Summary

This chapter from Robbins Essential Pathology describes the mechanisms of cell injury and cell death, particularly apoptosis. It details the two main pathways—the mitochondrial (intrinsic) and receptor (extrinsic) pathways, outlining the molecular events involved in each. The importance of caspases and other mediators in triggering apoptosis and the different cell clearance mechanisms are covered.

Full Transcript

6 CHAPTER 1 Cell Injury and Cell Death MITOCHONDRIAL (INTRINSIC) DEATH RECEPT...

6 CHAPTER 1 Cell Injury and Cell Death MITOCHONDRIAL (INTRINSIC) DEATH RECEPTOR (EXTRINSIC) PATHWAY PATHWAY Receptor-ligand interactions FAS TNF receptor Cell injury Mitochondria Growth factor Adaptor proteins withdrawal DNA damage Phagocyte (by radiation, Cytochrome c BCL-2 family toxins, free and other Caspase effectors (BAX, BAK) radicals) proapoptotic activation Protein proteins misfolding Regulators (ER stress) BH3 (BCL-2, BCL-x ) L sensors Endonuclease Breakdown of activation cytoskeleton Nuclear fragmentation Ligands for phagocytic cell receptors Apoptotic body Fig. 1.7 Mechanisms of apoptosis. The two pathways of apoptosis differ in their induction and regulation, and both culminate in the activation of caspases. In the mitochondrial pathway, BH3-only proteins, which are related to members of the BCL-2 family, sense a lack of survival signals or DNA or protein damage. These BH3-only proteins activate effector molecules that increase mitochondrial permeability. In concert with a defi- ciency of BCL-2 and other proteins that maintain mitochondrial permeability, the mitochondria become leaky and various substances, such as cytochrome c, enter the cytosol and activate caspases. Activated caspases induce the changes that culminate in cell death and fragmentation. In the death receptor pathway, signals from plasma membrane receptors lead to the assembly of adaptor proteins into a “death-inducing signaling complex,” which activates caspases, and the end result is the same. ER, Endoplasmic reticulum; TNF, tumor necrosis factor. recepor amy ound on many ces. ese recepors ave a con- ces are removed so qucky and eiceny a ey are oten no den- ser ved cyopasmc “dea doman” a medaes neracon w ed n soogc specmens, even n ssues n wc many ces are oer proens nvoved n ce dea. e prooypc dea recepors dyng by apoposs. are e ype I TNF recepor and FAS (CD95). FAS gand (FASL) s Other Pathways of Cell Death a membrane proen expressed many on acvaed T ympocyes. Wen ese T ces recognze FAS-expressng arges, FAS moe- Aoug necross and apoposs are e bes-dened paways o ce cues are cross-nked by FASL and bnd adapor proens va e dea, severa oer mecansms ave aso been descrbed receny. dea doman. ese en recru and acvae caspase-8, wc, n er mporance n uman dseases remans a opc o nvesgaon, urn, acvaes downsream caspases. e dea recepor paway s bu sudens soud be aware o er names and unque eaures. nvoved n e emnaon o se-reacve ympocyes and n e    Necroptoss s nduced by acvaon o specc knases n response kng o arge ces by some cyooxc T ympocyes a express o e cyokne umor necross acor (TNF), wc s produced as FASL par o e os response o mcrobes and oer rrans. Sgnas    Cearance of apoptotc fragments. Wen ces undergo apoposs, rom ese knases ead o pasma membrane njur y, as n necross, ey begn o express a number o moecues a are recognzed bu e process s reguaed by specc moecues, ke apoposs, so by recepors on pagocyes. Pagocyes nges and desroy e  s consdered o ave eaures o bo. ragmens o apopoc ces, oten wn mnues, beore e ces    P yroptoss s a orm o ce dea nduced by bacera oxns n undergo membrane damage and reease er conens. e pago- wc e dyng ce reeases cyoknes, suc as nereukn-1, a cyoss o apopoc ces s so eicen a dead ces dsappear nduce oca nlammaon and ever (ence pyro n e name). wou eavng a race, and nlammaon s vruay absen.    Autopagy s a orm o “se-eang” (Greek, paga = o ea) n wc e morpoogc appearance o apopoc ces s dsncve and ces sar ved o nurens dges er own organees and recyce e dferen rom necross. In H&E-saned secons, e nuce appear maera o provde energy or sur vva. In s process, organees pyknoc, because o e condensaon o croman, and e ces are and porons o e cyoso are encosed wn vacuoes, wc srunken, appearng o e n vacuoes (Fg. 1.8). However, apopoc use w ysosomes, and e conens are desroyed by ysosoma CHAPTER 1 Cell Injury and Cell Death 7 aer) and decreased ATP producon. Mocondra aso sequeser moecues, suc as cyocrome c, wose reease no e cyoso s an ndcaor o damage and, as descrbed earer, a rgger or apoposs.    C euar membranes are composed o pds and conan proen and carboydrae moecues. ey manan e srucure o ces and organees and ser ve numerous crca ranspor uncons suc as lud and on omeosass. Damage o ysosoma mem- branes, by ROS or oer agens, eads o reease o enzymes a dges e njured ce, e amark o necross. Damage o e pasma membrane resus n oss o ceuar consuens, e end resu o necross.    Nuce sore mos o e ce’s genec maera. Nucear damage dsrups ranscrpon-dependen ceuar uncons (.e., proen syness), as we as ce proeraon. Irreparabe damage o DNA rggers apoposs.    Oter ceuar components a sufer damage upon exposure o var- ous njurous agens ncude e ER (one se o proen syness and pos-ransaon processng) and e cyoskeeon (e sruc- ura scafod and “moor” o ces).    In addon o ce njur y resung rom mparmen o ese nrn- sc srucures, ces may be damaged rom e ousde, or exampe, by e producs o eukocyes durng nlammaor y reacons. Oxidative Stress Oxidative stress refers to cellular abnormalities that are induced by ROS, which belong to a group of molecules called free radicals. Fig. 1.8 Morphologic appearance of apoptotic cells. Apoptotic cells Free radcas are gy reacve moecues w an unpared eec- (some indicated by arrows) in a crypt in the colonic epithelium are shown. (The preparative regimen for colonoscopy frequently induces ron n an ouer orb. ey reac w a norganc and organc mo- apoptosis in epithelial cells, which explains the abundance of dead ecues (e.g., proens, pds, and nucec acds) and remove eecrons cells in this normal tissue.) Note the fragmented nuclei with condensed rom oer moecues, converng em no ree radcas. Boogcay chromatin and the shrunken cell bodies, some with pieces falling off of mporan ree radcas ncude ROS and nrc oxde (Fg. 1.10). them. (Courtesy of Dr. Sanjay Kakar, Department of Pathology, Univer-    ROS are produced normay n sma amounts n a ces durng te sity of California San Francisco.) reducton–oxdaton (redox) reactons a occur durng mocon- dra respraon and energ y generaon. In s process, moecuar oxygen s reduced n mocondra o generae waer by e sequen- enzymes. I e process connues because e nuren decency s a addon o our eecrons. s reacon s mperec, owever, no correced,  can rgger apoposs by e mocondra paway. and sma amouns o gy reacve bu sor-ved oxc nerme- daes are generaed wen oxygen s ony paray reduced. ese MECHANISMS OF CELL INJURY AND DEATH nermedaes ncude superoxde O , wc s convered o ydro- 2 gen peroxde (H O ) sponaneousy and by e acon o e enzyme The degree of injury from any injurious stimulus varies depending 2 2 superoxde dsmuase. H O s more sabe an O and can cross on the type of the offending agent, its severity, and its duration, as 2 2 2 2+ boogc membranes. In e presence o meas, suc as Fe , H O well as the adaptive ability and genetic makeup of the target cell. 2 2 s convered o e gy reacve ydroxy radca by e Fenon Sma amouns o a oxn or bre perods o scema may cause reacon. e generaon o ree radcas s ncreased by exposure o reversbe njury bu arger doses o e oxn or more proonged scema UV g, radaon and oxns, and durng norma ceuar agng, a may cause necross. Sraed musce n e eg survves scema or 2 o o wc may mpar mocondra uncons. Oxygen deprvaon 3 ours, wereas cardac musce, w s ger meaboc needs, des aso eads o ROS producon because o ncompee reducon o ater 20 o 30 mnues o scema. e genec makeup o e ndvdua oxygen. may aso deermne e reacon o njurous agens. Poymorpsms n genes encodng members o e cyocrome P450 amy afec e    ROS are produced n pagocytc eukocytes, many neutrops and macropages, o desroy ngesed mcrobes and oer subsances rae o meabosm o many cemcas and ence e efecs o oxns. durng nlammaon. In e “respraor y” or “oxdave” burs, o- One o e goas o precson medcne s o use genecs o predc ow owng ngeson o a mcrobe, a pagosome membrane enzyme ndvduas w reac o dferen ypes o njurous smu. caayzes e generaon o O , wc s convered o H O. H O s 2 2 2 2 2 Cell injury results from abnormalities in one or more essential n urn convered o a gy reacve compound, ypocore (e cellular components, mainly mitochondria, membranes, and the major componen o ouseod beac), by e enzyme myeoper- nucleus (Fig. 1.9). oxdase, wc s presen n eukocye granues. s s one reason e consequences o mparmen o eac o ese ceuar organees wy nlammaon nended o k necous paogens s oten are dsnc bu overappng. assocaed w njur y o norma ssues.    Mtocondra are e ses were ATP, e prmary carrer o energy n    Ntrc oxde s anoer reacve ree radca produced n macro- ces, s produced by oxdave posporyaon. Injury due o ypoxa, pages and oer eukocyes durng nlammaor y reacons. I can scema, radaon, or oer nsus mpars oxdave posporya- combne w O o orm a gy reacve compound, peroxyn- 2 on, eadng o e ormaon o reacve oxygen speces (ROS) (see re, wc aso parcpaes n ce njur y. 8 CHAPTER 1 Cell Injury and Cell Death Hypoxia/ischemia Radiation Radiation ROS Mutations Other injurious agents Other injurious agents MITOCHONDRIA CELLULAR MEMBRANES NUCLEUS ATP ROS Damage to lysosomal Damage to plasma membranes membrane Energy- Damage to DNA damage dependent lipids, proteins, Leakage of Impaired transport functions functions nucleic acids enzymes Leakage of cellular contents Reduced Activation protein of caspases Cell injury synthesis NECROSIS NECROSIS APOPTOSIS Fig. 1.9 Principal cellular targets of injurious stimuli. Most injurious stimuli affect mitochondria, cellular mem- branes, or nuclear DNA. Injury to these structures may progress to necrosis or apoptosis. ATP, Adenosine triphosphate; ROS, reactive oxygen species. ROS can damage pds (by peroxdaon), proens (many by Hypoxa (reduced avaaby o oxygen) s seen n suaons o cross-nkng), and DNA (by creang breaks a deoxyymdne res- bood oss, anema, and carbon monoxde posonng (wc ner- dues), and us afec a ceuar componens. er accumuaon eres w e oxygen-carr yng capacy o emogobn). Iscema, or s conroed by enzymes suc as guaone peroxdase and caa- reduced bood low, may be a consequence o arera obsrucon (as ase, wc break down ydrogen peroxde. Increased generaon o n coronar y arer y dsease, e major cause o myocarda narcon, ree radcas durng paoogc njur y over wems ese scavengng or cerebra arer y dsease, e major cause o sroke) or a severe drop mecansms. n bood pressure (sock). ese are some o e mos requen and serous probems n cnca medcne. Hypoxia and Ischemia ATP s produced n mocondra n an eecrocemca reacon Oxygen deciency leads to reduced generation of ATP and failure a depends on e reducon o oxygen (oxdave pospor yaon) of energy-dependent cellular systems (Fig. 1.11). and s g-energ y pospae s requred or membrane ranspor, syness o proens and pds, and urnover o pospopds. I s esmaed a e ces o a eay ndvdua burn 50 o 75 kg o ATP Ischemia ever y day. ereore, oxygen deprvaon and e resung depeon o ATP damages many ceuar componens, as oows: + +    Reduced acvy o e pasma membrane ATP-dependen Na -K + pump resus n e nlux o Na and waer, as dscussed earer, eadng o ce sweng and daon o e ER, wc are some o e eares manesaons o ce njur y (see Fg. 1.1). Mitochondrion    Anaerobc gycoyss ncreases n an aemp o generae ATP n e absence o oxygen, resung n ncreased producon o acc acd, decreased nraceuar pH, and, consequeny, reduced acvy o Oxidative phosphorylation many nraceuar enzymes.    Rbosomes deac rom e ER, eadng o reduced proen syness. ATP    Hypoxa may ncrease e generaon o ROS, wc ave many damagng efecs. + Na pump Anaerobic glycolysis Detachment    Umaey, ysosoma and mocondra membranes are damaged, of ribosomes ysosoma acd ydroases are acvaed by ow pH, and e ce 2+ begns o dges se, cumnang n necross. Influx of Ca + H O, and Na Glycogen Lactic pH Protein 2 acid synthesis Ischemia–Reperfusion Injury + Efflux of K Restoration of blood ow to an ischemic tissue sometimes para doxically exacerbates tissue injury. ER swelling Cellular swelling e ce njur y a may oow reperuson s key due o ncreased Loss of microvilli producon o ROS by njured ces w damaged mocondra and Blebs by eukocyes, wc are recrued o ge rd o e necroc ces. Fig. 1.10 The functional and morphologic consequences of hypoxia and ese nlammaor y ces may reease enzymes a cause ye more s- ischemia. ATP, Adenosine triphosphate. ER, endoplasmic reticulum. sue damage (see Caper 2). Compemen proens, wc ener e CHAPTER 1 Cell Injury and Cell Death 9 Pathologic effects Radiation Toxins Production of ROS: Lipid peroxidation Membrane damage Reperfusion H O O 2 2 OH 2 Protein Breakdown, Superoxide Hydrogen Hydroxyl modifications misfolding peroxide radical DNA damage Mutations Conversion Decomposition to to H O H O by glutathione 2 2 2 by SOD peroxidase, catalase Removal of free radicals Fig. 1.11 The generation, removal, and role of reactive oxygen species (ROS) in cell injury. The production of ROS is increased by many injurious stimuli. These free radicals are removed by spontaneous decay and by specialized enzymatic systems. Excessive production or inadequate removal leads to accumulation of free radicals in cells, which may damage lipids (by peroxidation), proteins, and DNA, resulting in cell injury. SOD, superoxide dismutase. reperused ssue, may aso conrbue o e njur y, as n oer nlam- sae; and ceran neopasms o proen-secreng ces, parcuary maor y reacons. pasma ce neopasms suc as mupe myeoma. Proen msodng s oug o be e undamena ceuar abnormay n severa neu- Toxin-Mediated Cell Injury rodegenerave dseases (see Caper 17). Deprvaon o gucose and oxygen, as n scema and ypoxa, aso may ncrease e burden o Many environmental and microbial toxins damage cellular com- msoded proens. Dseases caused by msoded proens are sed ponents directly or after conversion to reactive metabolites, often n Tabe 1.3 by cytochrome P450 in liver cells. A cassc, now many sorca, exampe o oxn-medaed ce DNA Damage njury s ver damage oowng naaon o carbon eracorde, a DNA damage that is too great to be corrected by DNA repair cemca once used n e dry ceanng ndusry bu now banned. s mechanisms leads to apoptosis. moecue s convered n e ver no a ree radca a s e cause o Damage o nucear DNA occurs upon exposure o radaon, cemo- ce njury, many by membrane pospopd peroxdaon. Damage erapeuc (ancancer) drugs, and ROS and as a resu o muaons. o e ER membrane causes a decne n e syness o enzymes and Damaged DNA acvaes p53, wc arress ces n e G1 pase o e pasma proens, as we as apoproens, wc are ranspor proens a ce cyce o aow e damage o be repared and aso acvaes DNA orm compexes w rgycerdes, acang rgycerde secreon; s repar mecansms. I ese mecansms a o correc e DNA dam- deec resus n e accumuaon o pds n epaocyes and oer ces age, p53 rggers apoposs by e mocondra paway. us, e ce (seaoss; see aer). e anagesc aceamnopen as a smar mec- “cooses” o de raer an survve w abnorma DNA a as e ansm o acon. I s meabozed o a ree radca by cyocrome P450 poena o nduce magnan ransormaon o e ce. Predcaby, enzymes, and acue overdose o s drug s e mos requen cause o muaons n p53 a nerere w s aby o arres ce cycng or o serous ver damage n e Uned Saes and oer deveoped counres. nduce apoposs are assocaed w numerous cancers (see Caper 5). Endoplasmic Reticulum (ER) Stress Cellular Aging The accumulation of misfolded proteins in the ER can stress adap- Cells age because of accumulation of mutations, progressively tive mechanisms and trigger apoptosis. decreased replication, and defective protein homeostasis. Wen mpropery oded proens accumuae n e ER, ey rs Peope age because er ces age. Aoug muc o e pubc’s acvae a proecve reacon caed e unfoded proten response, n aenon on agng s ocused on s cosmec and pysca conse- wc proen ransaon s reduced and e producon o caperones quences, e greaes danger o ceuar agng s a  promoes e (moecues a manan newy syneszed proens n er proper deveopmen o many degenerave, meaboc, and neopasc dsor- sape) s ncreased (Fg. 1.12). I e oad o msoded proens s oo ders. Numerous nrnsc moecuar abnormaes are beeved o cause grea, e ce des by e mocondra paway o apoposs; n s e agng o ces (Fg. 1.13). way, ces a can no onger uncon are emnaed.    Accumuaon o mutatons n DNA, wc occurs nauray and Inraceuar accumuaon o msoded proens may be caused may be enanced by ROS and envronmena muagens. by abnormaes a ncrease e producon o msoded proens    D ecreased repcaton of ces because o progressve oss o e or reduce e aby o emnae em. ese may resu rom gene enzyme eomerase, wc manans e norma eng o e muaons, suc as ose responsbe or c ysc bross, a ead o enzyme eomeres. ese sor DNA sequences a e ends o cro- e producon o proens a canno od propery : agng, wc s mosomes proec e ends rom uson and degradaon. Teomeres assocaed w a decreased capacy o correc msodng; necons, soren w ever y repcaon bu can be mananed by e acvy especay vra necons, wen arge amouns o mcroba proens o e enzyme eomerase. Because mos ces (excep germ ces) are syneszed wn ces, exceedng e ce’s proen-odng conan e or no eomerase, eomere sorenng s nevabe capacy ; ncreased demand or secreor y proens suc as nsun n dvdng ces. W compee oss o eomeres durng ceuar n nsun-ressan saes; canges n e nraceuar pH and redox 10 CHAPTER 1 Cell Injury and Cell Death Mild ER Stress Severe ER Stress Misfolded proteins ER lumen ER membrane P P P P P P P P P P Sensor of misfolded proteins Signaling Signaling Cytosol Increased Reduced Increased Activation of Activation of synthesis of protein protein BH3 proteins caspases chaperones synthesis degradation Reduced load of misfolded proteins ADAPTIVE TERMINAL UNFOLDED PROTEIN UNFOLDED PROTEIN RESPONSE RESPONSE: APOPTOSIS Fig. 1.12 The unfolded protein response and endoplasmic reticulum (er) stress. The presence of misfolded proteins in the ER is detected by sensors in the ER membrane (BH3-only proteins, mentioned earlier) that trigger an adaptive unfolded protein response, which can protect the cell from the harmful consequences of the misfolded proteins. When the amount of misfolded proteins is too great to be corrected, the mitochon- drial pathway of apoptosis is induced and the irreparably damaged cell dies; this is also called the terminal unfolded protein response. Table 1.3 Diseases Caused by Misfolded Proteins Disease Affected protein Pathogenesis Diseases Caused by Mutant Proteins That are Degraded, Leading to Their Deficiency Cystic fibrosis CFTR Loss of CFTR leads to defects in chloride transport Familial hypercholesterolemia LDL receptor Loss of LDL receptor leads to hypercholesterolemia Tay-Sachs disease Hexosaminidase α subunit Lack of the lysosomal enzyme leads to storage of GM ganglio- 2 sides in neurons Diseases Caused by Misfolded Proteins That Result in ER Stress–Induced Cell Loss Retinitis pigmentosa Rhodopsin Abnormal folding of rhodopsin causes photoreceptor loss and cell death, resulting in blindness sc Creutzfeldt-Jakob disease Prions Abnormal folding and aggregation of PrP causes neuronal cell death Alzheimer disease Aβ peptide Abnormal folding of Aβ peptide causes aggregation within neu- rons and apoptosis Diseases Caused by Misfolded Proteins That Result From Both ER Stress–Induced Cell Loss and Functional Deficiency of the Protein Alpha-1-antitrypsin deficiency α-1 antitrypsin Storage of nonfunctional protein in hepatocytes causes apoptosis; absence of enzymatic activity in lungs causes destruction of elastic tissue, giving rise to emphysema Selected illustrative examples of diseases are shown in which protein misfolding is thought to be the major mechanism of functional derangement or cell or tissue injury. CFTR, Cystic fibrosis transmembrane conductance regulator; LDL, low-density lipoprotein. CHAPTER 1 Cell Injury and Cell Death 11 Environmental and Telomere Abnormal Calorie metabolic insults shortening protein homeostasis restriction ROS? Insulin/IGF signaling TOR Accumulation of Cellular Proteins, mutations in DNA replication misfolded proteins Defective Altered DNA repair transcription DECREASED DECREASED CELL FUNCTIONS, CELL LOSS CELL FUNCTIONS CELL LOSS DNA repair CELLULAR AGING Protein homeostasis COUNTERACTS AGING Fig. 1.13 Mechanisms of cellular aging. DNA damage, replicative senescence, and decreased and misfolded proteins are among the best-described mechanisms of cellular aging. Some environmental stresses, such as calorie restriction, counteract aging by activating various signaling pathways and transcription factors. IGF, Insulin-like growth factor; ROS, reactive oxygen species; TOR, target of rapamycin. agng, e “naked” cromosome ends acvae e DNA damage organ njury  e sress s no reeved. For exampe, cardac yper- response, causng e ces o ener a sae o repcave senescence. ropy can cause myocarda scema due o reave ack o oxygen    D efectve proten omeostass, due o ncreased urnover and devery, and evenuay gve rse o cardac aure. decreased syness o nraceuar proens, ogeer w accu-    Hyperpasa s an ncrease n e number o ces n an organ a sems muaon o msoded proens. rom ncreased proeraon, eer o ess-dferenaed progenor    Atered sgnang patways a may afec responses o grow ac- ces or, n some nsances, dferenaed ces. Hyperpasa occurs ors. ere as been grea neres n denng ese paways, n  e ssue conans ce popuaons capabe o repcaon and may par because o e nrgung obser vaon a caore resrcon occur concurreny w yperropy and oten n response o e proongs e. One possby s a caore resrcon reduces sg- same smu. Hyperpasa can be pysoogc or paoogc and, n nang by nsun-ke grow acor, so ces cyce ess and sufer bo suaons, ceuar proeraon s smuaed by ormones and ewer DNA repcaon–reaed errors. grow acors a are produced by a varey o ce ypes. Posparum    In addon o ese nrnsc abnormaes, damaged and dyng enargemen o e breas due o ncreased proeraon o ducuar ces nduce ow-eve nlammaton, and cronc nlammaon pre- epeum s an exampe o pysoogc yperpasa nduced by or- dsposes o many dseases, suc as aerosceross, ype 2 dabees, mones. Grow acors are responsbe or smuang proeraon o and some ypes o cancer. survvng ces ater dea or remova o some o e ces n an organ (e.g., grow o resdua ver oowng para epaecomy, caed com- pensatory yperpasa). Paoogc yperpasa s ypcay e resu o CELLULAR ADAPTATIONS TO STRESS napproprae and excessve smuaon by ormones and grow ac- Adaptations are reversible changes in the number, size, phenotype, ors, as n endomera yperpasa resung rom a dsurbed esrogen– metabolic activity, or functions of cells in response to changes in progeserone baance. Bengn prosac yperpasa s nduced by their environment. androgens and can cause obsrucon o e low o urne and preds- Ceuar adapaons may be par o pysoogc ceuar responses or pose o urnary rac necons. I s mporan o dsngus yperpa- may be paoogc. Pysoogc adaptatons usuay represen responses sa rom neopasa: Unke neopasc grows, yperpasa s reversbe o ces o norma smuaon by ormones or endogenous cemca wen e grow sgnas abae. In some cases, perssen paoogc medaors (e.g., e ormone-nduced enargemen o e breas and yperpasa, suc as a afecng e endomerum, ses e sage or uerus durng pregnancy), or o e demands o mecanca sress (n e deveopmen o cancer because proerang ces are suscepbe o e case o bones and musces). Patoogc adaptatons are responses o muaons and oncogenc ransormaon. sress a aow ces o moduae er srucure and uncon and us    Atropy s a decrease n e number o ces and, ence, may cause an escape njur y, bu a e expense o norma uncon. Pysoogc and organ o srnk. I s caused

Use Quizgecko on...
Browser
Browser