Summary

This document provides a detailed explanation of polar coordinates, double integrals, and triple integrals involving polar and spherical coordinates. The document includes definitions, conversions, and several illustrative examples, making it a valuable resource for advanced calculus.

Full Transcript

## Polar Coordinates - **Definition:** Polar coordinates are a way to represent points in a plane using a distance from the origin (r) and an angle from the positive x-axis (θ). - **Conversion:** - Cartesian to Polar: - $r = \sqrt{x^2 + y^2}$ - $\theta = arctan (\frac{y}{x})$...

## Polar Coordinates - **Definition:** Polar coordinates are a way to represent points in a plane using a distance from the origin (r) and an angle from the positive x-axis (θ). - **Conversion:** - Cartesian to Polar: - $r = \sqrt{x^2 + y^2}$ - $\theta = arctan (\frac{y}{x})$ - Polar to Cartesian: - $x = rcos(\theta)$ - $y = rsin(\theta)$ - $x^2 + y^2 = r^2 cos^2(\theta) + r^2 sin^2(\theta) = r^2$ ## Double Integrals with Polar Coordinates - **Domain:** Points in the polar plane represented by a range of radii (r) and angles (θ). - **Riemann Sum setup:** 1. For each subdivision, pick a representative point $(r_i^\ast, θ_j^\ast)$ and compute the height value: $f(r_i^\ast cos(θ_j^\ast), r_i^\ast sin(θ_j^\ast))$ 2. Determine the area of the base: - **Rectangular:** ΔA = ΔxΔy - **Polar:** ΔA = $r^\ast$ ΔrΔθ - **Derivation:** - **"Good" Area:** The area of a small wedge-shaped region in polar coordinates with radii $r_{i-1}$ and $r_i$, and angle ΔΘ, is: $$ r_i^\ast Δr ΔΘ $$ where $r_i^\ast$ is the average radius. ## Applications of Polar Coordinates ### Example 1: Mass of a Lamina - **Problem:** Calculate the mass of a lamina (thin plate) in the shape of a ring with inner radius 1 and outer radius 3, and density $σ(x, y) = x^2 + y^2$. - **Solution:** 1. Convert to polar coordinates: $x = rcos(θ)$, $y = rsin(θ)$, $dx dy = r dr dθ$, $σ(rcos(θ), rsin(θ)) = r^2$ 2. Set up the integral: $$Mass = \int_{0}^{2π} \int_{1}^{3} r^2 * r dr dθ $$ 3. Evaluate: $Mass = 40π$ ### Example 2: Double Integral Evaluation - **Problem:** Evaluate $\iint_D xy dA$, where D is the region bounded by the circle $x^2 + y^2 = 4$ and the x-axis in the first quadrant. - **Solution:** 1. Convert to polar coordinates: $x = rcos(θ)$, $y = rsin(θ)$, $dx dy = r dr dθ$ 2. Determine the integral limits: $0 ≤ r ≤ 2$, $0 ≤ θ ≤ π/2$ 3. Set up the integral: $$\iint_D xy dA = \int_{0}^{π/2} \int_{0}^{2} rcos(θ)rsin(θ) * r dr dθ $$ 4. Evaluate: $ \iint_D xy dA = \frac{15}{8} $ ### Example 3: Volume Inside a Sphere and Outside a Cylinder - **Problem:** Find the volume enclosed by the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$. - **Solution:** 1. Draw a picture. 2. Determine the domain in polar coordinates: $2 ≤ r ≤ 4$, $0 ≤ θ ≤ 2π$ 3. Identify the function: $ f(x, y) = z = \sqrt{16 - x^2 - y^2} = \sqrt{16 - r^2}$ 4. Set up the integral: $Vol = 2 \int_{0}^{2π} \int_{2}^{4} \sqrt{16 - r^2} r dr dθ$ 5. Evaluate: $Vol = \frac{32π}{3} (12\sqrt{3} - 2)$ ## Polar/Cylindrical Coordinates in Triple Integrals - **Definition:** Cylindrical coordinates extend polar coordinates to three dimensions by adding the z-coordinate. - **Conversion:** - Cartesian to Cylindrical: - $r = \sqrt{x^2 + y^2}$ - $θ = arctan (\frac{y}{x})$ - $z = z$ - Cylindrical to Cartesian: - $x = rcos(θ)$ - $y = rsin(θ)$ - $z = z$ - **Triple Integral setup:** $$ \iiint_D f(x, y, z) dV = \iiint_D f(rcos(θ), rsin(θ), z) * r dr dθ dz$$ ## Spherical Coordinates in Triple Integrals - **Definition:** Spherical coordinates represent points in xyz-space using ρ, a distance from the origin; θ, an angle from the positive x-axis; and φ, an angle from the positive z-axis. - **Conversion:** - Cartesian to Spherical: - $ρ = \sqrt{x^2 + y^2 + z^2}$ - $θ = arctan(\frac{y}{x})$ - $φ = arccos(\frac{z}{ρ})$ - Spherical to Cartesian: - $x = ρsin(φ)cos(θ)$ - $y = ρsin(φ)sin(θ)$ - $z = ρcos(φ)$ ## Applications of Spherical Coordinates ### Example 1: Volume of a Spherical Wedge - **Problem:** Show that the volume of a spherical wedge (an apple slice) with radius R and angle α is $\frac{2}{3}πR^3$. - **Solution:** - **Domain:** $0 ≤ ρ ≤ R$, $0 ≤ φ ≤ π$, $α ≤ θ ≤ α + 2π$ - **Integral:** $V = \int_{α}^{α+2π} \int_{0}^{π} \int_{0}^{R} ρ^2 sin(φ) dρ dφ dθ$ - **Evaluation:** $V = \frac{2}{3}πR^3$ ### Example 2: Volume Above a Cone - **Problem:** Calculate the volume of the solid region above the cone z = - **Solution:** - **Domain:** $0 ≤ ρ ≤ \sqrt{8}$, $0 ≤ φ ≤ π/4$, $0 ≤ θ ≤ π/2$ - **Integral:** $V = \int_{0}^{π/2} \int_{0}^{π/4} \int_{0}^{√8} ρ^2 sin(φ) dρ dφ dθ$ - **Evaluation:** $V = \frac{8π}{3}(√2 - 1)$ ### Example 3: Mass of a Body - **Problem:** Find the mass of a body occupying the space between the spheres $ρ = 1$ and $ρ = 3$ with density function $σ(x, y, z) = \frac{√x^2 + y^2}{ρ}$. - **Solution:** - **Domain:** $1 ≤ ρ ≤ 3$, $0 ≤ φ ≤ π/2$, $0 ≤ θ ≤ 2π$ - **Integral:** $Mass = \int_{0}^{2π} \int_{0}^{π/2} \int_{1}^{3} \frac{ρsin(φ)}{ρ} * ρ^2 sin(φ) dρ dφ dθ$ - **Evaluation:** $Mass = 10π^2$ ### Example 4: Setting up Spherical Integrals - **Problem:** Set up a triple integral in spherical coordinates to represent the integral $\int_{-R}^{R} \int_{0}^{√{R^2 - y^2}}\int_{√{x^2 + y^2}}^{R} x dz dx dy$. - **Solution:** 1. **Determine the shape:** The integral represents a solid cone with its vertex at the origin and its base in the xy-plane. 2. **Determine the domain:** - ρ: $0 ≤ ρ ≤ R/cos(φ)$ (cone equation) - θ: $-\frac{π}{2} ≤ θ ≤ \frac{π}{2}$ - φ: $0 ≤ φ ≤ \frac{π}{4}$ (cone equation) 3. **Convert x:** $x = ρsin(φ)cos(θ)$ 4. **Set up the integral:** $$ \int_{0}^{π/4} \int_{-π/2}^{π/2} \int_{0}^{R/cos(φ)} ρsin(φ)cos(θ) * ρ^2sin(φ) dρ dθ dφ$$ The provided text presents a comprehensive overview of polar and spherical coordinates, including: * Their definitions and conversions to and from Cartesian coordinates * Setting up double and triple integrals in polar and spherical coordinates * Detailed examples with steps and explanations * Applications including: calculating mass, volume, and evaluating integrals. This information would be helpful for students or anyone looking to understand and apply these coordinate systems in various mathematical contexts.

Use Quizgecko on...
Browser
Browser