Integration of Power Series PDF

Summary

These notes cover integration of power series, along with Taylor and Maclaurin series. Formulas for calculating and applying these mathematical concepts are included.

Full Transcript

### DATE ### Integration of Power Series Let $f(x) = \sum_{n=0}^{\infty} C_n(x-a)^n$ have radius of convergence $R>0$. Then an antiderivative for $f$ is given by: $\int f(x) dx = [\sum_{n=0}^{\infty} \frac{C_n(x-a)^{n+1}}{n+1}] + C$ $x \in (a-R, a+R)$ ### Taylor and Maclaurin Series Let $f(x) =...

### DATE ### Integration of Power Series Let $f(x) = \sum_{n=0}^{\infty} C_n(x-a)^n$ have radius of convergence $R>0$. Then an antiderivative for $f$ is given by: $\int f(x) dx = [\sum_{n=0}^{\infty} \frac{C_n(x-a)^{n+1}}{n+1}] + C$ $x \in (a-R, a+R)$ ### Taylor and Maclaurin Series Let $f(x) = \sum_{n=0}^{\infty} a_nx^n$ w/ radius of conv $R>0$. $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + ...$ $f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + ...$ $f''(x) = 2a_2 + 6a_3x + 12a_4x^2 + ...$ $f'''(x) = 6a_3 + 24a_4 x+ ...$ $\rightarrow$ $f(0) = a_0$ $ f'(0) = a_1$ $f''(0) = a_2$/ 2 $a_2$ = $f''(0)/2$ $f'''(0) = a_3$/ $6a_3$ : $a_3 = f'''(0)/6$ $a_n = \frac{f^n(0)}{n!}$ **Def'n:** The Maclaurin Series for $f(x)$ is a power series $\sum_{n=0}^{\infty} \frac{f^n(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + \frac{f''''(0)}{24}x^4 + ...$ *Sterling*

Use Quizgecko on...
Browser
Browser