Summary

This document provides definitions and explanations related to ship geometry. It covers various dimensional parameters like Length Overall (LOA), Length Between Perpendiculars (LBP), and Length of Waterline (LWL), and other key geometrical concepts. The document includes multiple figures and tables.

Full Transcript

SHIP GEOMETRY GEOMETRIC DEFINITIONS SHIP GEOMETRY GEOMETRIC DEFINITIONS LOA LWL LBP f...

SHIP GEOMETRY GEOMETRIC DEFINITIONS SHIP GEOMETRY GEOMETRIC DEFINITIONS LOA LWL LBP f LWL D T BL AP FP B f LWL D T BL Deck Deck Loaded waterline B/2 Loaded waterline Figure 4.1. General geometric definitions STANDARD DEFINITIONS OF LENGTH STANDARD DEFINITIONS OF LENGTH Fore Perpendiculars (FP) : A line drawn perpendicular to the waterline at the point where the forward edge of the stem intersects the summer load line. Aft Perpendiculars (AP) : A line perpendicular to the waterline either (1) where aft edge of the rudder post meets the summer load line or (2) in cases where no rudder post is fitted, the centerline of the rudder pintles is taken. Midships  The point midway between the forward and after perpendiculars. Centreplane (CL) : It is a referance plan that divide the ship in longitudinal direction in the mid point of beam between port and starboard sides. Baseline (BL) : A fore-and-aft reference line at the upper surface of the flat plate keel at the centerline for flush shell-plated. Vertical dimensions are measured from a horizontal plane through the baseline, often called the molded baseline. Midship Section : The section of the ship at this point by a plane normal to both the summer waterplane and the centreline plane of the ship is called the midship section. It may not be the largest section of the ship. Unless otherwise defined the beam is usually quoted at amidships. Sheer Line the curvature of the deck in a longitudinal direction. It is measured between the deck height at midships and the particular point along the deck. Deck Camber : The rise or crown of a deck, athlwartship; also called round of beam. It can be 1/50 times of beam as a standard value. Parallel Body (LP) : The amidship portion of a ship with in which the contour of the under water hull form is unchanged. Siyer Kıç Baş LWL BL LWL BL Şekil 4.2. Trimsiz ve trimli durum CL tumblehome Deck camber f LWL Bilge radious T Plate keel deadrise BL Section lines Bulbous bow area (ABL) : Bulbous area at center plane. Bulbous bow section area (ABT) : Bulbous bow area at fore perpendicular. ABT ABL FP Figure 4.5Bulbousbow area definition figure Main Dimensions Length Overall (LOA) - Tam Boy : The distance between extreme points of the ship forward and aft. Length Between Perpendiculars (LBP) - Dikmeler Arası Boy : Distance between fore and aft perpendiculars. Length of Waterline (LWL) - Su Hattı Boyu : Distance between Geminin dizayn su hattında yüzerken başta ve kıçta su ile temas eden en uç noktaları arasındaki yatay uzaklıktır. Length Overall Submerged (LOS) - Batık Boy: Geminin dizayn su hattı altında kalan kısmında başta ve kıçta en uç noktalar arasındaki yatay uzaklık olup yumrubaşlı gemilerde önem kazanan bir boy değeridir. Parallel Body Length (LP) - Paralel Gövde Boyu : Gemi ortasında orta kesidin hiçbir değişikliğe uğramadan uzandığı bölge boyu. Draught (T) - Su Çekimi The draft is vertical distances from the base line to the waterline of reference measured at the forward and after perpendiculars respectively. The molded draft is measured from the molded base line. Moulded Breadth (BM) : is the distance from port to starboard measured from the inside edges Breadth of Waterline (BWL) : Breadth measured at the waterline. Depth (D) : The vertical distance between the base line and the upper continuous deck. The depth is measured at half LBP at the side of the ship. Freeboard (f) : the vertical distance from the summer load waterline to the top of the freeboard deck plating, möeasured at the ship’s side amidshipsthe upprmost complete deck exposed to the weather and sea is normally the freeboard deck. Flare. The outward curvature of the side shell at the forward end above th ewaterline Rake: a line in profile inclined from the vertical, indicating for instance the shape of stem. Flat of keel : the width of the horizontal portion of the bottom shell in the region of the upper deck Bilge Radius : the radius of the plating joining the side shell to the bottom of shell. Thumbledome: an inward curvature of the midship side shell in the region of the upper deck Rise of Floor : the height of the bottom shell plating above the baseline A typical lines plan Funnel Navigation Bridge Superstructure Hatch Deck Crane Port Superstructure Side Stern Deck Bow Starboard Side Poop Deck Main Deck Forecastle Deck THREE DIMENSIONAL HULL FORM Transverse Section Transverse Section Stations Body Plan Horizontal Section Waterline Waterlines Plan View Vettical Sections Buttocks Buttocks Profile View Lines Plan Offset Table İst Yarı Genişlikler Ana Güverte Küpeşte BL WL1/2 WL 1 1 WL 2 2 WL 3 3 WL 4 WL 5 5 WL 6 6 Yükseklik Yarı Yükseklik Yarı 0m 0.5 m m m m 3.8 m m m Genişlik Genişlik Ayna - - - - - 2140 6650 7550 5700 7350 9450 0 - - - - - 3260 6900 7710 5700 7540 9450 ½ - - - - 600 4250 7170 7820 5700 7700 9450 1 300 - - - 2280 5120 7400 7880 5700 7810 9450 2 300 - 1620 1620 4630 6440 7730 7900 5700 7900 9450 3 300 1580 3820 3830 6170 7280 7870 7900 5700 7900 9450 4 370 1740 3200 5500 7120 7730 7900 7900 5700 7900 9450 5 860 3140 4700 6620 7620 7870 7900 7900 5700 7900 9450 6 2120 4730 5920 7270 7820 7900 7900 7900 5700 7900 9450 7 3780 5900 6720 7580 7880 7900 7900 7900 5700 7900 9450 8 4900 6390 7100 7710 7895 7900 7900 7900 5700 7900 9450 9 5070 6400 7080 7720 7890 7900 7900 7900 5700 7900 9450 10 4700 6170 6880 7570 7840 7900 7900 7900 5700 7900 9450 11 4000 5680 6450 7240 7860 7830 7900 7900 5700 7900 9450 12 3130 4990 5820 6700 7250 7540 7800 7900 5700 7850 9450 13 2230 4230 5040 6000 6620 7000 7480 7750 5700 7670 9450 14 1400 3500 4220 5120 5770 6250 6950 7430 5724 7300 9474 15 750 2730 3380 4180 4800 5320 6180 6950 5753 6730 9503 7900 16 330 1990 2530 3220 3780 4280 5250 6225 5783 6000 9536 7890 17 130 1380 1830 2400 2850 3260 4150 5320 5812 5100 9575 7730 18 60 920 1320 1730 1960 2170 2930 4190 5841 3970 9623 7270 19 40 550 900 1290 1250 1140 1650 2790 5870 2650 9682 6410 19 ½ 40 380 700 1090 1050 610 970 2000 5885 1920 9715 5810 20 40 280 530 900 1000 - 320 1220 5900 1140 9748 5090 Cross Sectional Areas Bulk Carrier Tanker Tanker Containership Containership |Ferry Ferry RoRo RoRo Naval Ship Warship Supply Boat Supply Boat Tugboat Tugboat Fishing Vessel Fishing vessel Motorboat Motorboat Sailboat Sailboat Sailboat with keel Form Coefficients Midship Section Coefficient B AM T AM CM  B T MİDSHİPS SECTİON COEFFİCİENT (CM) AM CM  B WL T Waterplane Area Coefficient B AWP L AWP CWP  L B WATERPLANE AREA COEFICIENT (CWP) L WL A WL  B WL ( x )dx. 0 LWL B WL ( x)dx 0 AWL CWP   LWL BWL LWL BWL LWL xB WL ( x)dx 0 LCF  LWL B WL ( x)dx 0 Block Coefficient B  L  CB  L*B*T L B T BLOK KATSAYISI CB L WL L WL A(x )dx  xA(x )dx CB  0  LCB  0 L WL B WL T L WL B WL T L WL A(x )dx 0 Prismatic Coefficient B   L CP  L AM  B T C B CP   AWP L B T AM CM PRISMATIC COEFICIENT (CP)  CP  LWL AM   LWL BWLTC M CB  CM VERTİCAL PRİSMATİC COEFFİCİENT (CVP)   CB C VP    A WL T L WL B WL TC WP C WL Example 4.6. Find the form coefficients of a 100 m long barge with cross section as given below. 10m 1m 1.5m 1 Midship cross section A M 10 1  10 0.5 12.5 m 2 Area : 2 AM 12.5 Midship cross section CM   0.833 area coefficient : B WL T 10 1.5 Displacement Volume :  A M L WL 100 12.5 1250 m 3  1250 Block coefficient : CB   0.833 L WL B WL T 100 10 1.5 C B 0.833 Prizmatic coefficient C P :  1 C M 0.833 A WL 100 10 Waterplane area C WL   1 coefficient: L WL B WL 100 10 Örnek 4.3. Find the form coefficients of a a barge with cross section as given below. 5m 1 5 3 5 L  AML 2 2 Blok coefficient : CB    0.5 L WL B WL T L B WL T 5 3 5 L 2 1 5 3 5 AM Midship section coefficient : CM   2 2 0.5 B WL T 5 3 5 2 CB Prizmatic coefficient C P : 1 CM A WP LB C WL   1 Waterplane area coefficient: L WL B WL LB CB 0.5 Vertical prizmatic coefficient: C VP    0.5 C WL 1 Example 4.1. Find the form coefficients of a cylinderical barge with length of L and radius of R with cross section as given below R R 2 *L  AML  Block Coefficent C: B    2  L WL B WL T L B WL T 2R * R * L 4 R 2 AM  Midship Section coefficient : CM   2  B WL T 2RR 4 CB  / 4 Prizmatic coefficient CP  :  1 CM  / 4 A WL L 2R Waterplane area coefficient: C WL   1 L WL B WL L 2R CB /4  Vertical prizmatic coefficient C VP    C WL 1 4 Example 4.2 Calculate form coeffcients of the barge with length L with cross section as below. R R 4R 2R 2 (  4RR )L  AML  8 Block coefficient : CB    4  0.928 L WL B WL T L B WL T (4R  R  R )RL 12 2R 2  4RR AM  8 Midship section coefficient : CM   4  0.928 B WL T (4R  R  R )R 12 Prizmatic coefficient: CB CP  1 CM A WP 6RL Waterplane area coefficient C WL   1 L WL B WL 6RL CB 0.928 Vertical prizmatic coefficent C VP   0.928 C WL 1 Example 4.5. Calculate the form coefficients for a ship with the following characteristics. Waterline length LWL 200 m Waterline breadth BWL 22 m Draught T 7m Prizmatic coefficient CP 0.75 Loaded waterplane area AWL 3500 m2 Displacement tonnage  23000 t Sea water density  1.025 t/m3   23000 CB    0.729 L WL B WL T L WL B WL T 200 22 7 1.025 C B 0.729 CM   0.972 CP 0.75 A WP 3500 C WP   0.795 L WL B WL 200 22

Use Quizgecko on...
Browser
Browser