Summary

This is a review article on influenza, focusing on its seasonal and pandemic nature, and covering aspects of diagnosis, management, and prevention. The article discusses the epidemiology of influenza, and its potential complications and impact on public health.

Full Transcript

IJMS Vol 42, No 1, January 2017 Review Article A Narrative Review of Influenza: A Seasonal and Pandemic Disease Mohsen Moghadami, MD Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz Iran Correspondence: Mohsen Moghadami, MD; Non-Communicable Diseases Research...

IJMS Vol 42, No 1, January 2017 Review Article A Narrative Review of Influenza: A Seasonal and Pandemic Disease Mohsen Moghadami, MD Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz Iran Correspondence: Mohsen Moghadami, MD; Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz Iran Tel: +98 917 3115262 Fax: +98 71 32308045 Email: [email protected] Received: 06 February 2016 Revised: 23 April 2016 Accepted: 08 May 2016 Abstract Influenza is an acute respiratory disease caused by the influenza A or B virus. It often occurs in outbreaks and epidemics worldwide, mainly during the winter season. Significant numbers of influenza virus particles are present in the respiratory secretions of infected persons, so infection can be transmitted by sneezing and coughing via large particle droplets. The mean duration of influenza virus shedding in immunocompetent adult patients is around 5 days but may continue for up to 10 days or more—particularly in children, elderly adults, patients with chronic illnesses, and immunocompromised hosts. Influenza typically begins with the abrupt onset of high-grade fever, myalgia, headache, and malaise. These manifestations are accompanied by symptoms of respiratory tract illnesses such as nonproductive cough, sore throat, and nasal discharge. After a typical course, influenza can affect other organs such as the lungs, brain, and heart more than it can affect the respiratory tract and cause hospitalization. The best way to prevent influenza is to administer annual vaccinations. Among severely ill patients, an early commencement of antiviral treatment (65 years Residents of any age of nursing homes or other long‑term care institutions 4 spread.18 In a recent study, aerosol transmission accounted for around half of all the transmission events. This suggests that activities to reduce transmission by contact or large droplets may not be enough to control the transmission of the influenza A virus in households or communities.19 Thus, the prevention strategies that are drawn upon routinely in hospitals require further re-evaluation. Moreover, contact with contaminated surfaces containing respiratory droplets is another potential source of disease transmission. In adults without other underlying diseases, the shedding of virus starts from 24 to 48 hours before disease manifestation and the shedding stops after 6 or 7 days according to most studies and after 10 days according to some other investigations.20 It should be considered that longer periods of shedding and infectiousness can occur in children, elderly adults, immunocompromised hosts, and patients with chronic illnesses.21,22 Clinical Manifestations Uncomplicated Influenza Influenza typically begins with the abrupt onset of symptoms following an incubation period of 1 to 2 days. Primarily, these symptoms are systemic and consist of fever sensation, true chills, headache, severe myalgia, malaise, and anorexia. Mostly headache, myalgia, and fever determine the severity of the disease insofar as they are more prominent.23 Myalgia is prominent in the calf muscle (especially in children) and the paravertebral and back muscles, but all striated muscles may become involved such as the extraocular muscle, which causes painful eye movement. These symptoms are mostly accompanied by the manifestations of respiratory tract illnesses such as dry cough, nasal discharge, and sore throat. Often, so abrupt is the onset that the patient can remember the precise onset of the disease. However, the manifestations of influenza infections can range from afebrile respiratory illnesses similar to the common cold, to diseases in which systemic signs and symptoms predominate with relatively little respiratory tract infection symptoms.24,25 In the early days, the patient has high-grade fever and on the 2nd and 3rd days, the fever decreases and diminishes gradually. It may, nonetheless, last for 4 to 8 days. Early in the course of the disease, the patient’s face is plethoric with watery and red eyes. A convalescent period of some weeks may ensue, during which dry cough and malaise are the most salient complaints of the patient. Iran J Med Sci January 2017; Vol 42 No 1  Complications of Influenza Pneumonia The most important and common complication of influenza is pneumonia, not least in high-risk individuals. Pneumonia may happen as a continuum of the acute influenza syndrome when caused by the influenza virus (primary pneumonia) or as a mixed viral and bacterial infection after a gap of a few days (secondary pneumonia). Primary Influenza Viral Pneumonia The illness occurs after the typical course of flu with a rapid progression of fever, dyspnea, cough, cyanosis, and difficult breathing. It happens predominantly among individuals with cardiovascular or underlying pulmonary diseases such as asthma. Physical examination is in favor of bilateral lung involvement, and imaging findings in the lungs constitute reticular or reticulonodular opacities with or without superimposed consolidation. Sometimes the radiological appearance of primary influenza pneumonia can be difficult to distinguish from pulmonary edema because of the presence of perihilar congestion and hazy opacification, at least in the lower lobes. Less frequently, radiographs show focal areas of infiltration. Commonly used pneumonia severity assessment tools such as the CURB65 or the Pneumonia Severity Index are not useful in determining which patients to hospitalize due to primary influenza pneumonia since these tools have not been developed and validated during an influenza pandemic.26 Thus, careful history taking and examination, determination of pregnancy or hypotension, and early identification of young patients with decreased oxygen saturation, respiratory rate >25 per minute, and concomitant diarrhea are crucial for admission decision-making. The typical radiographic findings of primary influenza pneumonia are bilateral reticular or reticulonodular opacities, sometimes accompanied by superimposed consolidation. Less frequently, radiographs show focal areas of consolidation without reticular opacities. High-resolution computed tomography often shows multifocal peribronchovascular or subpleural consolidation with or without groundglass opacities.27 The most severe cases progress rapidly to acute respiratory distress syndrome and multilobar alveolar infiltrations. These patients usually present with progressive dyspnea and severe hypoxemia 2 to 5 days after the onset of typical influenza symptoms. Hypoxemia increases rapidly and causes Iran J Med Sci January 2017; Vol 42 No 1 Influenza, seasonal and pandemic disease respiratory failure, requiring intubation and mechanical ventilation, maybe after only 1 day of hospitalization.28 Secondary Bacterial Pneumonia The incidence of secondary bacterial pneumonia ranged from 2% to 18% during the influenza pandemic in 1957–58.29 A threefold increase in the incidence of secondary Staphylococcus aureus pneumonia during the influenza pandemic of 1968–9 compared to a non-epidemic period of pneumonia etiologies was observed.30 Recently, community–acquired methicillin-resistant Staphylococcus aureus was determined after seasonal influenza,31 but another very common etiologic bacterium is Streptococcus pneumonia. The patient has a classic influenza disease, followed by an improvement period lasting maximally 2 weeks. The recurrence of the symptoms such as fever, productive cough, and dyspnea and findings of new consolidations in chest imaging can be found in involved patients. Accordingly, a biphasic pattern of signs and symptoms in influenzalabeled patients should be considered as secondary superimposed bacterial pneumonia. Non-Pulmonary Complications In addition to its respiratory effects, the virus can exert effects on other body systems such as the musculoskeletal, cardiac, and neurologic systems. Myocarditis and pericarditis constitute unusual but significant complications of seasonal or pandemic flu. In a prospective study, half of adult flu patients without cardiac complaints had abnormal ECG findings at presentation.32 Myocarditis mostly resolves by 28 days, and the patients has a good heart-muscle function without a reduced ejection fraction. Significant myositis and rhabdomyolysis have rarely been reported with seasonal influenza,25 but different amounts of creatine phosphokinase elevation have been reported in many studies after seasonal or pandemic flues.33-35 Mild myositis and myoglobinuria with tender leg or back muscles can mainly be seen in children, although they can occur in adults and be accompanied by symptoms of painful walking or standing. Other rare complications such as the Guillain–Barré syndrome, encephalitis, acute liver failure, and the Reye syndrome may happen after influenza A infection. Diagnosis The majority of influenza cases are diagnosed by their clinical manifestations and there is no need for laboratory tests. Be that as it may, in special 5 Moghadami M circumstances, the diagnosis of flu necessitates laboratory confirmation using available tests such as nucleic acid tests (e.g., polymerase chain reaction [PCR]) or rapid diagnosis kits or rarely virus isolation by culture methods. Rapid Diagnosis Influenza Tests Rapid influenza diagnostic tests detect influenza viral antigens and screen patients with suspected influenza in a timely manner in comparison to other diagnostic modalities. The most widely used technique is based on the detection of viral antigens in the respiratory secretions of patients by immunologic methods. All rapid tests are performed with ease and can provide results within 30 minutes. Each test varies with regard to whether it can distinguish between influenza A and B. Nevertheless, these tests have thus far been unable to specify types of influenza A such as H1N1 and H3N2. The overall specificities achieved by these tests are high and comparable between the manufacturers. However, their sensitivities have shown great heterogeneity across studies depending on the nature of the samples tested and the patients, ranging from 4.4% to 80% in comparison to cell culture as a gold standard test.36-38 As a general concept, sensitivity in adults is less than that reported in younger patients. Also, the sensitivity may be higher at the onset of the disease, when a higher load of the virus exists. Economic studies comparing rapid testing to the clinical diagnosis of influenza remain inconclusive. Indeed, some studies have suggested that, in most cases, clinical judgment combined with antiviral treatment is the most cost-effective strategy,39 while new studies have suggested that testing may be the most costeffective strategy and shown that oseltamivir treatment based on the point-of-care (POC) test is a dominant option compared to conventional approaches without screening tests in the baseline scenario and that they could be costeffective in 80% of cases according to the costeffectiveness acceptability curve.39 Furthermore, influenza antiviral treatment based on POC could be cost-effective in specific conditions of performance, price, and disease prevalence.40 Molecular Tests Due to the limitation in other diagnostic modalities in influenza detection, molecular assays have increasingly been considered the gold standard diagnostic method for the detection of the influenza virus in hospitalbased diagnostic laboratories. Although several amplification methods have been developed, the majority of the current assays—particularly those 6 used in clinical laboratories—are based on the PCR amplification method. These tests have the ability to check several targets concurrently and thereby provide type and subtype information for each virus. Additionally, they have the ability to be adapted rapidly for the detection of novel targets; these features41 played a critical role during the influenza pandemic of 2009. PCR is potentially more sensitive than cell culture, and it can detect the nonviable virus in samples. The sensitivity of these tests is dependent on the sample site of the patient and is similar to that of the rapid tests. Higher sensitivity can be obtained by swab samples of a nasopharyngeal origin. PCR-based molecular assays have yielded excellent clinical utility for the detection and identification of influenza viruses at bedside as POC, and numerous Food and Drug Administration (FDA)-cleared commercial devices are now available.42-44 Role of the Laboratory Diagnosis of Flu in Clinical Case Management Given the self-limiting nature of the disease in otherwise healthy individuals, there is no need for diagnostic tests in all presenting cases. Diagnostic tests should be conducted if the results of the test are thought to be able to influence subsequent clinical management and if the results of the test are deemed influential in decisions on the initiation of specific antiviral treatment, impact on other diagnostic tests, antibiotic treatment decision-making, and infection control practices.45 In addition, during influenza seasons, hospitalized individuals of any age with fever and severe respiratory symptoms—including those with a diagnosis of community-acquired pneumonia—need laboratory testing irrespective of time from illness onset. Therapy Currently, at least 4 antiviral drugs are available for the treatment and prevention of influenza. It is deserving of note that in healthy immunocompetent individuals with intact immunity, there is a rapid limitation in the ability of the influenza virus; therefore, the antireplication power of antiviral drugs is limited and has no theoretical effect. Also, no study to date has demonstrated a beneficial effect for antiviral agents starting beyond 48 hours of symptom onset. The greatest effect is classically seen when therapy is started in the first 24 hours. Treatment is recommended for both adults and children with the influenza virus infection with the following criteria:46 Iran J Med Sci January 2017; Vol 42 No 1  1) Persons with laboratory-confirmed or highly suspected influenza virus infection in highrisk groups (table 1), within 48 hours after symptom onset 2) Patients requiring hospitalization for laboratory-confirmed or highly suspected influenza disease, regardless of underlying illnesses, if treatment can be initiated within 48 hours after symptom onset 3) Outpatients at high risk of complications (table 1) with an illness that is not improving and outpatients with a positive influenza test result from a specimen obtained >48 hours after symptom onset. Individuals whose onset of symptoms is >48 hours before presentation with persisting moderate-to-severe illness. During the last pandemic wave, neuraminidase inhibitors (NAIs)—primarily oseltamivir and zanamivir—were widely prescribed for patients with confirmed or suspected A H1N1pdm09 infection.47,48 However, before the 2009–10 pandemic, evidence of their effectiveness in seasonal influenza, while strong for modest symptom reduction, was less strong for decreases in pneumonia incidence or pneumonia outcome improvment.49-52 Recent data demonstrated that patients with influenzarelated pneumonia treated early (≤48 h after illness onset) with an NAI experienced around one-third lower likelihood of dying or requiring ventilator assistance compared to those treated at later hours.53 Influenza viruses and their susceptibilities to available antiviral medications are changing rapidly. Clinicians should be aware of the local patterns of influenza circulations and susceptibilities. For instance, a metaanalysis showed that NAIs were able to lessen mortality in patients admitted to the hospital with A H1N1pdm09 infection.30 Sporadic oseltamivirresistant infections have been identified, together with rare episodes of limited transmission.54 Given the currently circulating influenza A (H3N2) and 2009 H1N1 virus resistance to adamantanes, these medications are not recommended for use against influenza A virus-induced infections. However, most influenza A and B virus strains are still susceptible to neuraminidases such as oseltamivir and zanamivir, with these drugs being selected for treatment in indicated persons (table 2). In addition, it should be considered that the development of resistance to oseltamivir during treatment was more common among seasonal influenza A (H1N1) virus infections (27%) than among seasonal influenza A (H3N2) (3%) or B (0%) virus infections in a recent study.55 Due to the limitations in the current therapeutic options for the treatment of influenza Iran J Med Sci January 2017; Vol 42 No 1 Influenza, seasonal and pandemic disease Table 2: Recommended dosages and durations of influenza antiviral medications for treatment or chemoprophylaxis Antiviral agent Use Adults Oseltamivir Treatment (5 d) 75 mg twice daily Chemoprophylaxis (7 d) 75 mg once daily Treatment (5 d) 10 mg (two 5‑mg inhalations) twice daily Chemoprophylaxis (7 d) 10 mg (two 5‑mg inhalations) once daily Zanamivir virus infections, additional treatment options with a different mechanism of action have been investigated as treatment for individuals with severe influenza virus disease. For example, a handful of mAbs against influenza virus proteins are currently in the early phases of evaluation for human infection control.56 These mAbs target the external portions (i.e. ectodomain) of the M2 protein (M2e). The M2e is an attractive target for influenza vaccines and therapeutic antibodies because of the extremely conserved nature of the amino acid sequences of its domains among isolates from different subtypes of influenza A viruses.57 The mechanisms of anti-M2e Ab–mediated protection are not completely determined. Anti-M2 Abs do not have hemagglutination inhibition ability or in vitro virus neutralization properties.58 It is supposed that the main target for the anti-M2e antibody is virus-infected human cells, which heavily express M2e on their surface.59 Most studies have reported that corticosteroid therapy adversely influences influenza-related outcomes. During the 2009 influenza pandemic, 37% to 55% of the patients admitted to ICUs in Europe received corticosteroids as part of their treatment.60-62 Nonetheless, in a recent metaanalysis report, evidence from observational studies—albeit with important limitations— suggested that corticosteroid therapy for presumed influenza-associated complications was associated with increased mortality.63 Prevention Vaccination The most important strategy for the prevention of influenza and its severe outcomes is annual vaccination against seasonal influenza. The influenza virus is characterized for its high rate of mutation, beating the immune system’s function against new variants,64 which is why 7 Moghadami M new vaccines are produced annually to match circulating viruses.65 The selection of influenza antigens to include in the vaccines is based upon the global surveillance of influenza viruses in circulation and the spread of new strains of the influenza virus around the world.66 For the following influenza season in the southern hemisphere, recommendations are made in September and for the influenza season in the northern hemisphere in February because around 6 to 8 months are needed to manufacture and approve new vaccines. Recently, the World Health Organization (WHO) recommended that trivalent influenza vaccines for use in the 2016 southern hemisphere influenza season contain the following virus antigens:67 An A/California/7/2009 (H1N1) pdm09-like virus An A/Hong Kong/4801/2014 (H3N2)-like virus A B/Brisbane/60/2008-like virus. The WHO stresses that vaccination is especially important for individuals at higher risk of serious influenza complications, with the highest priority afforded to pregnant ladies— followed by children aged between 6 and 59 months, elderly and individuals with specific chronic medical conditions (e.g., renal failure and diabetes mellitus), and finally individuals at high risk (e.g., health staff).68 In contrast in 2010, the United States’ Advisory Committee on Immunization Practices (ACIP) extended the recommendation for annual influenza vaccination to encompass all individuals 6 months of age and older individuals who did not have contraindications without any priority.69 Schedule The outbreaks of influenza generally occur during the last autumn and whole winter months. A single dose (0.5 cc) of an influenza vaccine should be injected to adults annually, preferably by October in the northern hemisphere and May in the southern hemisphere. Children aged between 6 months and 8 years require 2 doses of influenza vaccine (with at least 4 weeks apart) during their 1st season of vaccination for optimal response.69 Efficacy The vaccine effectiveness of influenza vaccines is a determinant of how much the seasonal influenza vaccine can prevent influenza virus infections in the given population during an influenza season.70 Recently, the documentation of the antigenic drift from the vaccine strain in a majority of considered isolates raised concern that vaccine effectiveness might be suboptimal, 8 especially in older ages or specific high-risk groups. The Centers for Disease Control and Prevention (CDC) in the United States of America had an estimation of 23% of vaccine effectiveness for the northern hemisphere 2014–15 seasonal influenza vaccine due to a mismatch in the circulating viruses and vaccine contained viruses.71 What should be taken into consideration is that even if a vaccine is not completely related to the predominant circulating virus, it can protect several different influenza viruses and can, as such, confer good protection and prevent influenza-related illnesses. It is also a fact that influenza vaccines are safe and are especially important for reducing severe disease in some high-risk populations. Accordingly, the WHO recommends seasonal influenza vaccines even if they are not closely related to the predominant circulating influenza viruses each year for the above-mentioned groups.72 Chemoprophylaxis Strategy Available antiviral drugs play an important role for patients who have not been immunized or who are nonresponsive to vaccines. Oseltamivir and zanamivir are the recommended drugs for the prevention of influenza based on their established efficacy and low rates of resistance in comparison to adamantanes.73 These agents are effective for the prevention of influenza in healthy individuals, persons at high risk of influenza complications, and those residing in long-term care facilities. The efficacy of oseltamivir and zanamivir has yet to be compared with each other.74 It should be emphasized that when choosing a strategy of antiviral chemoprophylaxis, some parameters such as preventing complications in patients at high risk and reducing the risk of promoting antiviral drug resistance should be considered. There are, therefore, some indications for this approach, as follows:18 1) Influenza prophylaxis during influenza outbreaks in long-term care centers in the elderly regardless of prior influenza vaccinations 2) In unvaccinated individuals at high risk of influenza complications who have been exposed to an individual with influenza infections within the previous 48 hours 3) Antiviral prophylaxis for vaccinated persons at high risk of influenza complications who have had close contact with an individual with influenza within the previous 48 hours when there is a poor match between the vaccine and circulating viruses in a given year 4) The United States’ ACIP recommends that antiviral chemoprophylaxis be considered Iran J Med Sci January 2017; Vol 42 No 1  Influenza, seasonal and pandemic disease in pregnant women and in women up to 2 weeks postpartum who have close contact with suspected or confirmed influenza A-infected individuals. Zanamivir may be the drug of choice for prophylaxis due to its limited systemic absorption.75 2. Conclusion Influenza epidemics and pandemics impose a heavy socioeconomic burden on all societies. Hospital admission and treatment and ICU care are more often necessary in high-risk individuals such as the elderly and pregnant ladies. However, the impact of influenza cannot be neglected even in young adults, mainly because of the loss of productivity. Given the nature of the virus and the increasing patterns of the available antiviral drugs against the influenza virus, the best strategy is the vaccination of high-risk groups (table 1) at appropriate times. Inactivated influenza vaccines are always well-tolerated, with the most common side effect being burning pain at the injection site. In clinical trials, serious adverse events have been reported in

Use Quizgecko on...
Browser
Browser