Lecture 7 - Energy Metabolism Part 1 PDF
Document Details
Uploaded by Deleted User
UCL
Prof Nathan Davies
Tags
Summary
This document is a lecture on energy metabolism, specifically focusing on the central pathways of ATP production and use. It discusses these processes in terms of macroscopic and microscopic electrical circuits, cellular respiration, and the function of ATP.
Full Transcript
MEDC0034 Energy Metabolism – part 1 Central pathways of ATP production and use. Prof Nathan Davies Macroscopic electrical circuit e- e- Interlocking Battery Motor gears Two Energy C...
MEDC0034 Energy Metabolism – part 1 Central pathways of ATP production and use. Prof Nathan Davies Macroscopic electrical circuit e- e- Interlocking Battery Motor gears Two Energy Coupling 10K chemical transduc device g species of er different reduction Mechanical potential work Weight being lifted 1 Microscopic electrical circuit e- +Pi ADP Food ATP Contains reduced compound s Muscle contraction e- Mechanical O2 Mitochondrion work Electrochemical Oxygen transducer High reduction potential GLUCOSE 2 ADP + 2 2 NAD+ Pi Fructose-1,6 biphosphate 2 ATP 2 2 NADH Pyruvate Anaerobic Anaerobic homolactic Aerobic alcoholic fermentation oxidation fermentation 2 NADH Cytosol 2 NADH 2 NAD+ TCA Cycle 2 NAD+ 2 LACTATE 2 CO2 + 2 EtOH Oxidative phosphorylation MITOCHONDRIA 6 CO2 + 6H2O + ~30 ATP 2 Respiration: An Overview Electrons carried in NADH Electrons Pyruvi carried in c NADH acid and FADH2 Electron Glucos Glycolysi Kreb Transport s Chain e s Cycle Cytoplasm Mitochondrion 3 Acetyl-CoA + 3 NAD+ + FAD + GDP + Pi + 2H20 CoASH + 3 NADH + FADH2 + GTP + 2CO2 + 3H+ 4 INTERMEMBRANE SPACE CRISTAE MATRIX Image from: BIOLOGY by Miller and Levine; Prentice Hall Publishing©2006 5 Watch the movie https:// www.youtube.com/watch?v=rdF3mnyS1p0 How many ATP’s per glucose? 6 Can we view the synthesis of ATP as a simple matter of stoichiometry ? (the fixed ratios of reactants to products in a chemical reaction). A stoichiometric production of ATP does occur at: one step in the citric acid cycle yielding 2 ATPs for each glucose molecule. This step is the conversion of alpha-ketoglutaric acid to succinic acid. at two steps in glycolysis yielding 2 ATPs for each glucose molecule. 7 GLUCOSE 2 ADP + 2 2 NAD+ Pi Fructose-1,6 biphosphate 2 ATP 2 NADH 2 Pyruvate Anaerobic Anaerobic homolactic Aerobic alcoholic fermentation oxidation fermentation 2 NADH Cytosol 2 NADH 2 NAD+ TCA Cycle 2 NAD+ 2 LACTATE 2 CO2 + 2 EtOH Oxidative phosphorylation MITOCHONDRIA 6 CO2 + 6H2O Most of the ATP is generated by the proton gradient that develops across the inner mitochondrial membrane. The number of protons pumped out as electrons drop from NADH through the respiratory chain to oxygen is theoretically large enough to generate, as they return through ATP synthase:- 3 ATPs per electron pair (but only 2 ATPs for each pair donated by FADH2). 8 With 12 pairs of electrons removed from each glucose molecule: 10 by (10x3=3 NAD+ 0); 2 by (2x2=4), this FADH could 2 generate 34 ATPs. + 4 ATPs that are generated in the outside the mitochondria = 38. Intermembrane space Complex III Complex I NADH:UQ reductase UQH :2 cyt c reductase Complex IV Complex II cytochrome c ox idase Succinate:UQ reductase H + H+ H + Cyt c Inner UQ mitochondrial membrane I III IV II Fumarate H2O + NADH + H NAD+ Succinate 12 O + 2H + _ 2 Cyt a IV Matrix N-1 N-3 I S-1 II Rieske III Cu A N-4 S-2 N-5 N-2 S-3 Cyt b Cyt c1 Cyt a3 Cyt b Cu B Metal centres in e- transport chain 9 The energy stored in the proton gradient is used for a number of other mitochondrial functions such as the active transport of a variety of essential molecules and ions through the mitochondrial membranes. NADH is also used as reducing agent for many cellular reactions. So the actual yield of ATP as mitochondria respire varies with conditions and seldom exceeds 30. R00023 R00090 R00091 R00092 R00093 R00094 R00095 R00097 R00099 R00100 R00101 R00102 R00103 R00104 R00112 R00118 R00137 R00143 R00144 R00145 R00189 R00203 R00209 R00214 R00215 R00228 R00243 R00245 R00257 R00281 R00286 R00300 R00342 R00365 R00368 R00382 R00384 R00396 R00398 R00402 R00421 R00445 R00446 R00501 R00519 R00538 R00555 R00562 R00581 R00604 R00605 R00623 R00624 R00631 R00632 R00675 R00688 R00700 R00703 R00704 R00705 R00707 R00709 R00710 R00713 R00715 R00717 R00732 R00754 R00758 R00787 R00794 R00812 R00813 R00818 R00820 R00823 R00842 R00868 R00875 R00880 R00892 R00904 R00906 R00922 R00935 R00936 R00937 R00977 R00994 R01000 R01033 R01034 R01036 R01061 R01088 R01093 R01094 R01130 R01142 R01158 R01163 R01171 R01172 R01183 R01202 R01210 R01211 R01218 R01221 R01246 R01248 R01258 R01277 R01293 R01296 R01297 R01308 R01333 R01337 R01347 R01361 R01370 R01388 R01403 R01414 R01419 R01426 R01429 R01434 R01446 R01451 R01465 R01486 R01487 R01505 R01513 R01520 R01524 R01542 R01574 R01604 R01608 R01629 R01633 R01636 R01644 R01651 R01681 R01683 R01689 R01698 R01704 R01707 R01728 R01735 R01738 R01745 R01749 R01752 R01757 R01758 R01763 R01768 R01773 R01778 R01781 R01793 R01825 R01836 R01837 R01869 R01872 R01893 R01895 R01896 R01903 R01921 R01932 R01933 R01934 R01937 R01971 R01975 R01981 R01998 R02000 R02032 R02039 R02047 R02081 R02103 R02123 R02124 R02163 R02196 R02201 R02207 R02216 R02223 R02229 R02235 R02246 R02252 R02257 R02258 R02313 R02343 R02344 R02347 R02352 R02354 R02377 R02383 R02391 R02395 R02401 R02434 R02441 R02450 R02454 R02455 R02462 R02471 R02476 R02492 R02499 R02514 R02515 R02527 R02531 R02536 R02544 R02545 R02549 R02550 R02553 R02555 R02559 R02561 R02565 R02580 R02589 R02607 R02611 R02618 R02637 R02640 R02651 R02655 R02678 R02679 R02683 R02695 R02698 R02703 R02762 R02766 R02792 R02819 R02823 R02830 R02834 R02840 R02847 R02855 R02878 R02896 R02928 R02935 R02940 R02941 R02944 R02945 R02946 R02957 R02967 R02968 R02969 R02988 R02993 R02994 R03012 R03021 R03022 R03023 R03043 R03048 R03080 R03082 R03088 R03102 R03104 R03119 R03169 R03171 R03176 R03177 R03191 R03198 R03226 R03251 R03261 R03278 R03279 R03283 R03290 R03291 R03299 R03300 R03306 R03310 R03317 R03324 R03327 R03336 R03337 R03349 R03369 R03373 R03381 R03385 R03391 R03396 R03397 R03406 R03431 R03439 R03447 R03475 R03476 R03497 R03506 R03507 R03543 R03544 R03559 R03577 R03582 R03584 R03591 R03614 R03630 R03637 R03643 R03707 R03709 R03732 R03733 R03745 R03759 R03761 R03763 R03787 R03790 R03792 R03815 R03826 R03847 R03863 R03869 R03882 R03886 R03889 R03913 R03942 R03945 R03947 R03960 R03963 R03964 R03998 R04046 R04049 R04065 R04066 R04074 R04088 R04115 R04123 R04130 R04139 R04142 R04151 R04163 R04176 R04185 R04198 R04200 R04203 R04210 R04228 R04236 R04263 R04278 R04304 R04307 R04309 R04330 R04339 R04375 R04412 R04418 R04426 R04429 R04444 R04483 R04501 R04506 R04517 R04556 R04598 R04600 R04678 R04681 R04687 R04724 04737 R04739 R04741 R04743 R04745 R04748 R04757 R04805 R04810 R04812 R04818 R04824 R04829 R04831 R04832 R04834 R04835 R04837 R04839 R04842 R04844 R04845 R04847 R04849 R04862 R04876 R04880 R04882 R04888 R04891 R04903 R04916 R04955 R04958 R04961 R04966 R04969 R04996 R05049 R05050 R05051 R05066 R05119 R05147 R05148 R05154 R05156 R05157 R05158 R05190 R05217 R05232 R05235 R05236 R05239 R05240 R05241 R05243 R05247 R05261 R05263 R05266 R05271 R05272 R05273 R05274 R05275 R05281 R05282 R05283 R05286 R05288 R05290 R05292 R05294 R05305 R05307 R05309 R05310 R05311 R05312 R05313 R05314 R05315 R05321 R05322 R05347 R05348 R05349 R05351 R05353 R05354 R05355 R05395 R05397 R05399 R05414 R05417 R05418 R05422 R05423 R05425 R05426 R05428 R05429 R05430 R05431 R05434 R05435 R05437 R05439 R05440 R05442 R05443 R05444 R05446 R05447 R05448 R05449 R05450 R05487 R05513 R05515 R05537 R05571 R05575 R05581 R05582 R05604 R05607 R05621 R05623 R05632 R05643 R05649 R05653 R05654 R05655 R05665 R05668 R05678 R05679 R05681 R05683 R05685 R05689 R05690 R05693 R05699 R05700 R05705 R05715 R05724 R05729 R05730 R05733 R05734 R05746 R05831 R05837 R05843 R05875 R06117 R06180 R06289 R06366 R06398 R06406 R06407 R06408 R06413 R06594 R06621 R06638 R06639 R06640 R06642 R06646 R06647 R06648 R06782 R06783 R06784 R06785 R06786 R06787 R06831 R06832 R06847 R06848 R06856 R06857 R06883 R06884 R06888 R06891 R06894 R06909 R06910 R06914 R06915 R06916 R06917 R06918 R06919 R06926 R06927 R06928 R06930 R06931 R06935 R06936 R06937 R06939 R06941 R06945 R06946 R06947 R06954 R06980 R06983 R07058 R07104 R07105 R07133 R07134 R07135 R07136 R07141 R07145 R07146 R07148 R07156 R07164 R07168 R07171 R07188 R07194 R07326 R07327 R07345 R07349 R07351 R07354 R07358 R07410 R07417 R07428 R07441 R07477 R07478 R07618 R07658 R07665 R07667 R07675 R07703 R07704 R07705 R07709 R07765 R07781 R07890 R07894 R07898 R07936 R07952 R07954 R07955 R07957 R07959 R07961 R07963 R07965 R07967 R07969 R07971 R07973 R07975 R07985 R08017 R08018 R08042 R08043 R08044 R08045 R08046 R08047 R08086 R08087 R08094 R08096 R08100 R08101 R08103 R08104 R08105 R08108 R08109 R08110 R08111 R08112 R08113 R08140 R08141 R08198 R08209 R08210 R08214 R08215 R08240 R08281 R08282 R08306 R08307 R08310 R08382 R08385 10 All of this works in coupled mitochondria Uncouplers 11 Intermembrane space low pH Inner mitochondrial membrane Matrix high pH 12 Alternative energy CH3CH2OH + NAD+ → CH3CHO + NADH + H+ Alcohol Dehydrogenase 13 14 Evidence for Chemiosmotic theory The chemiosmotic theory requires that:- (i)The respiratory chain translocates protons and generates a membrane potential and a pH gradient (ii) The ATP synthetase is a reversible proton translocating enzyme (i.e. it can use a proton gradient to drive ATP synthesis and/or it could use the energy of ATP hydrolysis to catalyse proton translocation. (iii) The mitochondrion has low proton permiability (iv)Specific carriers exist to transport charged metabolites into and out of the mitochondria despite the presence of a membrane potential 15 When might non-efficient metabolism be preferred? In 1924 Otto Warburg observed that cancer cells metabolise glucose in a manner distinct from normal tissue. Warburg discovered that cancer cells ‘ferment’ glucose to lactate even in the presence of sufficient oxygen The Warburg Effect Proliferative tissue Differentiated Tissue /Cancer 16 What are the needs of proliferating tissues? ATP production is only reliant on efficiency when resources are scarce. This is not generally the case for proliferating cells To produce daughter cells, all of the cellular components must be replicated (nucleotides, amino acids, lipids etc) Glucose is used to generate biomass as well as produce ATP. Glucose as a synthetic precurser Example of palmitate – a major constituent of membranes – Synthesis requires:- 7 x ATP; 16 carbons (from 8 x acetyl-CoA); 28 e- from 14 NADPH. – Glucose can potentially provide 36 ATPs (or 30 ATPs + 2 NADPHs). – Or 6 carbons for macromolecular synthesis – Thus to make a 16 carbon fatty acyl chain, 1 glucose can produce 5 times the ATP required, but 7 glucose are needed to make enough NADPH, plus 3 glucose to supply the carbons via acetyl-CoA. 17 Thus: for a cell to proliferate The majority of the available glucose cannot be committed to carbon catabolism for ATP production. Should the ATP/ADP ratio rise substantially – this would impair the flux of glycolytic intermediates, limiting production of acetyl- CoA and NADPH for macromolecular synthesis Proliferating cells The two molecules mainly catabolised are glucose and glutamine – which supply the majority of carbon, nitrogen and free energy necessary for cell division. Cells that convert glucose and glutamine most efficiently will proliferate fastest. The lactate produced can be recycled via the Cori cycle, which then limits the impact on the energy reserves of the whole organism. Tumours can be heterogenous – with some cells using lactate as a fuel for mitochondria. 18 Use of ATP The role of ATP is that of a free energy transmitter rather than a free energy reservoir ATP continually hydrolysed and regenerated [ATP] in a cell is only enough to last for ~1 minute (depending on cell type) At rest an average person consumes and regenerates ~3mol ATP.h-1 Mechano-chemical coupling using ATP Myosin is a force generating ATPase It is a high molecular mass protein (470kDa) comprising 2 heavy and 2 light chains Chains intertwine to form 2 globular heads and 2 long tails Interacts with actin (42kDa) to form actomyosin, which can be seen clearly in skeletal muscle Myofibrils of actomyosin appear as parallel striations as the myosin and actin overlap in bands (striated muscle) A relative movement between myosin and actin can be caused by the addition of ATP 19 Muscle fibre 20 H2O (ii) (i) ADP + ATP Pi Actin moveme nt Myosin https:// www.youtube.com/watch?v=p8iKzWqUU2s Proton translocation & the reactions of complexes I, III, & IV 21 Intermembrane space Complex III Complex I NADH:UQ reductase UQH :2 cyt c reductase Complex II Complex IV cytochrome c oxidase H +Succinate:UQ reductase H+ H + Cyt c Inner UQ mitochondrial membrane I III IV II Fumarate H2O + NADH + H NAD+ Succinate 1 + _2 O 2+ 2H Cyt a IV Matrix N-1 N-3 I II Rieske III Cu A N-4 S-1 S-2 Cyt c1 N-5 N-2 S-3 Cyt b Cyt a3 Cyt b Cu B Metal centres in e- transport chain 22