Semiconductor Analysis PDF

Document Details

LuckiestLepidolite

Uploaded by LuckiestLepidolite

Beni-Suef University

Tags

semiconductors electronics physics electrical engineering

Summary

This document presents semiconductor analysis problems and solutions, suitable for undergraduate students. The examples cover different scenarios, including intrinsic and extrinsic semiconductors.

Full Transcript

# Sheet 1(Basics of Semiconductor) 1. **(a)** Determine the concentration of free electrons and holes in a sample of germanium at 300°K which has a concentration of donor atoms equal to 2x10<sup>14</sup> atoms/cm<sup>3</sup> and a concentration of acceptor atoms equal to 3x10<sup>14</sup> atoms/ c...

# Sheet 1(Basics of Semiconductor) 1. **(a)** Determine the concentration of free electrons and holes in a sample of germanium at 300°K which has a concentration of donor atoms equal to 2x10<sup>14</sup> atoms/cm<sup>3</sup> and a concentration of acceptor atoms equal to 3x10<sup>14</sup> atoms/ cm<sup>3</sup>. Is this p- or n-type germanium? In other words, is the conductivity due primarily to holes or to electrons? (n<sub>i</sub> for Ge at 300°K=2.5x10<sup>13</sup> atoms/cm<sup>3</sup>) - **(b)** Repeat part (a) for equal donor and acceptor concentrations of 10<sup>15</sup> atoms/cm<sup>3</sup>. Is this p- or n-type germanium? - **(c)** Repeat part (a) for donor concentration of 10<sup>16</sup> atoms/cm<sup>3</sup> an acceptor concentration of 10<sup>14</sup> atoms/cm<sup>3</sup>. ## Solution **(a)** - ND + p = NA + n - P + (ND - NA) - n = 0 - n p = n<sub>i</sub><sup>2</sup> - p = -(ND-NA) ± √(ND - NA)<sup>2</sup> + 4n<sub>i</sub><sup>2</sup> / 2 - Choose the ‘+’ sign since p > 0 and substituting n<sub>i</sub> =2.5x10<sup>13</sup> atoms/cm<sup>3</sup> one obtains - p = -1 x 10<sup>14</sup> + √10<sup>28</sup> + 2.5 x 10<sup>27</sup> / 2 - p = 1.06 x 10<sup>14</sup> holes/cm<sup>3</sup> - P + (ND - NA ) – (n<sub>i</sub><sup>2</sup>/p) = 0 - Multiplying both sides by p - P<sup>2</sup> + (ND - NA )p – n<sub>i</sub><sup>2</sup> = 0 - n = P + (ND - N<sub>i</sub> ) =1.06 x 10<sup>14</sup> – 1 х 10<sup>14</sup> - n =0.06 x 10<sup>14</sup> electrons/cm<sup>3</sup> - Therefore, the sample is p-type **(b)** - ND = NA - ∴ n<sup>2</sup> = p<sup>2</sup> = n<sub>i</sub><sup>2</sup> - P = n - n = p = n<sub>i</sub> = 2.5 x 10<sup>13</sup> / cm<sup>3</sup> - The sample is an intrinsic semiconductor **(c)** - Since ND >> NA - n ≈ N<sub>D</sub> =10<sup>16</sup> electrons/cm<sup>3</sup> - p = n<sub>i</sub><sup>2</sup> / n = 6.25x10<sup>26</sup>/10<sup>16</sup> - p = 6.25x10<sup>10</sup> holes/cm<sup>3</sup> - The sample is n-type # 2) Calculate the resistance of a bar 10 µm long, 3 µm wide, and 1 µm thick, made from the following material : - (a) intrinsic silicon. - (b) n-doped silicon with ND=10<sup>16</sup> /cm<sup>3</sup> - (c) p-doped silicon with Na=10<sup>18</sup> /cm<sup>3</sup> - (d) Extrinsic silicon with Na=3x10<sup>14</sup> /cm<sup>3</sup>, Np=2x10<sup>14</sup>/cm<sup>3</sup> - (e) aluminum with resistivity of 2.8 μΩ.cm. (for doped silicon, assume μ<sub>n</sub>=2.5 μ<sub>p</sub>=1200 cm<sup>2</sup>/V.s) (for intrinsic silicon μ<sub>n</sub>=1350 cm<sup>2</sup>/V.s and μ<sub>p</sub>=480 cm<sup>2</sup>/V.s, n<sub>i</sub> =1.5 x 10<sup>10</sup> /cm<sup>3</sup>) (Remember : R=pL/A) ## Solution # 3) A sample of germanium is doped to the extent of 2x10<sup>11</sup>donor atoms/ cm<sup>3</sup> and 3x10<sup>14</sup> acceptors atoms/ cm<sup>3</sup> at the temperature of the sample the resistivity of intrinsic germanium is 60 ohms.cm. Assume that the value of the mobility of holes and electrons μ<sub>n</sub>=1800 cm<sup>2</sup>/V.s and μ<sub>p</sub>=3800 cm<sup>2</sup>/V.s. if the applied electric filed intensity is 2v/cm, find the total conduction current density ## Example **(a)** A sample of germanium is doped to the extent of 3x10<sup>14</sup> donor atoms/cm<sup>3</sup> and 2x10<sup>14</sup> acceptor atoms/cm<sup>3</sup>. At the temperature of the sample the resistivity of pure (intrinsic) germanium is 60 Ω-cm. Assume that the value of the mobility of holes and electrons is approximately the same as at 300°K (μ<sub>n</sub>=1800cm<sup>2</sup>/V.s and μ<sub>p</sub>=1800cm<sup>2</sup>/V.s). If the applied electric field intensity is 2V/cm, find the total conduction current density. ## Solution The current density J that results from an electric field is obtained by: - J = q (nμ<sub>n</sub> + pμ<sub>p</sub>) ε =δε A\cm<sup>2</sup> - To find n and p, we first find n<sub>i</sub> - 1/p= 1/δq(nμ<sub>n</sub> + pμ<sub>p</sub>) - For intrinsic germanium, p = n = n<sub>i</sub> - ρ<sub>i</sub> = qn<sub>i</sub>(μ<sub>n</sub> + μ<sub>p</sub>) - n<sub>i</sub> = ρ<sub>i</sub>/ q(μ<sub>n</sub> + μ<sub>p</sub>) - n<sub>i</sub> = 1.6×10<sup>-19</sup>×60×(3800+1800) - n<sub>i</sub> =1.86×10<sup>13</sup> cm<sup>-3</sup> - From mass action law and neutral equation - ND +p = Na+n - n+ (NA - ND ) -p = 0 - n p = n<sub>i</sub><sup>2</sup> - n+ (NA - ND ) – (n<sub>i</sub><sup>2</sup> /n) = 0 - Multiplying both sides by n - n<sup>2</sup> + (NA - ND )n – n<sub>i</sub><sup>2</sup> = 0 - n = -(NA-ND) + √(N<sub>i</sub> - N<sub>2</sub>)<sup>2</sup>+ 4n<sub>i</sub><sup>2</sup> / 2 - n= 1×10<sup>14</sup> + √10<sup>28</sup> +4×(1.86×10<sup>13</sup>)<sup>2</sup> / 2 - n=1.0335×10<sup>14</sup> electrons / cm<sup>3</sup> - p = n<sub>i</sub><sup>2</sup> /n - p = n + (N<sub>i</sub> - ND) - p = 1.0335 x 10<sup>14</sup> – 1 x 10<sup>14</sup> - p = 0.0335 x 10<sup>14</sup> holes/cm<sup>3</sup> - J =q(nμ<sub>n</sub> + pμ<sub>p</sub>)ε - J = 1.6×10<sup>-19</sup> (1.0335×10<sup>14</sup> × 3800 +0.0335×10<sup>14</sup> ×1800)×2 - J = 0.1276 A/cm<sup>2</sup> # 4) In a germanium sample, ND = 10<sup>14</sup>/cm<sup>3</sup>, NA = 7 × 10<sup>13</sup>/ cm<sup>3</sup>. It is kept at a low temperature, where pure Ge would have resistivity of 60 Ω-cm. Find the current density that would result by applying an electric field as 2 V/cm to this sample. - (a) 0. 522 A/cm<sup>2</sup> - (b) 1. 022 A/cm<sup>2</sup> - (c) 0.0522 A/cm<sup>2</sup> - (d) 0.0452 A/cm<sup>2</sup> ## Solution: Given that ND = 10<sup>14</sup>, NA = 7 × 10<sup>13</sup>, p = 60. Then conductivity is given by σ = [(μ<sub>n</sub> + μ<sub>p</sub>)n<sub>i</sub>]q - σ = 5600 × n<sub>i</sub>; ×1.6×10<sup>-19</sup> Therefore, intrinsic concentration is - n<sub>i</sub> = 1/ 60(5600×1.6×10<sup>-19</sup>) = 1.86×10<sup>13</sup> Thus, the number of electrons is given by - n = √(ND - NA/2)<sup>2</sup> + n<sub>i</sub><sup>2</sup> - n = √(3×10<sup>13</sup>/2)<sup>2</sup> + (1.86×10<sup>13</sup>)<sup>2</sup> - n = √(3×10<sup>13</sup> + 10<sup>3</sup> x 2.38) = 3.88×10<sup>13</sup> Then number of holes is given by - p = −1.5×10<sup>13</sup> + 2.38×10<sup>13</sup> = 0.88 × 10<sup>13</sup> Thus the resistivity on application of voltage is - σ = (ημ<sub>n</sub> + μ<sub>p</sub>p) × q - σ = (3.88×10<sup>13</sup> × 3600 + 1800 × 0.88 × 10<sup>13</sup>) 1.6×10<sup>-18</sup> - σ = 0.0261 S/m The current density on application of voltage is given by - J =σE - J = 0.0261×2 - J = 0.0522 A/cm<sup>2</sup> Ans. (c) # 5) Determine the forward current of a Ge diode operating at room temperature with a forward voltage of 100 mV across it with reverse saturation current 20 μΑ. - (a) 1.936 mA - (b) 0.0486 mA - (c) 0.639 mA - (d) 0.936 mA ## Solution: The forward current is given by - I<sub>F</sub> = I<sub>0</sub> [e<sup>V<sub>0</sub>/nV<sub>T</sub></sup> − 1] Substituting given values and using η = 1 for Ge and V<sub>T</sub> at room temperature 300 K as ≈26 mV, we have - I<sub>F</sub> = 20×10<sup>-6</sup> e<sup>100 x 10<sup>-3</sup>/ 26 ×10<sup>-3</sup></sup> -1 - I<sub>F</sub> = 20×10<sup>-6</sup>[47.46 -1] - I<sub>F</sub> = 0.92 mA Ans. (d)

Use Quizgecko on...
Browser
Browser