Math Notes PDF
Document Details
Uploaded by FastAstrophysics3229
University of St. La Salle
Anton
Tags
Summary
These are mathematical notes covering various topics such as units of measurement, conversions, and geometry formulas for different shapes, including rectangular pyramids, square pyramids and cylinders.
Full Transcript
# MATH NOTES ## Units of Measurement ### Length * **SI:** m, cm, km, mm * **Imperial:** in, ft, yd, mi ### Weight * **SI:** g, kg, mg, etc * **Imperial:** oz, lb, ton ### Time * **SI:** s, min, hour, day, week, month, year ## Conversion * **Example:** 3 g = 0.003 kg = 300 cg ## Rectangular...
# MATH NOTES ## Units of Measurement ### Length * **SI:** m, cm, km, mm * **Imperial:** in, ft, yd, mi ### Weight * **SI:** g, kg, mg, etc * **Imperial:** oz, lb, ton ### Time * **SI:** s, min, hour, day, week, month, year ## Conversion * **Example:** 3 g = 0.003 kg = 300 cg ## Rectangular Pyramid ### Volume * **Formula:** $V = \frac{lwh}{3}$ where: * l = length * w = width * h = height * **Example:** * l = 3, w = 4, h = 5 * $V = \frac{3 \times 4 \times 5}{3} = 20 cm^3$ ### Height * **Formula:** $h = \frac{3V}{lw}$ * **Example:** * l = 3, w = 4, V = 20 * $h = \frac{3 \times 20}{3 \times 4} = 5$ ### Length * **Formula:** $l = \frac{3V}{wh}$ * **Example:** * w = 3, h = 4, V = 20 * $l = \frac{3 \times 20}{3 \times 4} = 5$ ### Width * **Formula:** $w = \frac{3V}{lh}$ * **Example:** * l = 3, h = 4, V = 20 * $w = \frac{3 \times 20}{3 \times 4} = 5$ ## Square Pyramid ### Volume * **Formula:** $V = \frac{s^2h}{3}$ where: * s = side length * h = height * **Example:** * s = 4, h = 3 * $V = \frac{4^2 \times 3}{3} = 16 cm^3$ * $s = \sqrt[2]{\frac{3V}{h}} = \sqrt[2]{\frac{3 \times 16}{3}} = \sqrt[2]{16} = 4 cm$ ### Height * **Formula:** $h = \frac{3V}{s^2}$ * **Example:** * s = 4, V = 36 * $h = \frac{3 \times 36}{4^2} = \frac{108}{16} = 6.75 cm$ ## Cylinder ### Volume * **Formula:** $V = \pi r^2 h$ where: * r = radius * h = height ### Height * **Formula:** $h = \frac{V}{\pi r^2}$ * **Example:** * $V = 113.10$ * $r = \sqrt[2]\frac{113.10}{\pi \times (3^2)} = \sqrt[2]{\frac{113.10}{28.27}} = \sqrt[2]{4} = 2$ * $h = \frac{113.10}{\pi \times (2^2)} = \frac{113.10}{12.56} = 9$ ## Fractions/Decimals * $\frac{1}{10.001} = 0.1$ * $\frac{1}{3} = 0.333...$ * $\sqrt[2] {3} = 1.732...$ * $\sqrt[2] {16} = 4$ * $\sqrt[2] {0.01} = 0.1$