amr H. Abdalla Sheet (3) Choose the correct answer: 1) The graph of the function 𝑓(𝑥) = 𝑠𝑖𝑛(𝑠𝑖𝑛−1 (𝑥)) is A) B) C) D) 2) Find the domain of the following functions 𝑓(𝑥) = 3𝑠𝑖𝑛−1 (𝑥 − 1) A) 𝑅 B) (0, ∞) C) [0,2] D) None of these −1 3) The Range of the function ℎ(𝑥) = 3𝑠𝑖𝑛 (𝑥 + 1) 3𝜋 3𝜋 3𝜋 A) 𝑅 B) [0, 2 ] C) [− 2 , 2 ) D) None of these 7𝜋 4) 𝑐𝑜𝑠 −1 (𝑐𝑜𝑠 ( 4 )) = ⋯ 𝜋 7𝜋 A) 𝑧𝑒𝑟𝑜 B) 4 C) 4 D) None of these 5) The Range of 𝑓(𝑥) = 2 𝑡𝑎𝑛−1 (𝑥) 𝜋 𝜋 A) (−𝜋, 𝜋) B) (− 2 , 2 ) C)[0,2𝜋) D) None of these - Determine whether the following functions are even, odd, or neither even nor odd. 6) ℎ(𝑥) = √𝑠𝑖𝑛−1 (𝑥 2 ) 1 A) Even B) Odd C) Neither even nor odd 7) 𝑓(𝑥) = √𝑠𝑖𝑛−1 (𝑥 3 ) A) Even B) Odd C) Neither even nor odd −1 8) 𝑓(𝑥) = 𝑡𝑎𝑛 (√sin (𝑥 3 )) A) Even B) Odd C) Neither even nor odd 𝑐𝑜𝑠 −1 𝑥 9) 𝑔(𝑥) = 𝑡𝑎𝑛−1 ( 𝑠𝑖𝑛−1 𝑥 ) A) Even B) Odd C) Neither even nor odd −1 1 10) 𝑡𝑎𝑛 (𝑥) = ⋯ A) 𝑐𝑜𝑠 −1 (𝑥) B) 𝑐𝑜𝑡 −1 (𝑥) C) 𝑐𝑠𝑐 −1 (𝑥) D) None of these 1 11) 𝑠𝑒𝑐 −1 (𝑥) + 𝑠𝑖𝑛−1 (𝑥) = ⋯ 𝜋 A) zero B) 𝜋 C) 2 D) None of these 12) sin(𝑠𝑒𝑐 −1 (𝑥) + 𝑐𝑠𝑐 −1 (𝑥)) = ⋯ 𝜋 A) zero B) 𝜋 C) 2 D) None of these 13) The simplification of 𝑓(𝑥) = 𝑠𝑖𝑛 (𝑐𝑜𝑠 −1 (√1 − 𝑥)) is A) 𝑓(𝑥) = √1 − 𝑥 B) 𝑓(𝑥) = √1 − 𝑥 2 C) 𝑓(𝑥) = √𝑥 D) None of these 1+𝑡𝑎𝑛ℎ𝑥 14) The solution of the equation 𝐿𝑛 (1−𝑡𝑎𝑛ℎ𝑥) = 4 is A) {2} B) {1,4} C) {0,2} D) None of these 15) The set of solution of the equation 𝑐𝑜𝑠ℎ(𝐿𝑛𝑥) = 2 sinh(𝐿𝑛𝑥) − 1 is A) {3, −1} B) {3} C) {1,3} D) None of these 4𝑥 1 16) 𝑒 + 4𝑥 = ⋯ 𝑒 A) 𝑐𝑜𝑠ℎ4𝑥 B) 𝑠𝑖𝑛ℎ4𝑥 2𝑐𝑜𝑠ℎ4𝑥 D) 2𝑠𝑖𝑛ℎ4𝑥 17) 𝐿𝑛(𝑒 2𝑥 − 1) − 𝐿𝑛(2𝑒 𝑥 ) = ⋯ A) 𝐿𝑛(𝑠𝑖𝑛ℎ2𝑥) B) 𝐿𝑛(𝑠𝑖𝑛ℎ𝑥) C) 𝐿𝑛(𝑥) D) None of these 18) ) 𝑐𝑜𝑠ℎ 𝑥 + 𝑠𝑖𝑛ℎ 𝑥 = ⋯ A) 1 B) 𝑒 −𝑥 C) 𝑒 𝑥 D) None of these 19) The set of solution of the equation 24 sinh(𝑥) − 12𝑐𝑜𝑠ℎ(𝑥) − 3 = 0 is 3 A) {2, − 2} B) {𝐿𝑛(2), 0} C) {𝐿𝑛(2)} D) None of these 20) coth(𝐿𝑛(𝑥)) = ⋯ 𝑥 2 −1 𝑥 2 +1 𝑥 2 +1 A) 𝑥 2+1 B) 𝑥 2 −1 C) D) None of these 𝑥−1 2