Double Integral Using Polar Coordinates PDF Math 3 2020
Document Details
Uploaded by IssueFreeEpigram
Biomedical Engineering Alexandria University
2020
Tags
Summary
This document contains examples and detailed calculations of double integrals using polar coordinates, along with diagrams illustrating concepts and applications. The calculations and examples demonstrate the integration techniques used with polar coordinates. It serves as math practice problems using polar integration.
Full Transcript
# Double Integral Using Polar Coordinates ## Double Integral Using Polar Coordinates * Double Integral * Polar Coordinates **Math 3** **2020** **Double Integral Using Polar Coordinates** $\iint_R f(x,y)dA \longrightarrow \iint_R f(r, \theta) rdrd\theta$ $x = rcos\theta$ $y = rsin\theta$ $x^2...
# Double Integral Using Polar Coordinates ## Double Integral Using Polar Coordinates * Double Integral * Polar Coordinates **Math 3** **2020** **Double Integral Using Polar Coordinates** $\iint_R f(x,y)dA \longrightarrow \iint_R f(r, \theta) rdrd\theta$ $x = rcos\theta$ $y = rsin\theta$ $x^2 + y^2 = r^2$ $\theta = tan^{-1}\frac{y}{x}$ $dA = dxdy = rdrd\theta$ **Important Notes** 1. **For** $x^2 + y^2 = a^2$ * **Equation of circle with origin as the center** * **Radius is (a)** * **r = a** > **Complete Circle** > $0 \le \theta \le 2\pi$ **Upper Half** > $0 \le \theta \le \pi$ > $0 \le r \le a$ **Lower Half** > $\pi \le \theta \le 2\pi$ or $\pi \le \theta \le 0$ > $0 \le r \le a$ **First Quadrant** > $0 \le \theta \le \frac{\pi}{2}$ > $0 \le r \le a$ **Second Quadrant** > $\frac{\pi}{2} \le \theta \le \pi$ > $0 \le r \le b$ > $a \le r \le b$ 2. * **Equation of line** $y = x$ * **Area** under the line * **Limits of Integration** * $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ 3. * **Equation of line** $y = x$ * **Area** under the line * **Limits of Integration** * $\frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ 4. * **Equation of line** $y = x$ * **Equation of line** $y = -x $ * **Area** under the line * **Limits of Integration** * $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$ **Example 1** **Evaluate the double integral:** $\int \int_R x^2y^2 dA $ **where R is the region in the first quadrant bounded by the circles:** $x^2+y^2 = 1$ and $y^2 + x^2 = 4$ $\int \int_R x^2y^2 dA = \int \int_R (rcos\theta)^2 (rsin\theta)^2 rdrd\theta = \int \int_R r^5 cos^2 \theta sin^2 \theta drd\theta$ $\int_0^{\pi/2} \int_1^2 r^5 cos^2 \theta sin^2 \theta drd\theta = \int_0^{\pi/2} [ \frac{r^6}{6} cos^2 \theta sin^2 \theta ]_1^2 d\theta$ $\int_0^{\pi/2} \[ \frac{2^6}{6} cos^2 \theta sin^2 \theta - \frac{1^6}{6} cos^2 \theta sin^2 \theta \] d\theta$ $\int_0^{\pi/2} \frac{63}{6} cos^2 \theta sin^2 \theta d\theta = \frac{63}{6} \int_0^{\pi/2} cos^2 \theta sin^2 \theta d\theta$ $\frac{63}{6} \int_0^{\pi/2} \frac{1}{4}sin^2 (2\theta) d\theta = \frac{63}{24} \int_0^{\pi/2} \frac{1}{2} (1 - cos(4\theta)) d\theta$ $\frac{63}{48} [ \theta - \frac{sin(4\theta)}{2}\ ]_0^{\pi/2} = \frac{63}{48} [ (\frac{\pi}{2} - \frac{sin(2\pi)}{4}) - (0 - \frac{sin(0)}{4})]$ $\frac{63}{48} ( \frac{\pi}{2} - 0) = \boxed{\frac{63\pi}{96}}$ **Example 2** **Find:** $\int_0^1 \int_0^{\sqrt{1 - y^2}} e^{x^2+y^2} dxdy$ $\int_0^1 \int_0^{\sqrt{1 - y^2}} e^{x^2+y^2} dxdy = \int_0^{\pi/2} \int_0^1 e^{r^2} rdrd\theta$ $\frac{1}{2} \int_0^{\pi/2} \int_0^1 e^{u} du d\theta = \frac{1}{2} \int_0^{\pi/2} [e^{u} ]_0^1 d\theta$ $\frac{1}{2} \int_0^{\pi/2} [ e^1 - e^0 ] d\theta = \frac{1}{2} \int_0^{\pi/2} (e - 1) d\theta$ $\frac{1}{2} [(e - 1)\theta ]_0^{\pi/2} = \frac{1}{2}[(e - 1)\frac{\pi}{2} - (e-1)(0)] = \boxed{\frac{\pi}{4} (e - 1)}$ **Example 3** **Evaluate:** $\int_0^2 \int_0^{\sqrt{8-x^2}} \frac{1}{5+x^2+y^2} dydx$ $\int_0^2 \int_0^{\sqrt{8-x^2}} \frac{1}{5+x^2+y^2} dydx = \int_{\pi/4}^{\pi/2} \int_2^{\sqrt{8}} \frac{1}{5+r^2} rdrd\theta$ $\int_{\pi/4}^{\pi/2} \int_2^{\sqrt{8}} \frac{r}{5+r^2} drd\theta = \frac{1}{2} \int_{\pi/4}^{\pi/2} \[ ln(5+r^2) \]_2^{\sqrt{8}} d\theta$ $\frac{1}{2} \int_{\pi/4}^{\pi/2} \[ln(5 + 8) - ln(5 + 4) \] d\theta = \frac{1}{2} \int_{\pi/4}^{\pi/2} \[ln(13) - ln(9) \] d\theta$ $\frac{1}{2} \int_{\pi/4}^{\pi/2} ln(\frac{13}{9}) d\theta = \frac{1}{2} ln(\frac{13}{9}) \[ \theta \]_{\pi/4}^{\pi/2} = \frac{1}{2} ln(\frac{13}{9}) (\frac{\pi}{2} - \frac{\pi}{4})$ $\boxed{\frac{\pi}{8} ln(\frac{13}{9})}$ **Example 4** **Evaluate:** $\int_0^{2\sqrt{2}} \int_0^{\sqrt{16-x^2}} \frac{1}{\sqrt{9+x^2+y^2}} dydx$ $\int_0^{2\sqrt{2}} \int_0^{\sqrt{16-x^2}} \frac{1}{\sqrt{9+x^2+y^2}} dydx = \int_{\pi/4}^{\pi/2} \int_0^4 \frac{r}{\sqrt{9+r^2}} drd\theta$ $\int_{\pi/4}^{\pi/2} \int_0^4 (9+r^2)^{-1/2} rdrd\theta = \int_{\pi/4}^{\pi/2} \[ \sqrt{9+r^2} \]_0^4 d\theta$ $\int_{\pi/4}^{\pi/2} \[\sqrt{25} - \sqrt{9} \] d\theta = \int_{\pi/4}^{\pi/2} (5 - 3) d\theta = \int_{\pi/4}^{\pi/2} 2 d\theta$ $\boxed{\frac{\pi}{2}}$ **Example 5** **Evaluate** $\int_0^a \int_0^{\sqrt{a^2-x^2}} \frac{1}{\sqrt{x^2 + y^2}} dydx$ $\int_0^a \int_0^{\sqrt{a^2-x^2}} \frac{1}{\sqrt{x^2 + y^2}} dydx = \int_0^{\pi/2} \int_0^a \frac{r}{r} drd\theta$ $\int_0^{\pi/2} \int_0^a drd\theta = \int_0^{\pi/2} \[r \]_0^a d\theta$ $\int_0^{\pi/2} (a - 0) d\theta = \int_0^{\pi/2} a d\theta = a \[\theta\]_0^{\pi/2} = a(\frac{\pi}{2} - 0) = \boxed{\frac{a\pi}{2}}$ **Example 6** **Evaluate:** $\int_{-\pi}^{\pi} \int_0^{\sqrt{\pi - x^2}} sin(x^2 + y^2) dydx$ $\int_{-\pi}^{\pi} \int_0^{\sqrt{\pi - x^2}} sin(x^2 + y^2) dydx = \int_0^{\pi} \int_0^{\sqrt{\pi}} sin(r^2) rdrd\theta$ $\frac{1}{2} \int_0^{\pi} \int_0^{\pi} sin(u) du d\theta = \frac{1}{2} \int_0^{\pi} \[ -cos(u) \]_0^{\pi} d\theta$ $\frac{1}{2} \int_0^{\pi} [-cos(\pi) - (-cos(0))]d\theta = -\frac{1}{2} \int_0^{\pi} (-1 - (-1)) d\theta$ $-\frac{1}{2} \int_0^{\pi} 0 d\theta = \boxed{0 }$ **Example 7** **Evaluate:** $\int_0^1 \int_0^{\sqrt{2-y^2}} (x+y) dxdy$ $\int_0^1 \int_0^{\sqrt{2-y^2}} (x+y) dxdy = \int_0^{\pi/4} \int_0^{\sqrt{2}} (rcos\theta + rsin \theta) rdrd\theta$ $\int_0^{\pi/4} \int_0^{\sqrt{2}} (r^2 cos\theta + r^2 sin\theta) drd\theta = \int_0^{\pi/4} [ \frac{r^3}{3} cos\theta + \frac{r^3}{3} sin\theta ]_0^{\sqrt{2}} d\theta$ $\int_0^{\pi/4} [(\frac{(\sqrt{2})^3}{3} cos\theta + \frac{(\sqrt{2})^3}{3} sin\theta) - 0 + 0]d\theta$ $\int_0^{\pi/4} (\frac{2\sqrt{2}}{3} cos\theta + \frac{2\sqrt{2}}{3} sin\theta) d\theta = [\frac{2\sqrt{2}}{3} sin \theta - \frac{2\sqrt{2}}{3} cos \theta ]_0^{\pi/4}$ $\frac{2\sqrt{2}}{3} ( sin(\frac{\pi}{4} - cos (\frac{\pi}{4})) - \frac{2\sqrt{2}}{3} (sin(0) - cos(0))]$ $\frac{2\sqrt{2}}{3} ( \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} ) - \frac{2\sqrt{2}}{3} (0 - 1) = \boxed{\frac{2\sqrt{2}}{3}}$ **Example 8** **Evaluate** $\iint_R \sqrt{x^2 + y^2 - 1} dA$, where R is the region bounded by $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, $y = x$, $y = -x$ in the upper half plane. $\iint \sqrt{x^2 + y^2 - 1} dA = \int_{\pi/4}^{3\pi/4} \int_1^2 \sqrt{r^2 - 1} rdrd\theta$ $\int_{\pi/4}^{3\pi/4} \int_1^2 (r^2 - 1)^{1/2} rdrd\theta = \int_{\pi/4}^{3\pi/4} \int_1^2 (r^2 - 1)^{1/2} rdrd\theta$ $\int_{\pi/4}^{3\pi/4} \int_1^2 u^{1/2} \frac{1}{2} du d\theta = \frac{1}{2} \int_{\pi/4}^{3\pi/4} [\frac{2}{3} u^{\frac{3}{2}}]_1^2 d\theta$ $\frac{1}{3} \int_{\pi/4}^{3\pi/4} [(2)^{\frac{3}{2}} - 1] d\theta = \int_{\pi/4}^{3\pi/4} [(2)^{\frac{3}{2}} - 1] d\theta$ $\frac{1}{3} [(2)^{\frac{3}{2}} - 1] [\theta ]_{\pi/4}^{3\pi/4} = \frac{1}{3} [(2)^{\frac{3}{2}} - 1] (\frac{3 \pi}{4} - \frac{\pi}{4})$ $\boxed{\frac{1}{6} \sqrt{27} (\frac{3 \pi}{4} - \frac{\pi}{4})}$ **Example 9** **Evaluate:** $\int_{-1}^1 \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{2}{(x^2 + y^2 + 1)^3} dydx$ $\int_{-1}^1 \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \frac{2}{(x^2 + y^2 + 1)^3} dydx = \int_0^{2\pi} \int_0^1 \frac{2}{(r^2 + 1)^3} rdrd\theta$ $\int_0^{2\pi} \int_0^1 2(r^2 + 1)^{-3} rdrd\theta = 2\int_0^{2\pi} \int_0^1 (r^2 + 1)^{-3} rdrd\theta$ $2 \int_0^{2\pi} \int_0^1 u^{-3} \frac{1}{2}du d\theta = \int_0^{2\pi} \int_0^1 u^{-3} du d\theta$ $\int_0^{2\pi} [-\frac{1}{2} u^{-2}]_0^1 d\theta = \int_0^{2\pi} [-\frac{1}{2} (1)^{-2} - (-\frac{1}{2} (0)^{-2}] d\theta$ $\int_0^{2\pi} [ -\frac{1}{2} ] d\theta = -\frac{1}{2} [\theta ]_0^{2\pi} = -\frac{1}{2} (2\pi - 0)$ $\boxed{-\pi}$ **Example 10** **Evaluate:** $\int_0^\infty \int_0^\infty \frac{-y}{e^x} dxdy$ $\int_0^\infty \int_0^\infty \frac{-y}{e^x} dxdy = \int_0^\infty \int_0^\infty -ye^{-x} dxdy$ $\int_0^\infty -y \[-e^{-x} \]_0^\infty dy = \int_0^\infty -y [0 - (-1)]dy$ $\boxed{1}$