Fundamental of Biomaterials BME310 PDF
Document Details
Uploaded by CharismaticSeries
University of Tripoli
ENG. M.A. Harmeda
Tags
Summary
This lecture covers fundamental concepts of biomaterials, focusing on carbon-based materials such as pyrolytic carbon, graphite and graphene. The document discusses various properties and applications of these materials in the biomedical field.
Full Transcript
Faculty of Engineering Department of Medical Engineering Fundamental of Biomaterials BME310 Carbon as a Biomaterial Carbon is an element found abundantly in the Earth’s crust and in the human body. The various bonding capabilities en...
Faculty of Engineering Department of Medical Engineering Fundamental of Biomaterials BME310 Carbon as a Biomaterial Carbon is an element found abundantly in the Earth’s crust and in the human body. The various bonding capabilities enable it to form so ُ خسٟفٚ خ١ اٌمششح األسػٟد ثىثشح فٛخِٛ ػٕظشٛ٘ ْٛاٌىشث many different varieties of compounds including the many gases, اعٛٔذ ِٓ أ٠ٓ اٌؼذ٠ٛػخ ِٓ رىٕٛ رّىٕٗ لذساد اٌزشاثؾ اٌّز.ْاإلٔسب liquids, and solids. ادٌّٛاٚ ًائٛاٌغٚ ذ ِٓ اٌغبصاد٠ رٌه اٌؼذٟاٌّشوجبد اٌّخزٍفخ ثّب ف The carbon compounds constitute the nutrients, the organic energy.اٌظٍجخ sources, the building materials for plants, and many other molecules خ٠ِٛظبدس اٌطبلخ اٌؼؼٚ خ١ْ اٌؼٕبطش اٌغزائٛرشىً ِشوجبد اٌىشث in the body. Since all living species are hydrocarbon based, carbon basically is the element of life if water is the molecule of life. ثّبٚ.ُ اٌدسٟ فٜئبد األخش٠ذ ِٓ اٌدض٠اٌؼذٚ اد اٌجٕبء ٌٍٕجبربدِٛٚ Carbon derived compounds like diamond, graphite, and graphene are ٛ٘ ْٛ فئْ اٌىشث،ْٛوشثٚذس١ٌٙ اٍٝخ رؼزّذ ػ١غ اٌىبئٕبد اٌس١ّأْ خ made of only one element, and the method of their production is ْٛ رزى.بح١ء اٌسٞ خضٛ٘ بح إرا وبْ اٌّبء١ األعبط ػٕظش اٌسٟف different than the commercially available ceramics since the melting ِٓ ٓ١اٌدشافٚ ذ١اٌدشافٚ ْ ِثً اٌّبطٛاٌّشوجبد اٌّشزمخ ِٓ اٌىشث temperature of carbon is very high. فشٛه اٌّز١ِشا١ب ػٓ اٌغٙمخ إٔزبخ٠رخزٍف ؽشٚ ،ازذ فمؾٚ ػٕظش.خ خذًا١ٌْ ػبٛبس اٌىشثٙٔظشا ألْ دسخخ زشاسح أظ ً ًب٠ردبس The carbon-based materials are very diverse; even though they are formed only of carbon, they can be very soft like graphite and very hard like diamond. This difference originates from the chemistry and بٙٔ اٌشغُ ِٓ أٍٝخ؛ ػ٠ػخ ٌٍغبْٕٛ ِزٛ اٌىشثٍٝاد اٌّؼزّذح ػٌّٛا the organization of carbon atoms; they can be amorphous or highly ًْ ٔبػّخ خذًا ِثّٛىٓ أْ رى٠ بٙٔ إال أ،ْ فمؾْٛ ِٓ اٌىشثٛرزى ordered crystalline forms. بء١ّ١ٕشؤ ٘زا االخزالف ِٓ و٠.طٍجخ خذًا ِثً اٌّبطٚ ذ١اٌدشاف أشىبيٚسح أٍٛش ِزج١ْ غّٛىٓ أْ رى٠ ْ؛ُٛ رساد اٌىشث١رٕظٚ They have the ability to form molecules with a broad range of.ت١خ اٌزشر١ٌخ ػب٠سٍٛث properties, and this makes carbon an indispensable element for the biomaterials field ،اسغ ِٓ اٌخظبئضٚ ئبد راد ٔطبق٠ٓ خض٠ٛ رىٍُٝ اٌمذسح ػٙ٠ٌذ خ٠ٛ١اد اٌسٌّٛ ِدبي اٟ ػٕٗ فٕٝػٕظشا ال غ ً ْٛدؼً اٌىشث٠ ٘زاٚ By : ENG.M.A.Hamoda 1. Pyrolytic Carbon PC الكربون االنحاللي Pyrolytic carbon is obtained by thermal decomposition of gaseous ٞك اٌزسًٍ اٌسشاس٠ ػٓ ؽشْٞ اٌسشاسٛ اٌىشثٍٝي ػٛزُ اٌسظ٠ hydrocarbons at high temperatures. Making of the coal in the traditional مخ٠ؼذ طٕغ اٌفسُ ثبٌطش٠.خ١ٌخ ػٕذ دسخبد زشاسح ػب٠ٔبد اٌغبصٛوشثٚذس١ٌٍٙ way is also a method of pyrolysis. ٞ ؽشق االٔسالي اٌسشاسٜؼًب إزذ٠خ أ٠ذ١ٍاٌزم Pyrolytic carbon has a structure similar to that of graphite In both the ث١ ز،ذ١ اٌدشافٟدح فٛخٌّٛخ ٌزٍه اٙخ ِشبث١ٕ ثٍٝ ػٌْٟ االٔسالٛ اٌىشثٞٛسز٠. carbons form hexagonals which constitute layers. These layers are ً ظ ٘زٖ اٌطجمبد٠زُ رىذ٠.خ رشىً ؽجمبد١أشىبال عذاع ْٛرشىً وٍزب رساد اٌىشث stacked on top of each other and held together by weaker interlayer.خ أػؼف١ٕ١اثؾ ثٚاعطخ سٛب ِ ًؼب ثٙؼ١ّزُ رد٠ٚ ب اٌجؼغٙق ثؼؼٛف bonds. اػطشاة اٌطجمبد ِّبٚ ثبٔخفبع زدُ اٌطجمبدٌْٟ االٔسالٛخزٍف اٌىشث٠ٚ Pyrolytic carbon differs by the lower size of the layers and the disorder ال،خ١ٌد ؽجمبد ِثبٛخٚ َٔظشا ٌؼذ ً.بٕٙ١ّب ث١فٚ ٘بد داخً اٌطجمبدٛ رشٌٝ إٞؤد٠ of the layers which lead to distortions within and between layers. Due ّْٕٛر اٌىشث٠ ٘زاٚ ،ب اٌجؼغٙق ثؼؼٛ اٌمض أْ رٕضٌك اٌطجمبد فّٜٛىٓ ٌم٠ to the lack of perfect layering, shear forces cannot slide layers past each.ذ١اٌّزبٔخ اٌّسسٕخ ِمبسٔخ ثبٌدشافٚ دسخخ اٌضخبجٞاٌسشاس other, and this gives pyrolytic carbon the glassiness and improved durability compared to graphite. -100 ،ح اٌشذٛ ل:ٍٟ٠ وّبٟ٘ ْٞ اٌسشاسٛخ ٌٍىشث١ى١ٔىب١ٌّاص اٛثؼغ اٌخ 550-450 ح اٌؼغؾٛدب ثبسىبي؛ ل١ِ 400-300 ح االٔثٕبءٛدبثبسىبي؛ ل١ِ 120 Some mechanical properties of pyrolytic carbon are the following:.دب ثبسىبي١ خ29-23 ٔخِٚؼبًِ اٌّشٚ دب ثبسىبي؛١ِ tensile strength, 100–120 MPa; flexural strength 300–400 MPa; compressive strength 450–550 MPa; and the modulus of elasticity ( ِٓ خالي زشوخ أخضاءPC( ْٞ اٌسشاسٛذ خظبئض أفالَ اٌىشث٠زُ رسذ٠ 23–29 GPa. خ١ٍ وٍّب صادد لبث.بٙلذ رشعجٚ ٟذ) ف١ (اٌدشافِٟ اٌغطر اٌّزٕبٍْٝ ػٛاٌىشث..ً أفؼٞسٍٛوبْ االردبٖ اٌجٚ ساد أوجشٍٛ وٍّب وبْ زدُ اٌج،اٌسشوخ The properties of pyrolytic carbon (PC) films are determined by the mobility of the carbon fragments on the growing surface (graphite) at the time of their deposition. The higher the mobility, the larger is the crystallite Lecture 7 size and the better is the crystallite orientation. By : ENG.M.A.Hamoda As a result of good crystallite alignment and high compaction, the P ّىٓ أْ رظً وثبفخ٠ ،ٌٟاٌؼغؾ اٌؼبٚ ذح١خ اٌد٠سٍٛدخ ٌٍّسبراح اٌج١ٔز C can have densities as high as 2.22 g/cm3, which is close to that of ذ١جخ ِٓ وثبفخ اٌدشاف٠ لشٟ٘ٚ ،3ُس/ُ خ2.22 ٌٝٔبد إٛ وشثٌٟٛاٌج graphite (2.26 g/cm3 فٚظ ِغ ظشٛ ثشىً ٍِسPC رخزٍف وثبفخ.)3ُس/ُ خ2.26( The density of P C varies markedly with processing conditions including deposition temperature and gas pressures.The parallel ٞٛ رسز.ؽ اٌغبصٛػغٚ ت١ رٌه دسخخ زشاسح اٌزشعٟاٌّؼبٌدخ ثّب ف layers of the crystallites have crosslinks between them..بٕٙ١اثؾ ِزمبؽؼخ ثٚ سٍٝساد ػٍٛخ ِٓ اٌج٠اصٛاٌطجمبد اٌّز If the crosslinking is minimal, it forms lubricating graphite, and the ٜٛاٌّغزٚ ،ُ١ذ رشس١شىً خشاف٠ ٗٔ فئ،ٝٔ زذٖ األدٟإرا وبْ اٌزشبثه ف high level of crosslinking forms pyrolytic carbon. Graphite is stable ذ ِسزمش رسذ١ اٌدشاف.ْٞ اٌسشاسٛشىً اٌىشث٠ ِٓ اٌزشبثهٌٟاٌؼب under ambient temperature and pressure and can be converted into ِبط ػٕذ دسخخٌٍٝٗ إ٠ّٛىٓ رس٠ٚ ٓ١ط١اٌؼغؾ اٌّسٚ دسخخ اٌسشاسح diamond at high temperature and pressure.General advantages of pyrolytic carbon are high strength, high wear resistance, and حٛ اٌمٟ٘ ْٞ اٌسشاسٛب اٌؼبِخ ٌٍىشث٠ اٌّضا.ٓ١ػغؾ ِشرفؼٚ زشاسح therefore durability, biocompatibility (initiation of no adverse ٞٛ١افك اٌسٛاٌزٚ ، اٌّزبٔخٌٟثبٌزبٚ ،خ١ٌِخ اٌزآوً اٌؼبِٚمبٚ ،خ١ٌاٌؼب responses in the body), and hemocompatibility (no blood clotting, افك اٌذَ (ػذَ رخثشٛ رٚ ،)ُ اٌدغٟخ ف١د اعزدبثبد ػىغٛخٚ َ(ثذء ػذ in other words, thromboresistance). In its applications in the ِدبي اٌطتٟمبرٗ ف١ رطجٟ ف.)ِخ اٌزخثشٚ ِمب،ٜثؼجبسح أخشٚ ،َاٌذ biomedical field such as heart valves, small orthopedic joints ،)شح (األطبثغ١خ اٌظغ١ّاٌّفبطً اٌؼظٚ ، ِثً طّبِبد اٌمٍتٞٛ١اٌس (fingers), and spinal inserts, pyrolytic carbon generally is used as a َ ثشىً ػبْٞ اٌسشاسٛزُ اعزخذاَ اٌىشث٠ ،ٞد اٌفمشّٛإدساج اٌؼٚ coating on implant materials prepared by pyrolysis of hydrocarbon vapor carried with a hydrocarbon carrier gas. In the case of heart ٞك االٔسالي اٌسشاس٠اد اٌضسع اٌّسؼشح ػٓ ؽشِٛ ٍٝوطالء ػ valves, it is deposited in a fluidized bed on graphite shaped in the زبٌخٟفٚ.ٟٔٛوشثٚذس١٘ ًي ِغ غبص ٔبلّْٛ اٌّسٛوشثٚذس١ٌٌٙجخبس ا form of the heart valve to render it inert, strong, light, and ً شىٍٝذ ػ١ اٌدشافٍٝؼخ ػ١ِّ ؽجمخٟجٗ ف١زُ رشع٠ ،طّبِبد اٌمٍت hemocompatible. ً.َافك ِغ اٌذٛش ِز١غٚ فًب١خفٚ ًب٠ٛلٚ خبِال ٍٗطّبَ اٌمٍت ٌدؼ Lecture 7 By : ENG.M.A.Hamoda Graphite Graphite exists as a layered material consisting of parallel layers of خ١خ عذاع٠اصْٛ ِٓ ؽجمبد ِزٛذ وّبدح راد ؽجمبد رزى١خذ اٌدشافٛ٠ hexagonal The layers are bonded by weak linkages (Fig. 6.2). The a = ٟ٘ زذحٌٛخ ا١ٍ أثؼبد خ.)6.2 ًفخ (اٌشى١اثؾ ػؼٚرشرجؾ اٌطجمبد ثشٚ unit cell dimensions are a = b = 2.456 Å and c = 6.694 Å. The ْٟ فٛاٌىشث-ْٛي ساثطخ اٌىشثٛجٍغ ؽ٠c = 6.694 Å. ٚb = 2.456 Å carbon-carbon bond length in the layer is 1.418 Å, while the 3.347( ش١ٓ اٌطجمبد أوجش ثىث١ٓ أْ اٌزجبػذ ث١ زٟ ف،Å 1.418 اٌطجمخ interlayer spacing is significantly larger (3.347 Å(. Å). Graphite does not bear any net charges because in its natural form, خذٛ ال رٟؼ١ شىٍٗ اٌطجٟخ ألٔٗ ف١ شسٕبد طبفٞذ أ١سًّ اٌدشاف٠ ال no reactive ions or groups exist within the hexagonal layers.Graphite ذ١ّىٓ ٌٍدشاف٠.خ١ػبد ِزفبػٍخ داخً اٌطجمبد اٌسذاسّٛ ِدٚٔبد أٛ٠أ can take in various atoms, molecules, metal complexes, and salts ٓ١أِالذ ِخزٍفخ ثٚ خ ِخزٍفخ١ِٔدّؼبد ِؼذٚ ئبد٠خضٚ ؤخز رساد٠ ْأ between the layers to form “graphite intercalation compounds.” ذ١ً اٌدشاف٠ؼًب رؼذ٠ّىٓ أ٠."ذ١ٓ "ِشوجبد إلسبَ اٌدشاف٠ٛاٌطجمبد ٌزى ذ اٌّمسّخ١ِشوجبد اٌدشافٚ ،)ذ١ذ اٌدشاف١ٓ (أوس١ذ اٌدشاف١ٓ أوس٠ٌٛزى Graphite can also be modified to form graphene oxide (graphite زُ ػشع ثؼغ خظبئض٠EG). ( عغٌّٛذ ا١اٌدشافٚ ،GICs)( oxide), graphite intercalated compounds (GICs), and expanded ٗٔظشا ٌخظبئظ ً ،ذ١ّىٓ اعزخذاَ اٌدشاف٠.6.1 يٚ اٌدذٟذ ف١اٌدشاف graphite (EG). Some properties of graphite are presented in Table ٞٛ١ ِدبي اٌطت اٌسٟمبد ف١ذ ِٓ اٌزطج٠ اٌؼذٟ ف،خ٠٘شٛاٌد 6.1.Graphite, due to its intrinsic properties, can be used in many applications in the biomedical field. Lecture By : ENG.M.A.Hamoda Thrombosis on prostheses coated with graphite was studied in the 1960s, and hey were found to be non-thrombogenic, and it ٟذ ف١خ ثبٌدشاف١ٍخ اٌّط١ األؽشاف االططٕبػٟرّذ دساسخ ردٍؾ اٌذَ ف was also found that graphite-based endoprostheses were generally nontoxic and produced no immunological reactions. ؼًب أْ األؽشاف٠خذ أٚ وّب،ش ِسججخ ٌٍزخثش١ب غٙٔٓ أ١رجٚ ،بد١ٕ١اٌسز When treated with glow discharge, its nonreactivity changes; ٌُ رٕزحٚ َش سبِخ ثشىً ػب١ذ وبٔذ غ١ اٌدشافٍٝخ اٌمبئّخ ػ١االططٕبػ the compound becomes hydrophilic, and this makes the surface ش ػذَ رفبػٍٗ؛١زغ٠ ،٘حٌٛغ ا٠ ػٕذ اٌزؼبًِ ِغ اٌزفش.خ١ رفبػالد ِٕبػٞأ more reactive and favorable for protein adsorption.The ً ِالئ ًّبٚ رفبػال دؼً اٌغطر أوثش٠ ٘زاٚ ،ظجر اٌّشوت ِسجًب ٌٍّبء٠ hexagonal crystal structure of graphite formed by the sp2 σ ِٓ ٔخٛذ اٌّزى١خ ٌٍدشاف١خ اٌغذاع٠سٍٛخ اٌج١ٕ إْ اٌج.ٓ١رٚالِزظبص اٌجش bonds is actually graphene layers or carbon layer planes, bonded ِشرجطخ،ْٛبد ؽجمخ وشث٠ٛ ِغزٚٓ أ١الغ ؽجمبد خشافٌٛ اٟ فٟ٘σ اثؾٚس together in between the planes by π bonding. The most common crystal form of graphite consists of stacks in the order ABABAB ٞسٍْٛ اٌشىً اٌجٛزى٠π. اثؾٚاعطخ سٛبد ث٠ٛٓ اٌّغز١ب اٌجؼغ ثٙثجؼؼ ABABAB. ت١اَ ثبٌزشرٛذ ِٓ أو١ػب ٌٍدشاف ً ٛ١األوثش ش The rhombohedral form of graphite has a stacking sequence of ABCABC ِٓ رسٍسً رشاصٍٝذ ػ١ ٌٍدشافٟٕ١ اٌشىً اٌّؼٞٛسز٠ ABCABC but constitutes only a minor fraction of well- ،ةٛ١اٌؼٚ.ذًا١س خٍٛذ اٌّزج١ش ِٓ اٌدشاف١ خضء طغٜٛشىً س٠ ٌىٕٗ الٚ crystallized graphites.The defects, particularly vacancies, are the ٍٝ رؤثش ػٟخ اٌز١س١مخ اٌشئ١خ اٌذل١ٍى١ٌٙضح ا١ٌّ اٟ٘ ،اغشٛخبطخ اٌشٚ main microstructural feature that affect the strength of brittle materials such as graphite the most. Under the influence of the ٚبد اٌشذ أٙش إخ١ رسذ رؤث.ش٘ب١ذ أوثش ِٓ غ١شخ ِثً اٌدشافٌٙاد اٌّٛح اٛل applied tensile or shear stress, microscopic defects grow and ٓ اٌفشً ػٌٝخ إ٠بٌٕٙ اٟ فٞرؤدٚ خ٠شٙة اٌّدٛ١ اٌؼّٕٛ ر،اٌمض اٌّطجك eventually lead to the failure by fracture. This, in addition to ذ١دؼً اٌدشاف٠ ، اٌمضٜٛ اٌؼؼف أِبَ لٌٝ ثبإلػبفخ إ، ٘زا.ك اٌىسش٠ؽش weakness against shear forces, makes graphite mechanically.مبد١ذ ِٓ اٌزطج٠ اٌؼذٟجًب ف١شىً ػ٠ ِّب،ًب١ى١ٔىب١ِ ٘شًب fragile, which constitutes a disadvantage in many applications. Lecture 7 By : ENG.M.A.Hamoda Lecture 7 By : ENG.M.A.Hamoda Active Charcoal (Activated Carbon) )ْ إٌّشؾٛاٌفسُ إٌشؾ (اٌىشث ctivated carbon is an amorphous solid with very high porosity and a very large internal surface area. It has the capability to adsorb molecules from both the liquid and gas phase and is therefore used in purification and cleaning خ خذًا١ٌخ ػب١ِسح راد ِسبٍٛش ِزج١ْ إٌّشؾ ػجبسح ػٓ ِبدح طٍجخ غٛاٌىشث processes including the biomedical field. It can be produced from many ِٓ ئبد٠ اِزظبص اٌدضٍٝٗ اٌمذسح ػ٠ ٌذ.شح خذًا١خ وج١ٍِسبزخ سطر داخٚ organic natural carbon-based materials such as wood, nutshells (coconut, ٟف ثّب ف١اٌزٕظٚ خ١بد اٌزٕم١ٍّ ػٟغزخذَ ف٠ ٌٟثبٌزبٚ ،ٞاٌغبصٚ ًس اٌغبئٛاٌط pecan, etc.), and lignite coal. خ راد٠ٛاد اٌؼؼٌّٛذ ِٓ ا٠ّىٓ إٔزبخٗ ِٓ اٌؼذ٠.ٞٛ١رٌه ِدبي اٌطت اٌس ،ْ اٌجمب،ٕذٌٙص اٛص (خٛس اٌدٛلشٚ ، ِثً اٌخشتٟؼ١ اٌطجٟٔٛاألعبط اٌىشث The process is basically activation of charcoal, and it is done by heating it to 600–1200 °C in the presence of oxidizing gases such as CO2, steam, or air,.ذ١ٕد١ٌٍفسُ اٚ ،)إٌخ or it is impregnated with chemicals such as acids (phosphoric acid) or bases (potassium hydroxide), or salts (zinc chloride), and then heated to 450–900 دسخخ زشاسحٌٕٝٗ إ١ك رسخ٠رزُ ػٓ ؽشٚ ،ُؾ اٌفس١ األسبط رٕشٟ فٟ٘ خ١ٍّاٌؼ °C. Each approach has its advantages and disadvantages. Activated charcoal ْٛذ اٌىشث١ أوسٟٔد اٌغبصاد اٌّؤوسذح ِثً ثبٛخٚ ٟخ ف٠ٛ دسخخ ِئ1200-600 can be processed into powder, granular, and pellet forms. On the average, the خ ِثً األزّبع (زّغ١بئ١ّ١اد وّٛجٗ ث٠زُ رشش٠ ٚ أ،اءٌٛٙ اٚ اٌجخبس أٚأ specific surface area (SSA) of the material can range from 500 to 1400 m2 /g ذ٠سٍٛ األِالذ (وٚ أ،)َٛ١ربسٛذ اٌج١وسٚذس١٘( اػذٛ اٌمٚه) أ٠سٛسفٛاٌف ٖب٠ح ٌٗ ِضاٙٔ ً و.خ٠ٛ دسخخ ِئ900-450 ٌٝب إٕٙ١زُ رسخ٠ ُ ث،)اٌضٔه The total pore volume is about 0.71 cm3/g. The complex interior of activated ٟ ف.بد٠وشٚ جبد١زجٚ قٛ أشىبي ِسسٌّٝىٓ ِؼبٌدخ اٌفسُ إٌّشؾ إ٠.ٗثٛ١ػٚ charcoal consists of pores with different diameters: micropores (diameters 50 nm). ُخ/2َ 1400 Micropores constitute the major portion of the structure of the A C. ُ اٌّؼمذ ٌٍفسٍْٟ اٌدضء اٌذاخٛزى٠.ُ خ/ 3 ُ س0.71 ٌٟاٛ زدُ اٌّسبَ زٌٟجٍغ إخّب٠ Of the various activated carbon materials, fibers have the narrowest َ اٌّغب،)ِزشٛٔ ٔب2 ِٓ ًشح (ألطبس أل١ اٌّغبَ اٌظغ:إٌّشؾ ِٓ ِغبَ ثؤلطبس ِخزٍفخ distribution of pore sizes and nanopores. The dominance of the carbon ً رشى.)ِزشٛٔ ٔب50 ِٓ شح (ألطبس أوجش١اٌّغبَ اٌىجٚ ،)ِزشٛٔ ٔب50-2 عطخ (ألطبسٛاٌّز nanopores in the fibers makes them attractive for various applications. ،ْ إٌّشؾ اٌّخزٍفخٛاد اٌىشثِٛ ٓ١ِٓ ثAC. ًى١٘ ِٓ شح اٌدضء األوجش١اٌّغبَ اٌظغ خ٠ّٕٛٔخ اٌّغبَ إٌب١٘ ْ إ.خ٠ٛٔاٌّغبَ إٌبٚ َك ألزدبَ اٌّغب١غ األػ٠صٛبف ثبٌز١ٌرزّزغ األ.مبد١ب خزاثخ ٌّخزٍف اٌزطجٍٙبف ردؼ١ٌ األٟخ ف١ٔٛاٌىشث Lecture 7 By : ENG.M.A.Hamoda Graphene ٓ١اٌدشاف Graphene has excellent mechanical, electrical, thermal, and optical َ ػبٝ زز.خ ِّزبصح٠ثظشٚ خ٠زشاسٚ خ١شثبئٙوٚ خ١ى١ٔىب١ِ ٓ ثخظبئض١زّزغ اٌدشاف٠ properties. Until 2004, graphene was considered to be ِٓ ٌٟثبٌزبٚ خ٠خ اٌسشاس١ى١ِٕب٠خ اٌذ١ش ِغزمش ِٓ إٌبز١ؼزجش غ٠ ٓ١ وبْ اٌدشاف،2004 thermodynamically unstable and hence theoretically impossible to صاد،ٗٓ اٌمبئُ ثزار١ٌىٓ ثؼذ اوزشبف اٌدشافٚ ، زبٌخ زشحٟدٖ فٛخٚ ًب٠ً ٔظش١اٌّغزس exist in free state, but after the discovery of free-standing graphene,.ش١اد ثٗ ثشىً وجٌّٛا٘زّبَ ػٍّبء ا interest of material scientists in it grew exponentially. Obviously these are cases when the graphene and derivatives are used ِٗشزمبرٚ ٓ١ب اعزخذاَ اٌدشافٙ١زُ ف٠ ٟ اٌسبالد اٌزٟ٘ ٖاػر أْ ٘زٌِٛٓ ا as small particles or flakes rather than as a coat on or as a component ْٛ وّىٚق اٌغشعخ أٛب وطجمخ فِٙشح ثذالً ِٓ اعزخذا١ سلبئك طغٚئبد أ٠ودض in an implant. Most studies show that the toxic effect of the fillers is ٟب فٕٙخفغ ػٕذ دِد٠ ادٛش اٌسبَ ٌٍسش١ش ِؼظُ اٌذساسبد أْ اٌزؤثٙ رظ.بٙ١ف reduced when incorporated in biomaterials, due to decrease of direct َػذٚ خ اٌّجبششح١خٌٛٛ١رٌه ثغجت أخفبع اٌزفبػالد اٌجٚ ،خ٠ٛ١اد اٌسٌّٛا biological interactions and inability of the cells to endocytose these ًب١ى١ٔىب١ِ اٌزؼشع ٌٍزٍفٚئبد أ٠زٖ اٌدضٌٙ ٍٞٛ االٌزمبَ اٌخٍٝب ػ٠لذسح اٌخال particles or get damaged mechanically by their sharp edges. On the خ اٌىبس٘خ ٌٍّبء١ٔٛاد اٌىشثٌّٛ فئْ ا، اٌؼىظ ِٓ رٌهٍٝ ػ.ب اٌسبدحٙافٛثغجت ز contrary, hydrophobic carbon materials decrease adhesion of blood ؾ١رمًٍ ِٓ رٕشٚ ،ٓ١ِٛرؼضص اِزظبص األٌجٚ ،َرمًٍ ِٓ اٌزظبق ػٕبطش اٌذ elements, favor albumin adsorption, and decrease platelet activation..ش ِغججخ ٌٍزخثش١ب غٙٔ أٚجذ٠ دخ ٌزٌه١ٔزٚ.خ٠ِٛاٌظفبئر اٌذ As a result they appear to be non-thrombogenic.. Lecture 7 By : ENG.M.A.Hamoda Graphene ٓ١اٌدشاف Lecture 7 By : ENG.M.A.Hamoda Carbon Nanotubes خ٠ْٛٔ إٌبٛت اٌىشث١أٔبث The mechanical properties of this material are extremely high. The ٟ اٌّمطغ اٌؼشػٞٛسز٠.خ٠خ ٌٍغب١ٌاد ػبٌّٛزٖ اٌٙ خ١ى١ٔىب١ٌّاص اٛاٌخ cross-section of the walls of MWNTs have an elastic modulus ح شذ رجٍغٛلٚTPa 1 ِٓ مزشة٠ ْ ِؼبًِ ِشٍٝػMWNTs ٌْدذسا approaching 1 TPa and a tensile strength of 100 GPa. These values.خ١بف طٕبػ١ٌ أٞ ػشش ِشاد ِٓ أٌٟاٛ ثسٍُٝ أػ١٘زٖ اٌمGPa. 100 are about ten times higher than any industrial fiber. Deng et al..ْٚآخشٚ ٕغ٠د Their semiconductive behavior varies in the temperature range 300– 75.4 K. The electrical resistivity of individual CNTs was found to be as.ٓ وٍف75.4-300 ٔطبق دسخخ اٌسشاسحٟطً فٌّٛب شجٗ اٙوٍٛخزٍف ع٠ low as 10−6 Ω cm.The basic properties of nanotubes such as a very خ٠خ اٌفشد١ٔٛخ اٌىشث٠ٛٔت إٌب١خ ٌألٔبث١شثبئِٙخ اٌىٚخذ أْ اٌّمبٚ لذٚ high longitudinal flexibility factor, a Young’s modulus similar to that of خ٠ٛٔت إٌب١خ ٌألٔبث١ اٌخظبئض األعبع.ُعΩ 6−10 ٌِٕٝخفؼخ رظً إ diamond, a high mechanical resistance to stretching (several hundred ٔح ِشبثٗ ِمبسٔخٛ٠ ًِِؼبٚ ، خذًاٌٟخ اٌؼب١ٌٛٔخ اٌطِٚثً ػبًِ اٌّش times greater than the most resilient steel), the highest heat ِٓ خ ٌٍزّذد (أوجش ثؼذح ِئبد ِٓ اٌّشاد١ٌخ ػب١ى١ٔىب١ِ ِخِٚمبٚ ،ثبٌّبط conductivity of all known materials, a very high length-to-diameter ،فخٚاد اٌّؼشٌّٛغ ا١ّخ ٌد٠خ زشاس١ٍطِٛ ٍٝأػٚ ،)ٔخٚالر األوثش ِشٛاٌف ratio, and a large surface area make CNT useful for many applications CNT ِٓ ًشح ردؼ١ِغبزخ عطر وجٚ ،خ خذًا١ٌ لطش ػبٌٝي إٛٔغجخ ؽٚ in the biomedical field, too.CNTs are considered for use as biosensor ت١ رؼزجش األٔبث.ؼًب٠ أٞٛ١ ِدبي اٌطت اٌسٟمبد ف١ذ ِٓ اٌزطج٠ ٌٍؼذ.ذًا١ِف components and medical device parts because their dimensions and خ٠ٛ١ضح اعزشؼبس زٙٔبد أخٛخ لبثٍخ ٌالعزخذاَ وّى١ٔٛخ اٌىشث٠ٛٔإٌب chemistry are quite suitable to work with biomole cules such as nucleic ب ِٕبعجخ رّب ًِب ٌٍؼًّ ِغٙبئ١ّ١وٚ خ ألْ أثؼبد٘ب١ضح اٌطجٙأخضاء ِٓ األخٚ acids (DNA, RNA) and proteins. The impetus behind their use is (i) RNA) ،DNA( خ٠ٌٕٚٛخ ِثً األزّبع ا٠ٛ١ئبد اٌس٠زذاد اٌدضٚ large surface area and (ii) possibility for chemical modification and شح١خ وج١) ِسبزخ سطس1( ٛ٘ بِٙساء اسزخذاٚ اٌذافغ.ٕبد١رٚاٌجشٚ (iii) for creating ordered structures that can be “read” easily. CNTs also ّٓى٠ بوً ِشرجخ١٘ ) إٔشبء3(ٚ ٟبئ١ّ١ً اٌى٠خ اٌزؼذ١ٔ) إِىب2(ٚ allow fluorescent and photoacoustic imaging and are very useful in ش٠ٛؼًب ثبٌزظ٠خ أ١ٔٛخ اٌىشث٠ٛٔت إٌب١ رسّر األٔبث.ٌخٛٙب" ثسٙ"لشاءر localized therapy via exposure to near-infrared radiation. ِٓ ٟػؼٌّٛ اٌؼالج اٟذح خذًا ف١ ِفٟ٘ٚ ٟرٛ اٌظٟئٛاٌؼٚ ٞسٍٛاٌف.جخ٠خالي اٌزؼشع ٌألشؼخ رسذ اٌسّشاء اٌمش Lecture 7 By : ENG.M.A.Hamoda Carbon Nanotubes خ٠ْٛٔ إٌبٛت اٌىشث١أٔبث Lecture 7 By : ENG.M.A.Hamoda Carbon Products as Coating Materials اد ؽالءّْٛ وِٕٛزدبد اٌىشث The fate of a biomaterial is determined by its reaction with the ُؼشف٠.خ١خٌٛٛ١ئخ اٌج١ب ِغ اٌجٍٙخ ِٓ خالي رفبػ٠ٛ١ش اٌّبدح اٌس١ذ ِظ٠زُ رسذ٠ biological environment. Amorphous carbon and diamond-like carbon خ١اد غشبئّٛوDLC) ( ٗ ثبألٌّبط١ْ اٌشجٛاٌىشثٚ سٍٛش اٌّزج١ْ غٛاٌىشث (DLC) are known as bioinert film materials causing no toxic reactions إْ اٌظالثخ.ٟ اٌىبئٓ اٌسٟ رفبػالد سبِخ فٞال رسجت أٚ ًب١خٌٛٛ١خبٍِخ ث in the living organism. The hardness, low coefficient of friction, high ٞٛ١اٌطبثغ اٌسٚ ًاٌزآوٚ ًخ ٌٍزآو١ٌِخ اٌؼبٚاٌّمبٚ ِؼبًِ االززىبن إٌّخفغٚ resistance to wear and corrosion, and the bioinert character of carbon خ١خ ٌٍضساػبد اٌطج١ٌخ ِثب١ت سطس١اد رشطِٛ بٍٙخ ردؼ١ٔٛخ اٌىشث١ٌألغش films make them ideal surface finish materials for biomedical implants اٌؼذسبدٚت اٌظشف أ١ أٔبثٚ اٌمسطشح أٚخ ِثً طّبِبد اٌمٍت أ٠ٛ١اٌس like heart valves , catheters, drainage tubes or polymer contact lenses. ٌٗٚ سٍٛش ِزج١ذسج غِٙ ْٛػجبسح ػٓ وشثDLC.خ٠ّش١ٌٛاٌالطمخ اٌج DLC is an amorphous hydrogenated carbon and has excellent ش١ب غٙؼز١ٔظشا ٌطجً.خ ِّزبصح١خٌٛٛ١ثٚ خ١اززىبوٚ خ١ى١ٔىب١ِ خظبئض mechanical, tribological, and biological properties. Due to it Co ٚV ٚW ٚO ٚN ٚF ٚSi ً ِث،ّىٓ إػبفخ ثؼغ اٌؼٕبطش٠ ،سحٍٛاٌّزج amorphous nature, some elements, such as Si, F, N, O, W, V, Co, Mo, ضح االرظبيٙ أخٟفDLC َُفؼً اعزخذا٠ غبٌجًب ِب.ًى١ٌٙ اٌٝإTi ٚMo ٚ and Ti can be added into the structure. DLC is often preferred for use ٗخظبئظٚ َافمٗ اٌّّزبص ِغ اٌذٛٔظشا ٌز ً )طّبِبد اٌمٍتٚ ثبٌذَ (اٌذػبِبد in blood-contacting devices (stents and heart valves) because of its اٌّفبطً اٌسبٍِخ ثغجتٟؼًب ف٠أٚ ،يّٛاٌخٚ ِخٛإٌؼٚ ،اٌّؼبدح ٌٍزخثش excellent blood compatibility and antithrombogenic properties, ٌٝطّبِبد اٌمٍت إٚ ٟبْ اٌزبخ٠ دػبِبد اٌششٞ رؤد.خ١ٌِخ اٌزآوً اٌؼبِٚمب smoothness, and inertness and also in load-bearing joints because of خ لذ١ٔٔبد ِؼذٛ٠وزٌه إؽالق أٚ َب ٌٍذٙخ أثٕبء ِالِغز٠ِٛؾ اٌظفبئر اٌذ١رٕش high wear resistance. Coronary artery stents and heart valves lead to َض ردٍؾ اٌذ١ رسفّٟخ فِٙ ًِاٛ ٘زٖ ػ.ُ٠ؾ اإلٔض١ رثجٌٝ إٞرؤد platelet activation during contact with blood and also release metallic ions which might lead to enzyme inhibition. These are important factors in triggering thrombosis Lecture 7 By : ENG.M.A.Hamoda Carbon Products as Coating Materials اد ؽالءّْٛ وِٕٛزدبد اٌىشث Carbon coating of metallic stents and heart valves has been suggested ٖزٌٙ طّبِبد اٌمٍت وؼالجٚ خ١ْٔ ٌٍذػبِبد اٌّؼذٛلذ رُ الزشاذ ؽالء اٌىشثٚ as a remedy for these situations , and DLC-coated artificial heart valves DLC اٌذػبِبد اٌّغٍفخ ثـٚ خ١ وّب أْ طّبِبد اٌمٍت االططٕبػ،اٌسبالد and stents are already commercially available (Fig. 6.6). ne healing ٚ أ،َطً ٌٍؼظبِٛ ٔظشا ألْ اٌؼالج ً.)6.6 ًًب ثبٌفؼً (اٌشى٠ِزبزخ ردبس being osteoconductive, or better yet, osteoinductive is an important ذ١ضح اٌزثجّٙخ ألخِٙ خ١ خبطٛ٘ ّٟض اٌؼظ١ فئْ اٌزسف،األفؼً ِٓ رٌه property of the fixation devices and implants. Pyrolytic carbon and ْ ِسفضاْٟ اٌضخبخٛاٌىشثٚ ْٞ اٌسشاسٛ ٌمذ ثجذ أْ اٌىشث.ػبدٚاٌّضسٚ glassy carbon have been shown to be osteoinductive, even though they ِؼبًِ االززىبن.ًب١ى١ٔىب١ِ ٓ٠ش ِغزمش١ّب غٙٔ اٌشغُ ِٓ أٍٝ ػ،ٌٍُؼظ are mechanically unstable. ٓ١ثخ ٌزسغٍٛ خظبئض ِطٟ٘ اٌظالثخٚ ،خ١ٌِخ اٌزآوً اٌؼبِٚمبٚ ،إٌّخفغ Low coefficient of friction, high wear resistance, and hardness are العزجذايٟبع١ُ اٌم١ّ اٌزظٟ ف. اٌشوجخٚسن أٌٛع غشعبد اّٛػّش اٌخذِخ ٌّد properties needed to improve the service life of total hip or knee ٚ أٟٔٓ اٌشأط اٌّؼذ١دح ثٛخٌّٛ رٍه اٟ٘ ْ ٔمطخ االرظبيٛ رى،سنٌِٛفظً ا implants. In the standard design of a hip replacement, the contact point )ٟئ٠صْ اٌدضٌٛ آٌٟ ػب١ٍ١ث٠ إٌٟٛاٌجUHMWPE ( ةٛوٚ ٟى١ِشا١اٌغ is the one between a metal or a ceramic head and an UHMWPE (ultrahigh molecular weight polyethylene) cup Lecture 7 By : ENG.M.A.Hamoda Lecture 5 By : ENG.M.A.Hamoda