Semiconductor Analysis PDF
Document Details
Uploaded by LuckiestLepidolite
Beni-Suef University
Tags
Summary
This document presents semiconductor analysis problems and solutions, suitable for undergraduate students. The examples cover different scenarios, including intrinsic and extrinsic semiconductors.
Full Transcript
# Sheet 1(Basics of Semiconductor) 1. **(a)** Determine the concentration of free electrons and holes in a sample of germanium at 300°K which has a concentration of donor atoms equal to 2x10<sup>14</sup> atoms/cm<sup>3</sup> and a concentration of acceptor atoms equal to 3x10<sup>14</sup> atoms/ c...
# Sheet 1(Basics of Semiconductor) 1. **(a)** Determine the concentration of free electrons and holes in a sample of germanium at 300°K which has a concentration of donor atoms equal to 2x10<sup>14</sup> atoms/cm<sup>3</sup> and a concentration of acceptor atoms equal to 3x10<sup>14</sup> atoms/ cm<sup>3</sup>. Is this p- or n-type germanium? In other words, is the conductivity due primarily to holes or to electrons? (n<sub>i</sub> for Ge at 300°K=2.5x10<sup>13</sup> atoms/cm<sup>3</sup>) - **(b)** Repeat part (a) for equal donor and acceptor concentrations of 10<sup>15</sup> atoms/cm<sup>3</sup>. Is this p- or n-type germanium? - **(c)** Repeat part (a) for donor concentration of 10<sup>16</sup> atoms/cm<sup>3</sup> an acceptor concentration of 10<sup>14</sup> atoms/cm<sup>3</sup>. ## Solution **(a)** - ND + p = NA + n - P + (ND - NA) - n = 0 - n p = n<sub>i</sub><sup>2</sup> - p = -(ND-NA) ± √(ND - NA)<sup>2</sup> + 4n<sub>i</sub><sup>2</sup> / 2 - Choose the ‘+’ sign since p > 0 and substituting n<sub>i</sub> =2.5x10<sup>13</sup> atoms/cm<sup>3</sup> one obtains - p = -1 x 10<sup>14</sup> + √10<sup>28</sup> + 2.5 x 10<sup>27</sup> / 2 - p = 1.06 x 10<sup>14</sup> holes/cm<sup>3</sup> - P + (ND - NA ) – (n<sub>i</sub><sup>2</sup>/p) = 0 - Multiplying both sides by p - P<sup>2</sup> + (ND - NA )p – n<sub>i</sub><sup>2</sup> = 0 - n = P + (ND - N<sub>i</sub> ) =1.06 x 10<sup>14</sup> – 1 х 10<sup>14</sup> - n =0.06 x 10<sup>14</sup> electrons/cm<sup>3</sup> - Therefore, the sample is p-type **(b)** - ND = NA - ∴ n<sup>2</sup> = p<sup>2</sup> = n<sub>i</sub><sup>2</sup> - P = n - n = p = n<sub>i</sub> = 2.5 x 10<sup>13</sup> / cm<sup>3</sup> - The sample is an intrinsic semiconductor **(c)** - Since ND >> NA - n ≈ N<sub>D</sub> =10<sup>16</sup> electrons/cm<sup>3</sup> - p = n<sub>i</sub><sup>2</sup> / n = 6.25x10<sup>26</sup>/10<sup>16</sup> - p = 6.25x10<sup>10</sup> holes/cm<sup>3</sup> - The sample is n-type # 2) Calculate the resistance of a bar 10 µm long, 3 µm wide, and 1 µm thick, made from the following material : - (a) intrinsic silicon. - (b) n-doped silicon with ND=10<sup>16</sup> /cm<sup>3</sup> - (c) p-doped silicon with Na=10<sup>18</sup> /cm<sup>3</sup> - (d) Extrinsic silicon with Na=3x10<sup>14</sup> /cm<sup>3</sup>, Np=2x10<sup>14</sup>/cm<sup>3</sup> - (e) aluminum with resistivity of 2.8 μΩ.cm. (for doped silicon, assume μ<sub>n</sub>=2.5 μ<sub>p</sub>=1200 cm<sup>2</sup>/V.s) (for intrinsic silicon μ<sub>n</sub>=1350 cm<sup>2</sup>/V.s and μ<sub>p</sub>=480 cm<sup>2</sup>/V.s, n<sub>i</sub> =1.5 x 10<sup>10</sup> /cm<sup>3</sup>) (Remember : R=pL/A) ## Solution # 3) A sample of germanium is doped to the extent of 2x10<sup>11</sup>donor atoms/ cm<sup>3</sup> and 3x10<sup>14</sup> acceptors atoms/ cm<sup>3</sup> at the temperature of the sample the resistivity of intrinsic germanium is 60 ohms.cm. Assume that the value of the mobility of holes and electrons μ<sub>n</sub>=1800 cm<sup>2</sup>/V.s and μ<sub>p</sub>=3800 cm<sup>2</sup>/V.s. if the applied electric filed intensity is 2v/cm, find the total conduction current density ## Example **(a)** A sample of germanium is doped to the extent of 3x10<sup>14</sup> donor atoms/cm<sup>3</sup> and 2x10<sup>14</sup> acceptor atoms/cm<sup>3</sup>. At the temperature of the sample the resistivity of pure (intrinsic) germanium is 60 Ω-cm. Assume that the value of the mobility of holes and electrons is approximately the same as at 300°K (μ<sub>n</sub>=1800cm<sup>2</sup>/V.s and μ<sub>p</sub>=1800cm<sup>2</sup>/V.s). If the applied electric field intensity is 2V/cm, find the total conduction current density. ## Solution The current density J that results from an electric field is obtained by: - J = q (nμ<sub>n</sub> + pμ<sub>p</sub>) ε =δε A\cm<sup>2</sup> - To find n and p, we first find n<sub>i</sub> - 1/p= 1/δq(nμ<sub>n</sub> + pμ<sub>p</sub>) - For intrinsic germanium, p = n = n<sub>i</sub> - ρ<sub>i</sub> = qn<sub>i</sub>(μ<sub>n</sub> + μ<sub>p</sub>) - n<sub>i</sub> = ρ<sub>i</sub>/ q(μ<sub>n</sub> + μ<sub>p</sub>) - n<sub>i</sub> = 1.6×10<sup>-19</sup>×60×(3800+1800) - n<sub>i</sub> =1.86×10<sup>13</sup> cm<sup>-3</sup> - From mass action law and neutral equation - ND +p = Na+n - n+ (NA - ND ) -p = 0 - n p = n<sub>i</sub><sup>2</sup> - n+ (NA - ND ) – (n<sub>i</sub><sup>2</sup> /n) = 0 - Multiplying both sides by n - n<sup>2</sup> + (NA - ND )n – n<sub>i</sub><sup>2</sup> = 0 - n = -(NA-ND) + √(N<sub>i</sub> - N<sub>2</sub>)<sup>2</sup>+ 4n<sub>i</sub><sup>2</sup> / 2 - n= 1×10<sup>14</sup> + √10<sup>28</sup> +4×(1.86×10<sup>13</sup>)<sup>2</sup> / 2 - n=1.0335×10<sup>14</sup> electrons / cm<sup>3</sup> - p = n<sub>i</sub><sup>2</sup> /n - p = n + (N<sub>i</sub> - ND) - p = 1.0335 x 10<sup>14</sup> – 1 x 10<sup>14</sup> - p = 0.0335 x 10<sup>14</sup> holes/cm<sup>3</sup> - J =q(nμ<sub>n</sub> + pμ<sub>p</sub>)ε - J = 1.6×10<sup>-19</sup> (1.0335×10<sup>14</sup> × 3800 +0.0335×10<sup>14</sup> ×1800)×2 - J = 0.1276 A/cm<sup>2</sup> # 4) In a germanium sample, ND = 10<sup>14</sup>/cm<sup>3</sup>, NA = 7 × 10<sup>13</sup>/ cm<sup>3</sup>. It is kept at a low temperature, where pure Ge would have resistivity of 60 Ω-cm. Find the current density that would result by applying an electric field as 2 V/cm to this sample. - (a) 0. 522 A/cm<sup>2</sup> - (b) 1. 022 A/cm<sup>2</sup> - (c) 0.0522 A/cm<sup>2</sup> - (d) 0.0452 A/cm<sup>2</sup> ## Solution: Given that ND = 10<sup>14</sup>, NA = 7 × 10<sup>13</sup>, p = 60. Then conductivity is given by σ = [(μ<sub>n</sub> + μ<sub>p</sub>)n<sub>i</sub>]q - σ = 5600 × n<sub>i</sub>; ×1.6×10<sup>-19</sup> Therefore, intrinsic concentration is - n<sub>i</sub> = 1/ 60(5600×1.6×10<sup>-19</sup>) = 1.86×10<sup>13</sup> Thus, the number of electrons is given by - n = √(ND - NA/2)<sup>2</sup> + n<sub>i</sub><sup>2</sup> - n = √(3×10<sup>13</sup>/2)<sup>2</sup> + (1.86×10<sup>13</sup>)<sup>2</sup> - n = √(3×10<sup>13</sup> + 10<sup>3</sup> x 2.38) = 3.88×10<sup>13</sup> Then number of holes is given by - p = −1.5×10<sup>13</sup> + 2.38×10<sup>13</sup> = 0.88 × 10<sup>13</sup> Thus the resistivity on application of voltage is - σ = (ημ<sub>n</sub> + μ<sub>p</sub>p) × q - σ = (3.88×10<sup>13</sup> × 3600 + 1800 × 0.88 × 10<sup>13</sup>) 1.6×10<sup>-18</sup> - σ = 0.0261 S/m The current density on application of voltage is given by - J =σE - J = 0.0261×2 - J = 0.0522 A/cm<sup>2</sup> Ans. (c) # 5) Determine the forward current of a Ge diode operating at room temperature with a forward voltage of 100 mV across it with reverse saturation current 20 μΑ. - (a) 1.936 mA - (b) 0.0486 mA - (c) 0.639 mA - (d) 0.936 mA ## Solution: The forward current is given by - I<sub>F</sub> = I<sub>0</sub> [e<sup>V<sub>0</sub>/nV<sub>T</sub></sup> − 1] Substituting given values and using η = 1 for Ge and V<sub>T</sub> at room temperature 300 K as ≈26 mV, we have - I<sub>F</sub> = 20×10<sup>-6</sup> e<sup>100 x 10<sup>-3</sup>/ 26 ×10<sup>-3</sup></sup> -1 - I<sub>F</sub> = 20×10<sup>-6</sup>[47.46 -1] - I<sub>F</sub> = 0.92 mA Ans. (d)