🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Full Transcript

1. Introducción La cartografía y la topografía son las ciencias que estudian la representación total o parcial de la superficie terrestre sobre un mapa o un plano. Se suelen denominar cartas a aquellos mapas o planos que se diseñan para atender una serie de necesidades funcionales, establecidas por...

1. Introducción La cartografía y la topografía son las ciencias que estudian la representación total o parcial de la superficie terrestre sobre un mapa o un plano. Se suelen denominar cartas a aquellos mapas o planos que se diseñan para atender una serie de necesidades funcionales, establecidas por los propios usuarios. De este modo, las cartas aeronáuticas son aquéllas que sirven al desarrollo de las diferentes fases de un vuelo, cumpliendo con los requerimientos operativos de la navegación aérea. En la primera parte de este manual se estudiará el proceso de elaboración de los mapas y los planos. Para ello, inicialmente se abordará el estudio de las principales características físicas de la superficie terrestre. Posteriormente, se analizarán los fundamentos de la reproducción cartográfica y topográfica, realizando un breve repaso de los sistemas de representación más utilizados en la confección de cartas aeronáuticas. Se ofrecerá una visión general de las cartas destinadas a la navegación aérea, sus funcionalidades, principales características y todo lo referente a la normativa aeronáutica que rige su producción, publicación y distribución. 2. Conceptos básicos de Geodesia El trazado de cualquier tipo de mapa o plano requiere el estudio y conocimiento previos de la superficie concreta que se quiere representar, así como un sistema que permita la localización de los puntos que la constituyen. La Geodesia es una ciencia que estudia la forma y dimensiones de la Tierra, su campo de gravedad, sus variaciones temporales y la manera de representarla en un plano. Su objetivo es el estudio y determinación de la forma y dimensiones de la Tierra, de su campo de gravedad, y sus variaciones temporales, así como construir los mapas correspondientes. Se trata de una ciencia fundamentada en la física y en las matemáticas, cuyos resultados constituyen la base geométrica para otras ramas del conocimiento geográfico, como son la topografía, la cartografía, la fotogrametría, la navegación, así como ingenierías de todo tipo o para fines militares y programas espaciales. 2.1. Forma y dimensiones de la tierra La Tierra está ligeramente achatada en los polos y ensanchada por el Ecuador, como resultado de la combinación de las fuerzas centrífugas y gravitatorias que actúan sobre ella, A esta forma (que es la real) es lo que se llama geoide., por ello, para su estudio se usan superficies geométricas de referencia terrestre como el geoide y el elipsoide de revolución. El geoide se define como la superficie equipotencial del campo de gravedad de la Tierra, coincidente, aproximadamente, con el nivel promedio del mar. Debido a que la distribución de masas a lo largo de la Tierra no es uniforme, la forma del geoide no es constante y presenta irregularidades. Debido a estas irregularidades y a la complejidad de su definición, la superficie de la Tierra tiende a representarse, con mucha aproximación, mediante un eliposide de revolución1. Representación del Elipsoide de Referencia y del Geoide Debido a estas dificultades se define la Tierra, para el estudio de puntos y líneas, como una esfera perfecta cuyo radio medio se mide desde el centro de la Tierra hasta la superficie del mar. A continuación, se detallan sus dimensiones: Diámetro 12.742 KM Radio 6.371 Km Perímetro 40.076 Km Volumen 108.321 X 1010 Km3 510 X 106 Km Cuadro de las dimensiones terrestres (aproximadas) Superficie 2.2. Puntos y líneas destacados en la tierra El conocimiento de los puntos y líneas más importantes de la Tierra permite crear sistemas de coordenadas que representan los puntos de su superficie en un mapa. Se toma como referencia una forma esférica perfecta ya que facilita y simplifica el estudio de los puntos y líneas destacados en la Tierra: - Centro de la Tierra: es el punto de simetría de la Tierra y tiene la propiedad de que «equidista» de todos los puntos de su superficie la distancia de 6.371 Km. - Eje terrestre: es una línea ideal que atraviesa la Tierra pasando por su centro. De los infinitos ejes que tiene la Tierra, el más importante es el de rotación, cuya prolongación pasa por un punto fijo del universo, llamado estrella polar. - Polos Geográficos: se denominan así a los puntos en los que el eje de rotación de la Tierra corta a la superficie terrestre existiendo de esta manera dos polos geográficos: o Polo Norte Geográfico (PNg). o Polo Sur Geográfico (PSg). - Círculos máximos: son unos círculos ideales definidos por planos que pasan por el centro de la Tierra. La circunferencia de cualquier círculo máximo mide 40.076 Km. Tienen la propiedad de dividir a la Tierra en dos partes iguales, llamadas hemisferios. Representación de los círculos máximos - Meridianos: son los infinitos semicírculos máximos que pasan por los polos de la Tierra. Dos meridianos opuestos forman un círculo máximo que divide a la Tierra en dos hemisferios. Los meridianos se caracterizan porque cortan perpendicularmente al Ecuador y a todos los paralelos. El más importante de todos los meridianos es el llamado meridiano de origen o de Greenwich, que pasa por el observatorio astronómico situado en ese distrito de la ciudad de Londres y que fue considerado como meridiano de referencia del sistema horario a partir de 1884. Tomando como referencia dicho meridiano, se divide la Tierra en dos hemisferios: - o Hemisferio oriental: situado al ESTE del meridiano origen. o Hemisferio occidental: situado al OESTE del meridiano origen. Ecuador terrestre: es el círculo máximo cuyo plano es perpendicular al eje de la Tierra. El Ecuador divide a la esfera terrestre en dos hemisferios: o Hemisferio norte: contiene al Polo Norte. o Hemisferio sur: contiene al Polo Sur. Representación del Ecuador, Hemisferio norte y Hemisferio sur - Círculos menores: son unos círculos ideales, definidos por planos que no pasan por el centro de la Tierra. Tienen la propiedad de dividir a la Tierra en dos partes desiguales, llamadas casquetes esféricos. Representación de los casquetes esféricos - Paralelos: se denominan así a los círculos menores y paralelos al Ecuador. Son perpendiculares a los meridianos y tienen la propiedad de que por cualquier punto de la superficie terrestre pasa un paralelo. Los paralelos más importantes son el Círculo Polar Ártico, Círculo Polar Antártico, Trópico de Cáncer y el Trópico de Capricornio. Representación de los paralelos 2.3. Movimientos de la tierra y sus efectos La importancia del estudio de los movimientos de la Tierra se debe a la influencia que ejercen, a la hora de tomar referencias cartográficas y realizar cálculos de rutas y ajustes electrónicos, debidos a las desviaciones del norte magnético, causadas por los movimientos terrestres. Se abordarán los cuatro movimientos de la Tierra que tienen más importancia (rotación, traslación, precesión y nutación) de los más de 16 descritos en la actualidad. Aunque los cuatro movimientos se expliquen por separado, el movimiento de la Tierra debe entenderse como un solo movimiento compuesto por los otros movimientos. 2.3.1 Rotación El movimiento de rotación de la Tierra es el que ésta realiza sobre sí misma alrededor del eje de rotación que pasa por los Polos. a. La distancia angular es de 360º y el tiempo que tarda la Tierra en girar sobre sí misma es de 23 horas, 56 minutos y 4 segundos. b. La dirección de este movimiento es de oeste a este y la velocidad de rotación es variable debido principalmente a las fuerzas gravitatorias de su satélite, la Luna. c. El principal efecto del movimiento de rotación de la Tierra es el día y la noche. Otra consecuencia de la rotación es la forma achatada del planeta debida principalmente a las fuerzas centrífugas generadas por este movimiento. Representación del movimiento de rotación de la Tierra 2.3.2 Traslación Es el que efectúa la Tierra alrededor del Sol. a. El tiempo que tarda es de 365 días. La trayectoria u órbita recorrida se llama Eclíptica y es una elipse, en uno de cuyos «focos» se encuentra situado el Sol. b. Debido a que la Tierra describe una órbita elíptica, la distancia entre el Sol y la Tierra no es constante, siendo el punto más alejado el afelio (en torno al 4 de julio) y el punto más cercano el perihelio (4 de enero). c. Los efectos causados son las variaciones climáticas (primavera, verano, otoño e invierno), debidas también a la inclinación del eje de rotación terrestre, formando éste con el plano de la órbita elíptica un ángulo aproximado de 66º33´. Representación del movimiento de traslación Debida a esta inclinación, los efectos sobre los distintos puntos terrestresson: o Trópico de Cáncer: paralelo situado a una distancia angular de 23º27´ al norte del Ecuador. Sobre él los rayos solares inciden perpendicularmente una vez al año, en el Solsticio de Verano, éste será el día del año con más horas de luz solar en el hemisferio norte, y, por tanto, el día más corto del año en el hemisferio sur. o Trópico de Capricornio: paralelo situado a una distancia angular de 23º27´ al sur del Ecuador. Sobre él los rayos solares inciden perpendicularmente una vez al año, en el Solsticio de Invierno, éste será el día del año con menos horas de luz solar en el hemisferio norte, y por lo tanto, será el día más largo del año en el hemisferio sur. o Los momentos en los que los rayos solares inciden perpendicularmente sobre el Ecuador son denominados Equinoccios, y se caracterizan por la equivalencia en el número de horas nocturnas y diurnas. La combinación del movimiento de traslación y de rotación, unido a la inclinación del eje de rotación, causan los ciclos climáticos y atmosféricos del planeta, la duración del día, la dirección de los vientos predominantes, la cantidad de radiación solar y el movimiento aparente de los astros. Dichas consecuencias tienen gran importancia en la navegación aérea a la hora de realizar el cálculo de rutas, corrección de errores, previsiones meteorológicas, estimación de tiempos de vuelo, etc. 2.3.3 Precesión Consiste en el desplazamiento del eje de rotación en el espacio. La trayectoria descrita por el eje es un cono cuyo ciclo es tan extraordinariamente lento que tarda alrededor de 25.700 años en recorrerlo. a. Este movimiento es el causante de que las estrellas cambien de posición respecto a la Tierra, de hecho, la Estrella Polar, que ha sido referente para la navegación durante muchos siglos, por señalar la posición del norte geográfico, ha variado su posición aproximadamente 1º respecto al norte geográfico. b. El sentido del movimiento del eje es contrario al de rotación de la Tierra, y la velocidad de su desplazamiento es aproximadamente de 50 minutos anuales. c. La precesión es causada por fuerzas gravitatorias, principalmente del Sol y la Luna hacia la Tierra que, al no ser esférica sino ensanchada en el Ecuador, provoca la aparición de pares de fuerzas que alteran la posición de equilibrio del eje de rotación. Representación del movimiento de precesión 2.3.4 Nutación Este movimiento en sí consiste en una ligera oscilación del eje terrestre producida sobre la trayectoria del movimiento de precesión. Cada ciclo de nutación dura algo más de dieciocho años, durante los cuales el eje oscila aproximadamente 9 minutos alrededor de su posición media. a. Está provocado sobre el eje de rotación y es superpuesto al de precesión. Los mismos factores que causan la precesión de la Tierra son los que originan su nutación. b. El principal efecto que surge de la combinación del movimiento de precesión y nutación es la variación de la posición del norte magnético. Representación del movimiento de nutación 2.4. Nociones básicas de Navegación Además de los movimientos de la Tierra hay otros conceptos relevantes en el estudio de la navegación y la cartografía. A continuación, se explican conceptos básicos de navegación y sus aplicaciones a la cartografía, necesarios para poder interpretar correctamente los mapas cartográficos específicos. 2.4.1 Magnetismo terrestre La tierra funciona como un enorme imán, creando su propio campo magnético y teniendo dos polos: un polo Norte y uno Sur; aunque, estos polos magnéticos no están alineados con los polos geográficos: o Polo Norte Magnético: Es aquel por donde entran las líneas de fuerza de Campo Magnético Terrestre. o Polo Sur Magnético: Es aquel por donde salen las líneas de fuerza del Campo Magnético Terrestre. Campo magnético de la tierra 2.4.2 Declinación magnética Como los polos magnéticos apuntan siempre al norte magnético, podremos decir que la declinación magnética en un punto de la Tierra es el ángulo comprendido entre el norte magnético local y el geográfico. La declinación puede ser: o Este (E) o positiva, cuando un observador situado en el lugar mirando al norte geográfico viera el norte magnético a su derecha. o Oeste (W) o negativa, cuando un observador situado en el lugar mirando al norte geográfico viera el norte magnético a su izquierda. Declinación magnética 2.4.3 Rumbo Se define rumbo como la distancia angular entre el norte de referencia y el eje longitudinal de la aeronave. Cuando el norte de referencia sea el magnético se habla de rumbo magnético, cuando sea el geográfico se habla de rumbo geográfico. Los rumbos se denominan por medio de tres cifras que representan el ángulo respecto al origen, que es el Norte geográfico o magnético, según se considere, y medido en sentido de giro de las agujas del reloj. Rumbo geográfico y magnético El cálculo de los rumbos se basará en la siguiente fórmula: Rumbo magnético = Rumbo geográfico – declinación La declinación será negativa para W y positiva para E ¿Cuál será el rumbo magnético para un geográfico de 081º y una declinación de 3ºE? Rm = 081º -(+3º) =078º ¿Cuál será el rumbo magnético para un geográfico de 122º y una declinación de 5ºW? Rm = 122º -(-3º) =122º+3º =125º 2.4.4 Ruta Se define como la proyección del movimiento de una aeronave, persona u objeto sobre la superficie terrestre. La ruta trazada sobre una carta de navegación hace referencia a la trayectoria que une el punto de salida con el punto de destino. Podrá ser magnética o geográfica según se tome como referencia el Norte Magnético o el Geográfico. Siempre que la navegación se lleve a cabo en ausencia de viento, el rumbo de la aeronave coincidirá con el de la ruta que sobrevuela. Sin embargo, el viento en ocasiones provoca que el rumbo de la aeronave no coincida con el de la ruta sobrevolada, en estos casos, la aeronave puede desplazarse a través de un rumbo que no es el propio. Los dos tipos de rutas más importantes son: la Ruta Ortodrómica y la Ruta Loxodrómica. Representación de la ruta RUTA ORTODRÓMICA RUTA LOXODRÓMICA Es arco de círculo máximo que une dos Es aquélla que describimos sobre la superficie puntos sobre la superficie terrestre. terrestre cuando nosdesplazamos de un punto a otro manteniendo un rumbo constante en la brújula. Ruta más corta entre dos puntos Es más larga que la ortodrómica. Distancias: Para grandes distancias, la diferencia Distancias: para pequeñas distancias (rutas es importante, y se preferirá seguir la inferiores a 1.000 Km) la diferencia es pequeña y ortodrómica al ser más corta. se suele seguir la loxodrómica, ya que permite mantener un rumbo constante sin que por ello se recorra una distancia mucho mayor. Forma ángulos distintos con cada meridiano Forma el mismo ángulo con todos los meridianos excepto cuando dicha ruta coincide con un meridiano o con el Ecuador. Es difícil de seguir Es fácil de seguir En el ámbito aeronáutico, la ortodrómica sigue En el ámbito aeronáutico, la navegación siendo fundamental, especialmente para loxodrómica cae en desuso. Su cualidad de navegación a largas distancias, ya que el simplicidad en la navegación ha sido superada consumo, o, mejor dicho, el ahorro de por la precisión de los sistemas modernos de combustible es uno de los objetivos principales navegación. del transporte aéreo. A partir de estos arcos de círculo máximo u ortodrómico, se define una de las unidades de medida de longitud más utilizadas en navegación: la milla náutica (NM), definida como la longitud recorrida en un minuto sobre un arco de círculo máximo 1NM = 1.852 km. 2.4.5 Deriva Un avión se desplaza en el interior de una masa de aire, luego el movimiento de esta masa de aire afectará al desplazamiento del avión con respecto a la ruta que desea llevar. El ángulo existente entre la ruta deseada de una aeronave y la dirección del movimiento de la misma se denomina deriva, y es un factor importante a tener en cuenta para que el viento no altere la ruta de la misma. La máxima deriva se produce cuando la dirección del viento es perpendicular al rumbo de la aeronave, y es mínima o nula cuando la dirección del viento coincide con la de la aeronave. Representación de la deriva 2.4.6 Derrota Se define la derrota como la proyección sobre el suelo de la trayectoria que ha seguido la aeronave al intentar sobrevolar una determinada ruta. Por lo tanto, es el resultado de la corrección de los distintos rumbos tomados por la aeronave para seguir su ruta. La derrota se debe principalmente a los vientos, ya que no siempre es sencillo sobrevolar una ruta determinada y, generalmente, a lo largo de un vuelo se han de hacer sucesivas correcciones de rumbo para evitar abandonar la ruta. Representación de la derrota 2.5 Sistemas de referencia terrestre El trazado de un mapa requiere el establecimiento de un método que permita localizar puntos concretos de la superficie terrestre, para su posterior representación. Con este objetivo, se han desarrollado diferentes modelos matemáticos caracterizados básicamente por: 1. Un sistema de coordenadas, que permite posicionar puntos sobre el elipsoide. 2. Datum: Conjunto de parámetros que fijan el origen, la orientación y la escala del sistema de coordenadas con respecto a un elipsoide de referencia (un modelo asociado de la forma de la tierra). 2.5.1 Sistema de coordenadas geográficas El sistema de coordenadas geográficas es uno de los métodos más utilizados en la determinación de puntos sobre la superficie terrestre. Dicha localización se realiza mediante dos distancias angulares tomando como referencia una aproximación esférica de la Tierra: Longitud y Latitud.  Latitud: Se llama latitud de un punto de la superficie terrestre a la distancia angular, medida en grados sobre un meridiano, entre dicho punto y el Ecuador, que es la línea que se toma como origen de latitudes. Se mide en grados, minutos y segundos. Varía de 0º a 90º y puede ser: o Norte o positiva (N): si el punto se encuentra por encima del Ecuador. o Sur o negativa (S): si el punto se encuentra por debajo del Ecuador. Según la definición de latitud, los puntos situados sobre el Ecuador tienen como latitud 0º y los Polos tienen como latitud 90º, por tanto, todos los puntos de un mismo paralelo tienen la misma latitud. Todos los puntos situados en el mismo paralelo tendrán la misma latitud Cualquier punto situado sobre el Ecuador tendrá latitud 0 Representación de la latitud  Longitud: se llama longitud de un punto a la distancia angular, medida en grados sobre el Ecuador, entre el meridiano del lugar y el meridiano de origen o de Greenwich. Se mide en grados, minutos y segundos. Varía de 0º a 180º y puede ser: o Este o positiva (E): si el punto se sitúa a la derecha del meridiano origen. o Oeste o negativa (W): si el punto se sitúa a la izquierda del meridiano origen. Según la definición de longitud, los puntos situados en el meridiano origen tienen como longitud 0º, por tanto, todos los puntos situados en un mismo meridiano tienen la misma longitud. Representación de la longitud 2.5.2 Datum WGS84 La ambigüedad en el cálculo de coordenadas, ocasionada por el uso de diferentes datums, puso de manifiesto la necesidad de normalizar un modelo único de referencia que pudiera ser utilizado en diferentes aplicaciones. Con este objetivo, el Departamento de Defensa estadounidense desarrolló el World Geodetic System 1984 (WGS84), un sistema de referencia geodésico universal con cobertura para toda la superficie terrestre, definido por los siguientes parámetros: 1. Origen: centro de masas de la Tierra. Sistemas de ejes coordenados: 2. Eje Z: dirección del polo medio convencional terrestre definido por el IERS (Servicio Internacional de Rotación de la Tierra), perpendicular al plano fundamental (Ecuador medio). Coincidente con el eje medio de rotación de la Tierra. 3. Eje X: formado por la intersección determinada por el plano del Ecuador y el meridiano de Greenwich también definido por el IERS. 4. Eje Y: situado sobre el plano del Ecuador medio y a 90° a la derecha del eje X formando junto con el eje Z un triedro a derechas siendo el origen del triedro el centro de masas de la Tierra. 5. Elipsoide WGS84: elipsoide de revolución definido por los parámetros: Semieje mayor (a) = 6 378 137 m. Semieje menor (b) = 6 356 752 m. Constante de Gravitación Terrestre: GM = (3986004.418 ± 0.008) x 108 m3 / s2. Velocidad angular: W= 7292115 x 10-11 rad/s. Coeficiente de forma dinámica: J2= -484,166 85 x 10-6. Representación del esquema del WGS84 Las coordenadas aeronáuticas publicadas en el AIP-ESPAÑA están referidas al sistema geodésico WGS84, de acuerdo con lo establecido en el Anexo 15 de la OACI. El Real Decreto 1071/2007, de 27 de julio, adaptación del mandato de la Comisión Europea de 1999, por el que se regula el sistema geodésico de referencia oficial en España, establece que se adopta el sistema ETRS89 (European Terrestrial Reference System 1989) como sistema de referencia geodésico oficial en España para la referenciación geográfica y cartográfica en el ámbito de la península Ibérica y las Islas Baleares. En el caso de las islas Canarias, se adopta el sistema REGCAN95. Ambos sistemas tienen asociado el elipsoide GRS80 (Sistema de Referencia Geodésico 1980) y están materializados por el marco que define la Red Geodésica Nacional por Técnicas Espaciales, REGENTE, y sus densificaciones. Inicialmente, teniendo en cuenta la exactitud requerida para los diferentes datos establecidas en el Catálogo de Datos Aeronáuticos, ETRS89 y REGCAN95 se consideraron equivalentes a WGS84. Sin embargo, debido a la deriva existente entre estos sistemas, se han hallado discrepancias cada vez mayores que la exactitud requerida para algunos datos, por lo que los sistemas ETRS89 y REGCAN95 no se pueden considerar válidos para la publicación de coordenadas en AIP ESPAÑA. 3. Representación de la superficie terrestre Una vez que se ha estudiado la forma y las dimensiones de la Tierra, así como la localización de sus puntos y líneas más característicos, en este apartado se aborda el objetivo de examinar los distintos métodos que se utilizan para representar la superficie terrestre o parte de ella sobre un plano o una superficie desarrollable. 3.1 La escala En general, la representación gráfica de objetos es una tarea que suele plantear dificultades en relación con sus dimensiones. Si se pretendiera reproducir a tamaño real un objeto demasiado grande, sería necesario utilizar un formato de representación de medidas poco manejables. En el caso de objetos muy pequeños surgiría el inconveniente de la falta de precisión en su definición. Esta problemática se resuelve a través de la escala, que se define como la relación entre la dimensión real de un objeto y su representación gráfica. En otras palabras, la escala es un factor de reducción o ampliación que se aplica a la representación de un objeto, con el fin de ajustar su definición y obtener el formato de dibujo deseado. Existen diversas formas de expresar la escala, pero las dos más comunes son la gráfica y la numérica. 3.1.1 La escala numérica Se formula mediante una fracción cuyo numerador es la medida de la distancia lineal de un objeto en su representación sobre el plano, y cuyo denominador refleja la magnitud real de esa misma distancia. E= Longitud en el plano/ Longitud en el terreno. Ejemplo: si la escala de un plano es 1:10 una distancia en el plano de 5 cm=> Equivale a una distancia en el terreno de 5x10= 50 cm. Se han de utilizar siempre las mismas unidades ya que, de no ser así, se perderían las proporciones.  Escalas de reducción: cuando el numerador es menor que el denominador o Una escala es grande, cuando el denominador es pequeño, es decir, abarcan poco terreno; se emplean para representar ciudades, fincas, caminos, etc. Ejemplo: 1:5.000, 1:10.000. o Una escala es pequeña, cuando el denominador es grande, es decir, abarcan mucho terreno; se emplean para representar países y continentes. Ejemplo: 1:5.000.000, 1:7.000.000.  Escala de ampliación: Si el numerador de la fracción es mayor que el denominador.  Escala natural: corresponde a la representación de un objeto a tamaño real (1:1). REALIDAD DIBUJO 1/1 NATURAL 1/2 REDUCCIÓN AMPLIACIÓN 2/1 Esquema de tipos de escala Ejemplos de diferentes tipos de escala 3.1.2 La escala gráfica Se expresa a través de una línea graduada en distintas divisiones, asignando a cada una de ellas su equivalencia con la magnitud real. A través de este método, se puede reconocer las proporciones reales sobre una representación de una manera visual y sin cálculos. Por ejemplo, para una escala 1/5.000.000, una división de la escala gráfica de un centímetro aparecerá graduada en 50 Km, que es la longitud equivalente en la realidad. Dimensiones en la realidad. Dimensiones en la realidad. 2500 m 500 1000 1 cm 1500 Ejemplo de escala gráfica 2000 2500 m 3.2 Las proyecciones cartográficas 3.2.1 Concepto Se entiende por sistema de representación o proyección cartográfica a las trasformaciones matemáticas que permiten representar o proyectar la Tierra en un plano. Esquema conceptual de una proyección cartográfica Dado que no existe la posibilidad geométrica y/o analítica de transformar un área esférica en una plana sin deformarla, cualquier mapa generado a partir de una proyección cartográfica, llevará implícitas una serie de distorsiones respecto a la superficie real que representa, que tienen que ver con las distancias entre puntos, los ángulos entre líneas o curvas, y la equivalencia entre áreas. Por este motivo, las proyecciones cartográficas no sólo estudian la forma de reproducir la superficie terrestre, sino que también intentan minimizar, en la medida de lo posible, las alteraciones causadas en el proceso. La elección del tipo de proyección a utilizar en un caso determinado dependerá principalmente de dos factores: 1. La zona de la superficie terrestre que se quiera representar. 2. La especialización del mapa, es decir, la finalidad para la que se construya. Éste es un factor clave, ya que el uso de una proyección concreta puede evitar determinadas distorsiones geométricas que dificulten la utilización práctica del mapa. 3.2.2 Clasificación. Las proyecciones cartográficas se pueden clasificar de diferentes maneras: a. Atendiendo al tipo de magnitud geométrica que el mapa sea capaz de conservar respecto a la real. b. Atendiendo a la forma de proyección  Atendiendo al tipo de magnitud geométrica que el mapa sea capaz de conservar respecto a la real. Proyecciones Conserva el ángulo entre dos puntos medidos en la conformes superficie de referencia y el mapa. Proyecciones Conserva la proporcionalidad entre las áreas. A este equivalentes respecto, es necesario aclarar que la equivalencia no es posible sin deformar considerablemente los ángulos originales. Por lo tanto, ninguna proyección Proyecciones Guardan la proporcionalidad entre las distancias. En equidistantes la práctica, no existe ninguna proyección capaz de conservar esta propiedad a lo largo de todo el mapa. Sin embargo, puede conservarse a lo largo de Proyecciones No poseen ninguna de las tres propiedades señaladas. afilácticas Está matemáticamente demostrado que no existe ningún sistema de proyección en el que se mantengan las tres dimensiones, sino solamente una de ellas.  Atendiendo a la forma de proyección: Se dividirán en: 1. Proyecciones puras 2. Proyecciones modificadas PROYECCIONES PURAS Resultan de la verdadera proyección geométrica de la superficie terrestre, o parte de ella, sobre un plano o una superficie desarrollable. Ortográficas: el foco de proyección se encuentra fuera de la superficie terrestre y a una distancia infinita de la misma. Escenográficas: el foco de proyección se encuentra fuera de la superficie terrestre, a una distanciafinita. Según el lugar donde se sitúe el centro de proyección Estereográficas: cuandoelfocodeproyección se encuentra sobrela superficie terrestre. Gnomónicas: el foco de proyección se encuentra en el centro de la superficie terrestre. Proyecciones planas o perspectivas Resultan de la proyección geométrica de los puntos de la superficie terrestre sobre un plano. Polares: el plano el cuadro es tangente a la superficie terrestre en uno de sus Polos. Ecuatoriales: el plano de proyección es tangente en algún punto del Ecuador. En función de la posición del plano de proyección Horizontales: el plano de proyección es tangenteaalgún puntonosignificativo de la superficie terrestre. Dependiendo de la posición relativa de la superficie de proyección Directa TIPOS Proyecciones por desarrollo Resultan de la proyección geométrica de los puntos de la Tierra sobre una superficie desarrollable. Cónicas: aquéllas en las que la superficie de proyección es un cono tangente o secante a la superficie terrestre de referencia. Cilíndricas: aquéllas en las que la superficie de proyección es un cilindro tangente o secante a la esfera. el eje de la superficie de proyección es paralelo al eje de rotación terrestre Transversal Oblicua el eje de la superficie de proyección es perpendicular al eje de rotación terrestre. el eje de la superficie de proyección forma un ángulo comprendido entre 0º y 90º con el eje de rotación PROYECCIONES MODIFICADAS - Recurren a distintos artificios geométricos y analíticos para conseguir que una determinada proyección pura adquiera alguna propiedad que no posea originariamente, con el fin de disminuir las distorsiones geométricas en determinadas áreas que resulten de interés para el uso de la carta. 3.2.3 Aplicación de las proyecciones cartográficas en la aeronáutica Las proyecciones cónicas tienen un uso muy extendido en la cartografía aeronáutica, especialmente en lo referido a la navegación en ruta, debido a la facilidad y exactitud con la que se pueden representar las trayectorias. Las cónicas más utilizadas son las gnomónicas-directas, en las que el plano cónico es tangente a la superficie terrestre a lo largo de un paralelo que se denomina estándar. Este tipo de proyección tiene varias características importantes: 1. Los meridianos se transforman en rectas concurrentes en el Polo y los paralelos en arcos de circunferencias concéntricas en el punto de concurrencia de los meridianos. Ambos tipos de línea mantienen un ángulo constante de 90º. 2. La proyección es conforme, por su propia construcción, a lo largo de toda la representación. Las distorsiones lineales y superficiales son mínimas en las inmediaciones del paralelo estándar (único automecoico, es decir, sin deformación lineal) y aumentan según se aleja de esta línea. La proyección cónica conforme de Lambert es una proyección modificada que se basa en la directa-gnomónica, pero sustituye el cono tangente por uno secante. Lambert calculó matemáticamente la posición de los paralelos de corte del cono de proyección con la superficie terrestre: a. consiguiéndose dos paralelos estándares automecoicos y b. logrando que las deformaciones lineales queden reducidas a la mitad del valor absoluto de las que se producirían en el caso de usar un cono tangente. De este modo, no sólo se mantiene una constancia en la escala bastante extendida en la carta, sino que, además, por ser ésta conforme, la distorsión de las áreas es mínima. Proyección cónica conforme de Lambert La proyección cónica conforme de Lambert resulta de enorme utilidad para la navegación aérea por diversos motivos: o Al tratarse de una carta conforme y prácticamente equidistante, se pueden medir los rumbos y las distancias directamente sobre ella con bastante precisión. o La ortodrómica se representa -con gran aproximación- por una recta, por lo que el trazado de una ruta de estas características puede realizarse uniendo directamente los puntos sobre la carta. o La loxodrómica está representada por una curva con la concavidad orientada hacia el vértice de la proyección. 3.3 Las representaciones topográficas La topografía es la ciencia que se ocupa de la representación de pequeñas extensiones de la superficie terrestre. En esta labor, la principal dificultad reside en el alto grado de irregularidad que presentan normalmente los terrenos naturales. A efectos prácticos, cuando la superficie terrestre a representar no abarca grandes dimensiones, se puede obviar su esfericidad y aproximarse a un plano, sin cometer grandes errores de precisión. En estos casos, el procedimiento más utilizado para el trazado del relieve se basa en la comparación de las altitudes de sus puntos respecto al plano correspondiente al nivel medio del mar. Por esta razón, se suele emplear el sistema de planos acotados, un método de representación que emplea un único plano de proyección -denominado plano de referencia o del cuadro sobre el que se trazan los objetos mediante una proyección cilíndrica y ortogonal3. Rayos proyectantes B1 Plano de proyección Sistema de planos acotados En este sistema, un punto quedará definido por sus coordenadas planas en el cuadro y la distancia vertical al mismo (cota), afectada del signo + o - según esté situado por encima o por debajo. No obstante, si sólo se realizara una representación puntual del terreno, se correría el riesgo de perder precisión en el plano (en el caso de escoger un escaso número de puntos) o de hacerlo ininteligible (en caso de representar demasiados). Por este motivo, se usa el sistema de curvas de nivel que se expone a continuación. 3.3.1 El sistema de curvas de nivel El sistema de curvas de nivel es un procedimiento de representación del relieve basado en el sistema de planos acotados, que consiste en «cortar» el terreno por planos paralelos que contienen puntos que están a la misma altitud sobre el nivel del mar o sobre cualquier otro nivel de referencia. Dichos planos se encuentran separados por una misma distancia vertical denominada equidistancia. Cada sección produce un perímetro orográfico de igual cota que se proyecta en el plano del cuadro formando las denominadas curvas de nivel o isohipsas. Sistema de curvas de nivel Una de las ventajas de este sistema es que permite realizar cálculos sencillos – tales como la determinación de distancias, áreas, ángulos e incluso volúmenes- de una forma bastante precisa y simple, en base al alzado del perfil topográfico de la zona. Dado que en una proyección de este tipo las deformaciones son prácticamente nulas, las operaciones se pueden hacer conforme a medidas directas de las distancias horizontales en el plano y el valor de la equidistancia. La precisión de los planos obtenidos por este sistema depende del valor de la equidistancia y la escala. La definición aumentará con el tamaño de la escala, pero para poder reflejar pequeños detalles será preciso tomar curvas de nivel muy cercanas entre ellas, es decir, disminuir la equidistancia. La topografía basada en curvas de nivel es muy común en determinadas cartas aeronáuticas que sirven de información para la navegación visual, representan aeródromos o definen superficies delimitadoras de obstáculos. 3.4 Simbología En el ámbito cartográfico y topográfico, los símbolos son figuras gráficas diseñadas para identificar en el mapa o el plano correspondiente aquellos objetos y/o elementos geográficos que, o bien resulten imperceptibles en la propia representación o bien proporcionen una determinada información útil para la funcionalidad demandada por parte de los usuarios. Los símbolos se crean conforme a signos evocadores, figurativos, cuantitativos o ideogramas que produzcan una percepción significativa asociada a la realidad que pretenden representar. En función de la especialización de los mapas o planos, el diseño de la simbología específica se suele ajustar a las normas que dicten los organismos correspondientes en cada caso. En el caso de la cartografía aeronáutica, la simbología empleada está normalizada en el Anexo 4 de OACI. En España por las necesidades de su cartografía ha sido necesario idear símbolos distintos a los de la OACI, estos vienen recogidos en el GEN 2.3 del AIP-España indicados con un * que hace referencia a: “No incluidos en el ANEXO 4 de OACI”. Además de los símbolos, los mapas y planos –según su propósito- también suelen incluir nombres, números, siglas, valores, etc., teniendo en cuenta la adecuación del color, la forma, la dimensión, la orientación y la ubicación. 4. Cartas aeronáuticas La carta aeronáutica se define como la representación de una porción de tierra, su relieve y construcciones, diseñada especialmente para satisfacer los requisitos de la navegación aérea. La seguridad de la navegación aérea exige el establecimiento oportuno de cartas aeronáuticas actualizadas y precisas, que respondan a las necesidades actuales de la aviación. En la actualidad, la Organización de Aviación Civil Internacional (OACI) se erige como el mayor órgano de regulación mundial para la aviación civil, que dictamina las normas y las recomendaciones necesarias para la seguridad, eficiencia y ordenación del transporte aéreo internacional, indicando que cada Estado tiene la obligación de proporcionar información del propio territorio a través de las cartas aeronáuticas. a. Las cartas aeronáuticas se desarrollan en el Anexo 4 y en el Documento 8697 de la OACI. b. En el Anexo 15 «Servicios de Información Aeronáutica» recoge que es el Servicio de Información Aeronáutica (AIS) responsable de la producción de la cartografía aeronáutica necesaria utilizada por la aviación civil, tanto nacional como internacional, en territorio español y en aquellas zonas donde el Estado tenga la responsabilidad de suministrar servicios de tránsito aéreo. En España este servicio está gestionado por ENAIRE y, específicamente en cuanto a la cartografía aeronáutica, recae sobre la División AIS. 4.1 Anexo 4 de OACI «CARTAS AERONÁUTICAS» 4.1.1 Generalidades Cada Estado es responsable de su propia producción cartográfica, atendiendo a las necesidades de sus servicios de tránsito aéreo. Además de cumplir con las especificaciones de OACI (Anexo 4 y 15), puede desarrollar cartografías específicas con el propósito de adecuar la información publicada a sus necesidades. El Anexo 4 establece que las cartas deben ser de interpretación rápida y deben dejar abierto el camino para posibles mejoras de diseño, es preciso encontrar un equilibrio entre la uniformidad de presentación de las cartas, los requisitos operacionales y la aplicación de técnicas eficaces y económicas, para ello la cooperación entre estados es fundamental. Se hace necesaria una organización cartográfica adecuada en cada Estado. Todas las ramas de actividad implicadas en la realización y difusión de las cartas aeronáuticas deben estar al tanto de la relación funcional entre las cartas, así como de las especificaciones y necesidades correspondientes. 4.1.2 Aspectos recogidos en el Anexo 4 El Anexo 4 intenta dar una serie de normas y métodos recomendados que permitan la unificación del formato de las cartas para todos los países miembros, mediante el desarrollo de puntos como: 1. Declaración de las diferencias que se tengan respecto a este Anexo. 2. Publicación de información relativa a la disponibilidad de las cartas. 3. Idioma de publicación (en España en la actualidad se están empezando a hacer bilingües las cartas: español e inglés) 4. Especificaciones generales tales como requisitos de utilización de la carta, título, símbolos, etc. 5. Desarrollo de cada una de las cartas y todas sus especificaciones específicas. Exhaustivamente se encuentra en el doc. 8697 Manual de Cartas Aeronáuticas. 4.2 Carácter de las cartas aeronáuticas En el Manual de Cartas Aeronáuticas (Doc. 8697 de la OACI) se indican los siguientes tipos de cartas atendiendo a su carácter: 4.2.1 Cartas obligatorias o Plano de Obstáculos de Aeródromo - OACI Tipo A o Carta Topográfica para Aproximaciones de Precisión – OACI, o Carta de Navegación en Ruta – OACI, o Carta de Aproximación por Instrumentos – OACI, o Plano de Aeródromo / Helipuerto – OACI, o Carta Aeronáutica Mundial - OACI 1:1.000.000 4.2.2 Cartas opcionales Sólo deben producirse si, en opinión de las autoridades estatales, su disponibilidad contribuiría a la seguridad, regularidad y eficiencia de las operaciones de las aeronaves. Estas cartas son: o Plano de Obstáculos de Aeródromo - OACI Tipo B o Plano de Aeródromo para Movimientos en Tierra - OACI o Plano de Estacionamiento y Atraque de Aeronaves - OACI o Carta Aeronáutica - OACI 1:500.000 o Carta de Navegación Aeronáutica - OACI, Escala Pequeña o Carta de Posición – OACI 4.2.3 Cartas condicionalmente necesarias Significa que solamente serían necesarias si se cumplen determinadas condiciones o circunstancias. Estas cartas son: o Carta de Área - OACI.: sólo si las rutas de los servicios de tránsito aéreo o los requisitos de notificación de posición son complicados y no pueden indicarse en la Carta de Navegación en Ruta - OACI. o Carta de Salida Normalizada - Vuelo por Instrumentos (SID) - OACI: debe producirse siempre que se haya establecido una ruta de salida normalizada de vuelo por instrumentos y ésta no puede indicarse con suficiente claridad en la Carta de Área - OACI. o Carta de Llegada Normalizada - Vuelo por Instrumentos (STAR) - OACI.: debe prepararse siempre que se haya establecido una ruta de llegada normalizada de vuelo por instrumentos y ésta no pueda indicarse con suficiente claridad en la Carta de Área - OACI. o Carta de Aproximación Visual - OACI: debe prepararse para los aeródromos utilizados por la aviación civil internacional, en los que solamente existen instalaciones y servicios limitados de navegación o en los que no se cuenta con instalaciones y servicios de radiocomunicaciones o en los que no existen otras cartas aeronáuticas adecuadas del aeródromo y de sus alrededores a escala 1:500.000, o escala superior, o en los que se han establecido procedimientos de aproximación visual. o Carta de altitud mínima de vigilancia ATC - OACI: debe prepararse cuando se ha establecido procedimientos de guía vectorial y las altitudes mínimas de guía vectorial no puedan indicarse con suficiente claridad en la Carta de área - OACI, la Carta de salida normalizada vuelo por instrumentos (SID) - OACI o la Carta de llegada normalizada - vuelo por instrumentos (STAR)- OACI. Además, en España se producen otras cartas como son: - Carta de área de cobertura radar - Carta de Altitud Minima de Vigilancia ATC (ATCSMAC) -OACI en TMA - Carta de Circulación VFR en TMA - Carta de Transición a la aproximación final - vuelo por instrumentos (TRAN) - Carta de llegada vuelo por instrumentos - Descenso Continuo - Luces aeronáuticas de superficie - en ruta - Carta de áreas prioritarias a evitar en vuelos particulares - Carta de concentración de aves - Carta de presencia de buitres y cigüeñas Solamente deben producirse si, en opinión de las autoridades estatales, su disponibilidad contribuiría a la seguridad, regularidad y eficiencia de las operaciones de las aeronaves. 4.3 Fases del vuelo y relación entre cartas Cada carta aeronáutica tiene una finalidad específica, y está orientada a ayudar al piloto a desarrollar correctamente una determinada fase del vuelo. En cada tipo de carta se proporcionará la información apropiada a la fase correspondiente del vuelo. En función de la fase del vuelo las cartas a utilizar son:  Fase 1. Rodaje desde el puesto de estacionamiento hasta el punto de despegue - Plano de Estacionamiento y Atraque de Aeronaves - OACI. - Plano de Aeródromo para Movimientos en Tierra - OACI. - Plano e Aeródromo / Helipuerto - OACI.  Fase 2. Despegue y ascenso hasta la estructura de rutas ATS - Plano de Obstáculos de Aeródromo - OACI Tipo A. - Carta de Salida Normalizada - Vuelo por Instrumentos (SID) - OACI. - Carta de altitud mínima de vigilancia ATC – OACI  Fase 3. Estructura de rutas ATS en ruta - Carta de Área - OACI. Rutas de salida y tránsito. - Carta de Navegación en Ruta - OACI. - Carta de Área - OACI. Rutas de llegada y tránsito. - Carta de Circulación VFR.  Fase 4: Descenso hasta la aproximación - Carta de Llegada Normalizada - Vuelo por Instrumentos (STAR) - OACI - Carta de Llegada Vuelo por Instrumentos - Descenso Continuo (CDA) - Carta de Transición a la Aproximación Final - Vuelo por Instrumentos (TRAN) - Carta de altitud mínima de vigilancia ATC - OACI  Fase 5: Aproximación para aterrizar - Carta de Aproximación por Instrumentos - OACI. - Carta Topográfica para Aproximaciones de Precisión - OACI. - Carta de Aproximación Visual - OACI. - Plano de Obstáculos de Aeródromo - OACI Tipo A (Limitaciones de utilización).  Fase 6: Aterrizaje y rodaje hasta el puesto de estacionamiento de aeronave. - Plano de Aeródromo / Helipuerto - OACI. - Plano de Aeródromo para Movimientos en Tierra - OACI. - Plano de Estacionamiento y Atraque de Aeronaves - OACI. 4.4 Cartas aeronáuticas OACI y específicas publicadas por España En este apartado se dará una breve explicación de las cartas aeronáuticas OACI, pero solo de aquellas que España publica y de aquellas cartas que no son OACI pero contenidas en el AIPEspaña. 4.4.1 Plano de Aeródromo / Helipuerto – OACI Este plano proporciona la información necesaria para facilitar el movimiento de las aeronaves, desde los puestos de estacionamiento de aviones y/o helicópteros hasta la pista y de la pista al puesto de estacionamiento. También proporciona información esencial relativa a las operaciones en el aeródromo/helipuerto. OACI establece que se publiquen para todos los aeródromos utilizados regularmente por la aviación civil internacional, sin embargo, en España dado que es una carta de gran importancia para las operaciones se publica prácticamente para todos los aeródromos y helipuertos civiles 4.4.2 Plano de Aeródromo para Movimientos en Tierra – OACI Se utilizará cuando, debido a la complejidad de las instalaciones terminales, la información no pueda detallarse con la suficiente claridad en el Plano de aeródromo. Proporciona a las tripulaciones de vuelo información detallada que facilita el movimiento de las aeronaves en tierra a lo largo de las calles de rodaje, desde y hacia los puestos de estacionamiento, entre éstos. De existir un plano de estacionamiento, en esta carta solo se reflejarían las calles de rodaje con su designador y sentido cuando no sea bidireccional, así como cualquier otro dato que sea necesario respecto a las calles de rodaje. 4.4.3 Plano de Estacionamiento y Atraque de Aeronaves – OACI Se utilizará cuando, debido a la complejidad de las instalaciones terminales, la información no pueda detallarse con la suficiente claridad en el Plano de aeródromo y/o Plano de aeródromo para movimientos en tierra. Proporciona a las tripulaciones en vuelo la información detallada para facilitar los movimientos en tierra de las aeronaves entre las calles de rodaje, los puestos de estacionamiento y para la realización del propio estacionamiento de la aeronave. 4.4.4 Plano de obstáculos de Tipo A (Limitaciones de utilización) Proporcionará los datos necesarios para que los explotadores puedan cumplir con: a. Despegue. En caso de falla de un motor crítico, o por otros motivos, en cualquier punto del despegue, el avión podrá interrumpir el despegue y parar dentro de la distancia disponible de aceleración-parada, o continuar el despegue y salvar con una distancia vertical u horizontal adecuada todos los obstáculos situados a lo largo de toda la trayectoria de vuelo b. En ruta — un motor inactivo. En caso de que el motor crítico quede inactivo en cualquier punto a lo largo de la ruta o de las desviaciones proyectadas respecto de la misma, el avión deberá poder continuar el vuelo hasta un aeródromo en el que pueda aterrizar. c. Aterrizaje. El avión podrá aterrizar en el aeródromo de aterrizaje previsto y en cualquier otro de alternativa, después de haber salvado, con un margen seguro, todos los obstáculos situados en la trayectoria de aproximación con la seguridad de que podrá detenerse, dentro de la distancia disponible deaterrizaje. OACI establece que se publiquen para todos los aeródromos utilizados regularmente por la aviación civil internacional, sin embargo, en España dado que es una carta de gran importancia para las operaciones se publica prácticamente para todos los aeródromos y helipuertos civiles. 4.4.5 Carta Topográfica para Aproximaciones de Precisión - OACI La función de esta carta es facilitar información detallada sobre el perfil del terreno de determinada parte del área de aproximación final, para que las empresas explotadoras de aeronaves puedan evaluar el efecto del terreno al determinar la altura de decisión empleando radioaltímetros. Esta carta se facilitará respecto a las pistas para aproximaciones de precisión de las categorías II y III de los aeródromos utilizados por la aviación civil internacional. 4.4.6 Carta de Navegación en Ruta – OACI Esta carta proporciona información a la tripulación de vuelo de ayuda para la navegación a lo largo de las rutas ATS, de conformidad con los procedimientos de los servicios de tránsito aéreo. Este tipo de carta debe proporcionarse en todas las áreas en que se han establecido regiones de información de vuelo inferior (FIR, Flight Information Region) y superior (UIR, Upper Information Region). En España se proporciona exclusivamente en formato digital en el siguiente enlace: insignia.enaire.es. 4.4.7 Carta de Área – OACI Proporciona a la tripulación de vuelo información que facilita las fases siguientes del vuelo por instrumentos: o La transición entre la fase de ruta y la aproximación a un aeródromo. o La transición entre el despegue o aproximación frustrada y la fase en ruta del vuelo. o Los vuelos por áreas de estructura compleja de rutas ATS, o del espacio aéreo. Lo que permite ver la llegada desde la aerovía que deja o salida conectando con la aerovía a la que se puede incorporar. 4.4.8 Carta de Salida Normalizada Vuelo por Instrumentos (SID) – OACI Estas cartas están destinadas a las aeronaves que operan en IFR. Facilitan información sobre las rutas a seguir desde la fase de despegue hasta la fase de ruta. 4.4.9 Carta de Llegada Normalizada Vuelo por Instrumentos (STAR) – OACI Estas cartas están destinadas a las aeronaves que operan en IFR. Facilitan información sobre las rutas a seguir desde la fase en ruta hasta la fase de aproximación. 4.4.10 Carta de Llegada Vuelo por Instrumentos – Descenso Continuo (CDA) Estas cartas están destinadas a las aeronaves que operan en IFR. Facilitan información sobre: o las rutas a seguir desde la fase en ruta hasta la fase de aproximación o la distancia del procedimiento de llegada, siguiendo por el procedimiento de aproximación instrumental indicado, desde los puntos de notificación hasta el umbral. Básicamente el procedimiento se basará en la aplicación de las actuales STAR, eliminando de ellas las restricciones de velocidad y altitud, excepto las altitudes mínimas de seguridad. 4.4.11 Carta de Transición a la Aproximación Final - Vuelo por Instrumentos (TRAN) Estas cartas contienen maniobras que consisten en unos procedimientos instrumentales RNAV1 denominadas “transiciones” que llevan asociados tramos en forma de trombón y son un método sistematizado para la secuenciación de flujos de llegadas utilizado en diversos aeropuertos de alta densidad. Una transición RNAV es un procedimiento publicado, consistente en: 1 tramo inicial, 1 tramo De alejamiento y 1 tramo de acercamiento, que enlaza una STAR (desde un IAF o algún punto anterior) con un punto desde el que es posible realizar el tramo de aproximación final de un procedimiento de aproximación al ILS o aproximación equivalente que pueda existir en el aeropuerto. En la actualidad, solo existen en el aeropuerto de Barcelona/El Prat. 4.4.12 Carta de altitud mínima de vigilancia ATC - OACI Se proporcionará a la tripulación de vuelo información que le permita vigilar y verificar las altitudes asignadas por un controlador que usa un sistema de vigilanciaATS. En el anverso de la carta deberá presentarse de manera destacada una nota en la cual se indique que la carta puede utilizarse únicamente para verificar las altitudes asignadas cuando la aeronave está identificada. 4.4.13 Carta de Aproximación por Instrumentos (IAC) - OACI Facilita la información necesaria para efectuar los procedimientos de aproximación instrumental a la pista de aterrizaje prevista, incluyendo los de aproximación frustrada y los de espera. Se confecciona para todos aquellos aeródromos en los que se establecen procedimientos de aproximación instrumental. Se publica una carta de aproximación para cada procedimiento. 4.4.14 Carta de Aproximación Visual – OACI Proporciona a las tripulaciones en vuelo información necesaria para pasar de la fase de vuelo en ruta y descenso a la de aproximación a la pista de aterrizaje mediante referencias visuales. Esta carta se utilizará cuando se hayan establecido procedimientos de aproximación visual o sólo existan instalaciones limitadas para la navegación, o no se disponga de instalaciones de radiocomunicación, o no se disponga de cartas de aeródromo de escala 1:500.000 o superior o se hayan establecido procedimientos para la aproximación visual. 4.4.15 Carta Aeronáutica - OACI 1: 500.000 La función principal de esta carta es la de atender a las necesidades de la navegación aérea visual en vuelos a baja velocidad, a distancias cortas o medias y a altitudes bajas e intermedias. También tiene estas otras funciones: o Servir como carta aeronáutica básica. o Proporcionar un medio adecuado para las instrucciones básicas de pilotaje y navegación. o Suplementar cartas especializadas que no proporcionan información visual esencial. o Ser utilizada para la planificación previa al vuelo. Aunque España las proporciona, no las incluye dentro del AIP-España. 4.4.16 Carta de circulación VFR para TMA Carta destinada a las aeronaves que vuelen bajo reglas de vuelo visual y operen dentro de un TMA. La alta densidad de tráfico aéreo en las áreas de control terminal (TMA), especialmente en los de Madrid, Barcelona, Palma de Mallorca, Valencia, Sevilla y Galicia, aconsejan la publicación en el AIP de esta carta para intentar evitar los posibles conflictos entre el alto número de movimientos de vuelos comerciales y las operaciones visuales. Estableciendo para ello pasillo y/o sectores en los que se detallan las altitudes a las que pueden operar los vuelos visuales. 4.4.17 Carta de Luces aeronáuticas de superficie - en ruta Esta carta facilita información sobre las luces aeronáuticas de superficie y otros faros que designen las posiciones geográficas seleccionadas por el Estado como significativas, identificadas con el nombre de la ciudad, población u otra identificación propia. 4.4.18 Carta de áreas prioritarias a evitar en vuelos particulares En esta carta se representan las áreas a evitar en los vuelos de aeronaves particulares y las áreas de riesgo para la navegación aérea. Los datos publicados están facilitados por el Ministerios de Agricultura y Pesca, Alimentación y Medio Ambiente. 4.4.19 Carta de concentración de aves En esta carta se representan las zonas húmedas de invernada de aves acuáticas, además de otras especies. Los datos publicados están facilitados por el Ministerios de Agricultura y Pesca, Alimentación y Medio Ambiente. 4.5 Mantenimiento de las cartas Las cartas aeronáuticas incluidas en el AIP se actualizan regularmente o son reemplazadas por enmiendas al AIP. Las erratas de información detectadas después de la publicación de una carta y las modificaciones urgentes que sean significativas para las operaciones de aeronaves se notificarán por NOTAM5 en el que se hará referencia a la carta afectada; si el cambio no afecta a las operaciones se publicará por corrección manuscrita6 al AIP. La revisión de la información aeronáutica reflejada en las cartas se lleva a cabo continuamente y se publican regularmente reimpresiones enmendadas cuando las fuentes de producción lo permiten. Los datos topográficos e hidrográficos también se revisan cuando es necesario. Cuando se produce un cambio de importancia operacional en los procedimientos de las cartas, se publica una nueva edición que se distribuye mediante el sistema AIRAC. Los cambios que no son de importancia operacional en las cartas se publican mediante enmienda regular al AIP, Suplemento Regular8 o correcciones manuscritas al AIP.

Use Quizgecko on...
Browser
Browser