Math 1 - Calculus - Sheet (1) PDF Fall 2024
Document Details
Uploaded by Deleted User
Alexandria University
2024
Faculty of Engineering
Tags
Related
- Vector Calculus PDF
- Differential Calculus Assignment PDF
- Govt. College Of Engineering & Textile Technology, Serampore Mathematics III-A Past Paper PDF
- Calculus For Engineers (FIC 103) Assignment Sheet 2 PDF
- Engineering Calculus Tutorial Sheet 1 - EMAT101L 2024-25 - PDF
- Mathematics I Pharmaceutical Engineering MATH-102 Lecture Notes PDF
Summary
This document is a calculus exam sheet for the Fall 2024 semester at Alexandria University. It covers multiple topics, including power functions, polynomials, rational functions, absolute functions, composite functions, and trigonometric functions.
Full Transcript
Faculty of Engineering Department of Engineering Mathematics and physics...
Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 Math 1 - Calculus - Sheet (1) Functions โ part A This sheet covers the following topics: - Power function - Polynomials - Rational functions - Absolute function - Even & odd functions - Composite functions - Transformation of functions - Trigonometric functions Essay problems Find the domain of the following functions: Ans. 1) ๐ฆ = โ2๐ฅ + 10 [โ5, โ[ ๐ฅ+1 2) ๐ฆ = ] โ โ, 3[ โ3โ๐ฅ โ๐๐โ๐ 3) ๐ฆ = [3, โ[โ{4} ๐๐ โ๐๐ 3 4) ๐ = โ๐ โ 1 ๐ โ1โ๐ก 5) ๐ง = ] โ โ, 1] โ {โ2} ๐ก 2 โ2๐กโ8 6) ๐ฆ = โ๐ฅ 2 + 2๐ฅ โ 3 ] โ โ, โ3] โช [1, โ[ โ๐ฅ 2 โ๐ฅโ6 7) ๐ฆ = ] โ โ, โ2] โช [3,5[ โช ]5, โ[ ๐ฅโ5 ๐ฅ+2 8) ๐ฆ = โ [โ2,3[ 3โ๐ฅ ๐ฅ+2 9) ๐ฆ = โ ] โ โ, โ4[ โช [โ2, โ[ ๐ฅ+4 โ๐ฅ+2 10) ๐ฆ = [โ2, โ[ โ๐ฅ+4 Solve the following inequalities: Ans. 11) |๐ฅ + 5| โฅ 1 ] โ โ, โ6] โช [โ4, โ[ 12) |3 โ ๐ฅ| < 2 ]1,5[ 13) |๐ฅ 2 + 2๐ฅ โ 1| < 2 ] โ 3,1[ โ{โ1} 1 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 14) |๐ฅ 2 โ 4๐ฅ โ 4| โฅ 8 ] โ โ, โ2] โช [6, โ[ โช {2} Find the domain of the following functions: 15) ๐ฆ = โ3 โ |๐ฅ โ 2| [โ1,5] 1 16) ๐ฆ = ๐ โ5+|๐ฅโ1| ๐+1 17) ๐ = ๐ โ {3, โ3} โ๐2 โ3 โโ๐ก 2 โ2 18) ๐ = ] โ โ, โ2[ โช [2,3[ โช ]3, โ[ ๐ก 2 โ๐กโ6 19) Let ๐(๐ฅ) be some given function and define 1 ๐(๐ฅ) = [๐(๐ฅ) + ๐(โ๐ฅ)] 2 1 โ(๐ฅ) = [๐(๐ฅ) โ ๐(โ๐ฅ)] 2 Show that ๐(๐ฅ) is an even function and โ(๐ฅ) is an odd function. Hence, deduce that any function ๐(๐ฅ) can be written as a sum of an even function and an odd function. 20) Show that if ๐(๐ฅ) and ๐(๐ฅ) are two even functions and โ(๐ฅ) is an odd function, then (๐ ๐ ๐ ๐ โ)(๐ฅ) is an even function. In each of the following problems, starting from ๐(๐ฅ), give a sequence of transformations to produce ๐(๐ฅ), and hence sketch ๐(๐ฅ): 21) ๐(๐ฅ) = โ๐ฅ , ๐ ( ๐ฅ ) = 2 โ๐ฅ + 1. 22) ๐(๐ฅ) = โ๐ฅ, ๐(๐ฅ) = โ2 โ 4๐ฅ 23) ๐(๐ฅ) = |๐ฅ|, ๐(๐ฅ) = 1 โ |2๐ฅ + 1|. 1 2 24) ๐(๐ฅ) = ๐ฅ, ๐(๐ฅ) = | ๐ฅโ4 | 25) ๐(๐ฅ) = ๐ฅ 3 , ๐(๐ฅ) = |(1 โ ๐ฅ)3 | 26) ๐(๐ฅ) = ๐ฅ 2 , ๐(๐ฅ) = (4 โ 2๐ฅ)2. 27) ๐(๐ฅ) = ๐ฅ 2 ๐(๐ฅ) = ๐ฅ 2 + 2๐ฅ โ 3. (Hint: ๐ฅ 2 + 2๐ฅ โ 3 = (๐ฅ + 1)2 โ 4) 28) ๐(๐ฅ) = sin ๐ฅ ๐(๐ฅ) = |3 sin 2๐ฅ | 2 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 ๐ 29) ๐(๐ฅ) = cos ๐ฅ, ๐(๐ฅ) = cos(2๐ฅ + 2 ) Sketch the graph of each of the following function over a complete period: 30) ๐(๐ฅ) = 3 sin ๐๐ฅ 31) ๐(๐ฅ) = 2 sin2 2๐ฅ ๐ 32) ๐(๐ฅ) = 3 cos (2๐ฅ โ 2 ) Find amplitude, period and frequency of the following functions: 33) ๐ฆ = โ2 cos(๐ โ 3๐ฅ). 34) ๐ฆ = sin 2๐ฅ โ 2 cos 2๐ฅ. 35) ๐ = 6 cos2 2๐๐ฅ. Find the fundamental period of the following functions: ๐๐ฅ 36) ๐ฆ = 2 sin ๐๐ฅ + 3 cos 3 37) ๐ฆ = sin ๐ฅ cos ๐ฅ + cos 4๐ฅ. 38) ๐ฆ = tan 2๐๐ฅ โ sin 2๐๐ฅ 3 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 Answers 21) โ๐ฅ โ โ๐ฅ + 1 โ 2โ๐ฅ + 1 Horizontal shift -1 Vertical expansion 2 22) โ๐ฅ โ โโ๐ฅ โ โโ(๐ฅ โ 1/2) โ 2โโ(๐ฅ โ 1/2) = โ2 โ 4๐ฅ Reflection about y-axis Horizontal shift 2 Horizontal compression 4 23) 1 1 |๐ฅ| โ |๐ฅ + | โ 2 |๐ฅ + | = |2๐ฅ + 1 | 2 2 โ โ|2๐ฅ + 1| โ 1 โ |2๐ฅ + 1| Horizontal shift โ1 Horizontal compression 2 Reflection about x-axis Vertical shift +1 24) 1 1 1 1 โ| |โ| | โ 2| | ๐ฅ ๐ฅ ๐ฅโ4 ๐ฅโ4 2 =| | ๐ฅโ4 Absolute ๐ฆ Horizontal shift +4 Vertical expansion 2 4 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 25) ๐ฅ 3 โ (๐ฅ โ 1)3 โ |(๐ฅ โ 1)3 | = |(1 โ ๐ฅ)3 | Horizontal shift +1 Absolute ๐ฆ 26) ๐ฅ 2 โ (๐ฅ โ 4)2 โ (2๐ฅ โ 4)2 = (4 โ 2๐ฅ)2 Horizontal shift +4 Horizontal compression +2 Or ๐ฅ 2 โ (๐ฅ โ 2)2 โ 4(๐ฅ โ 2)2 Horizontal shift +2 Vertical expansion +4 27) ๐ฅ 2 โ (๐ฅ + 1)2 โ (๐ฅ + 1)2 โ 4 Horizontal shift -1 Vertical shift -4 5 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 28) sin ๐ฅ โ sin 2๐ฅ โ 3 sin 2๐ฅ โ |3 sin 2๐ฅ| Horizontal compression 2 Vertical expansion 3 Absolute ๐ฆ 29) ๐ cos ๐ฅ โ cos 2๐ฅ โ cos 2(๐ฅ + ) 4 ๐ = cos (2๐ฅ + ) 2 Horizontal compression 2 โ๐ Horizontal shift 4 (30) (31) (32) (33) 2ฯ 3 |A| = 2, T = ,๐ = 3 2๐ (34) 1 |A| = โ5, T = ฯ, ๐ = ๐ (35) 1 |A| = 3, T = , ๐ = 2 2 (36) 6 (37) ๐ (38) 1 6 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 MCQ problems 1 *) For the function f(x) = ๐ฅโ1 : โ ๐ฅโ2 (1) The domain can be determined by the following condition: ๐ฅโ1 (a) (๐ฅ โ 1) โฅ 0 & (๐ฅ โ 2) > 0 (b) (๐ฅ โ 1) > 0 & (๐ฅ โ 2) > 0 (c) ๐ฅ โ 2 > 0 ๐ฅโ2 ๐ฅโ2 (d) ๐ฅ โ 1 โฅ 0 (e) ๐ฅ โ 1 > 0 (f) (๐ฅ โ 2) โ 0 (2) The domain is: (a) [1,2[ (b) ]1,โ [ (c) ]1,2[ (d) ๐ - ]1,2] (e) ]2,โ [ (f) ๐ - [1,2] -------------------------------------------------------------------------------------------------------------------------------------- (๐ฅ+1)(๐ฅโ3) (3) The domain of is: ๐ฅโ(๐ฅ+1)(2โ๐ฅ) (a) ] - โ , -1 [ โช ]2 , โ [ (b) ] -1, 2[ - {0} (c) ]-1 , 2[ (d) ([-1 , 2[ โช {3}) - {0} -------------------------------------------------------------------------------------------------------------------------------------- (4) For the function f(x) = โโ3 โ โ๐ฅ 2 the domain is: (a) โ (b) ] -โ , -3] (c) ๐ - {-3} (d) ๐ -------------------------------------------------------------------------------------------------------------------------------------- (5) The domain of ๐(๐ฅ) = โ3 + โ(๐ฅ)2 is: (a) ๐ (b) โ (c) ] โ โ , โ3] (d) ๐ โ {โ3} -------------------------------------------------------------------------------------------------------------------------------------- ๐ฅโ1 (6) The domain of โ(๐ฅ+4)(๐ฅ+1) is: (a) (๐ - [-1,1[) - {-4} (b) ๐ - {-1, -4} (c) [1, โ [ (d) ๐ - [-1, 1[ (e) ]1, โ [ (f) ]-4, -1[ โช [1, โ [ -------------------------------------------------------------------------------------------------------------------------------------- โ๐ฅ 2 +4๐ฅ+3 (7) The domain of f(x) = is: โ๐ฅ+2 (a) [-1, โ [ (b) ]-2, -1[ c) [-2, โ [ (d) [-3, -2[ โช [-1, โ [ -------------------------------------------------------------------------------------------------------------------------------------- 7 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 1 (8) The domain of the function f(x) = is: โ๐ฅ 2 (๐ฅโ1) (a) ]1, โ [ (b) ๐ โ {0,1} (c) ๐ (d) ]-โ ,0[ โช ]1, โ [ (e) none of the above *) For ๐(๐ฅ) = โ4 โ |4 โ ๐ฅ| (9) The domain ๐ท of ๐(๐ฅ) can be obtained by solving: (a) 4 โ |4 โ ๐ฅ| > 0 (b) โ4 โ โ|4 โ ๐ฅ| โฅ 0 (c) 4 โ |4 โ ๐ฅ| > 1 (d) 4 โ |4 โ ๐ฅ| โฅ 1 (e) 4 โ |4 โ ๐ฅ| โฅ 0 (f) |4 โ ๐ฅ| โฅ 0 (10) Hence, the domain D of ๐(๐ฅ) is: (a) ๐ โ {4} (b) [1, 7] (c) [0, 8] (d) ]1, 7[ (e) [4, โ [ (f) ๐ + 1 (11) the domain of ๐(๐ฅ) is: (a) D - [1, 7] (b) ]1,7[ (c) D - ]1,7[ (d) ๐ - {3,5} (e) D - {1,7} (f) ]0, 8[ -------------------------------------------------------------------------------------------------------------------------- 1 (12) For the function f(x) = the domain is: โโ๐ฅ+ |๐ฅโ1| (a) ๐ + โช {0} (b) [1, โ [ (c) ๐ (d) ๐ โ {0} -------------------------------------------------------------------------------------------------------------------------- (13) The domain of ๐(๐ฅ) = โ3 + โ(๐ฅ + 1)2 is: (a) ๐ (b) [2 , โ[ (c) ] โ 3 , โ1[ โช [2 , โ[ (d) ๐ โ ]2 , โ[ -------------------------------------------------------------------------------------------------------------------------- (14) The domain of ๐(๐ฅ) = โ3 โ โ(๐ฅ + 1)2 is: (a) ๐ (b) [โ4 ,2] (c) ]2 , โ[ (d) ๐ โ ] โ 4 , 2[ -------------------------------------------------------------------------------------------------------------------------- (15) The domain of ๐(๐ฅ) = โ4 โ โ๐ฅ โ 2 is: (a) ๐ (b) [2,18] (c) ] โ โ , 2] โช [18, โ[ (d) ๐ โ {2} -------------------------------------------------------------------------------------------------------------------------- (16) The domain of ๐(๐ฅ) = โ4 + โ๐ฅ โ 2 is: (a) ๐ (b) [2,18] (c) ] โ โ , 2] โช [18, โ[ (d) [2 , โ[ -------------------------------------------------------------------------------------------------------------------------- 8 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 1 (17) The domain of ๐(๐ฅ) = โ1 + ๐ฅ is: (a) ๐ โ {0} (b) ๐ โ ] โ 1,0] (c) [โ1,0] (d) [โ1, โ[ (e) ] โ 1, โ[ -------------------------------------------------------------------------------------------------------------------------- (18) Which of the following relations does not represent a function? (a) ๐ฆ = ๐ฅ 2 (b) ๐ฅ = sin ๐ฆ (c) ๐ฆ = cos ๐ฅ (d) ๐ฆ = ๐ฅ 3 (19) If ๐(๐ฅ) is an odd function, and ๐(๐ฅ) is an even function, then ๐(๐(๐ฅ)) is: (a) canโt be determined (b) even (c) odd (d) neither even nor odd -------------------------------------------------------------------------------------------------------------------------- (20) If ๐(๐ฅ) = 3๐ฅ โ 6 and ๐(๐ฅ) = ๐ฅ 3 + 2 then the function f(g(x)) is: (a) canโt be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- 3 3 *) If ๐(๐ฅ) = โ๐ฅ 2 + 1 , ๐(๐ฅ) = โ๐ฅ 3 + ๐ฅ and โ(๐ฅ) = โ๐ฅ 3 + 2๐ฅ then: (21) (๐ ๐ ๐ ) (x) is: (a) canโt be determined (b) even (c) odd (d) general (22) (๐ ๐ โ ) (x) is: (a) canโt be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- (23) If ๐(๐ฅ) is general function, then ๐(๐ฅ) = ๐(๐ฅ)๐(โ๐ฅ) is: (a) canโt be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- (24) For a function ๐ where ๐(๐ฅ) โ ๐, then the function ๐(๐ฅ) = ๐(๐ + ๐ฅ) โ ๐(๐ โ ๐ฅ) is: (a) canโt be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- (25) The function ๐(๐ฅ) = (1 + ๐ฅ 2 )5 is: (a) odd (b) one-to-one (c) even (d) none of the above -------------------------------------------------------------------------------------------------------------------------- ๐ฅโ3 (26) If ๐(๐ฅ) = , ๐(๐ฅ) = ๐ฅ 2 โ 4 then (๐ ๐ ๐)(๐ฅ) is: 2๐ฅ 9 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 ๐ฅโ3 2 ๐ฅ 2 โ7 (๐ฅโ3)(๐ฅ2 โ4) (๐ฅโ3) (a) ( 2๐ฅ ) โ 4 (b) 2(๐ฅ 2โ4) (c) (d) 2๐ฅ(๐ฅ 2โ4) 2๐ฅ (27) If ๐(๐ฅ) is an even function, and ๐(๐(๐ฅ)) is an even function, then ๐(๐ฅ) may be (a) odd (b) even (c) general (d) even or odd (e) even or general (f) even or odd or general ---------------------------------------------------------------------------------------------------------------- (28) Given the graph of ๐(๐ฅ) then the graph of ๐(๐ฅ) = ๐(๐๐ฅ), ๐ > 1 can be obtained from ๐(๐ฅ) by (a) Vertical shift (b) Horizontal expansion (c) Vertical expansion (d) Horizontal shift (e) Horizontal compression (f) Vertical compression -------------------------------------------------------------------------------------------------------------------------- (29) Given the graph of the function ๐(๐ฅ) = 3 โ โ4 + ๐ฅ , then the graph of ๐(๐ฅ) = 3 โ โ4 โ ๐ฅ can be obtained by (a) Reflection about x-axis (b) Reflection about y-axis (c) Vertical shift +3 (d) Horizontal shift -4 -------------------------------------------------------------------------------------------------------------------------- (30) Given the graph of the function ๐(๐ฅ) = ๐ฅ 2 โ 6๐ฅ , then the graph of ๐(๐ฅ) = (๐ฅ โ 3)2 + 1 can be obtained by (a) Vertical shift +1 (b) Horizontal shift +3 (c) Reflection about x-axis (d) Vertical shift +10 -------------------------------------------------------------------------------------------------------------------------- *) Given the graph of the function ๐(๐ฅ) = (1 + 2๐ฅ)2 (31) Then making a reflection about the y-axis results in the function ๐(๐ฅ) = โฏ (a) โ(1 + 2๐ฅ)2 (b) (1 โ 2๐ฅ)2 (c) |1 + 2๐ฅ|2 (d) (1 + 2|๐ฅ|)2 (32) The graph of the function โ(๐ฅ) = (3 + 2๐ฅ)2 can be obtained from ๐(๐ฅ) by (a) Vertical shift -2 (b) Horizontal shift +2 (c) Horizontal shift -1 (d) Vertical shift +2 -------------------------------------------------------------------------------------------------------------------------- (33) Given the graph of the function ๐(๐ฅ) = ๐ฅ 2 , then the graph of ๐(๐ฅ) = 1 + (๐ฅ โ 2)2 can be obtained by (a) Horizontal shift +2, Vertical shift +1 (b) Horizontal shift -2, Vertical shift +1 (c) Horizontal shift -2, Vertical shift -1 (d) Horizontal shift +2, Vertical shift -1 -------------------------------------------------------------------------------------------------------------------------- 1 1 (34) Given the graph of the function ๐ฅ then the graph of 4+๐ฅ can be obtained by (a) Vertical shift โ4 (b) Vertical shift +4 (c) Horizontal shift -4 (d) Horizontal shift +4 10 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 (35) The function ๐(๐ฅ) = โ3 โ โ๐ฅ โ 3 can be obtained from the function ๐(๐ฅ) = 3 + โ๐ฅ โ 3 by (a) Reflection about x-axis (b) Horizontal shift +3 (c) Reflection about y-axis (d) Vertical shift +6 ------------------------------------------------------------------------------------------------------------------------- (36) Given the graph of the function ๐(๐ฅ) = โโ๐ฅ , then the graph of ๐(๐ฅ) = โ2 โ ๐ฅ can be obtained by (a) Horizontal shift -2 (b) Horizontal shift +2 (c) Vertical shift +2 (d) Reflection about y-axis -------------------------------------------------------------------------------------------------------------------------- (37) The graph of the function ๐(๐ฅ) = ๐ฅ 2 + 4๐ฅ can be obtained from ๐(๐ฅ) = ๐ฅ 2 โ 4 by (a) Vertical shift by 4 (b) Horizontal shift by 4 (c) Horizontal shift by 2 (d) Horizontal compression (e) Horizontal shift by -2 ------------------------------------------------------------------------------------------------------------------------ (38) Given ๐(๐ฅ) = |๐ฅ|, if ๐(๐ฅ) is reflected about x-axis and shifted 8 units up and 10 units to the right to generate the function ๐(๐ฅ). The function ๐(๐ฅ) = โฏ (a) |๐ฅ + 10| + 8 (b) โ|๐ฅ โ 10| + 8 (c) โ|๐ฅ โ 8| + 10 (d) |๐ฅ + 8| โ 10 ------------------------------------------------------------------------------------------------------------------------- (39) By reflecting the graph of the function ๐(๐ฅ) = ๐ฅ 2 + 2๐ฅ + 1 about the y-axis, the resulting function is (a) ๐ฅ 2 โ 2๐ฅ โ 1 (b) โ๐ฅ 2 โ 2๐ฅ + 1 (c) (1 โ ๐ฅ)2 (d) ๐ฅ 2 + 2๐ฅ โ 1 ------------------------------------------------------------------------------------------------------------------------- sin ๐ฅ (40) For the function ๐(๐ฅ) = 1โcos ๐ฅ , the domain is ๐ (a) ๐ โ {2๐๐}, ๐ = 0, ยฑ1, ยฑ2, โฆ (b) ]0,2[ (c) ๐ โ { 2 ๐} , ๐ = ยฑ1, ยฑ3, โฆ (d) ๐ โ {0} โฌ ๐ โ {๐๐}, ๐ = 0, ยฑ1, ยฑ2, โฆ -------------------------------------------------------------------------------------------------------------------------- (41) The function ๐(๐ฅ) = tan โ๐๐ฅ , ๐ โ 0 is (a) General (b) Even (c) Odd (d) Depends on ๐ *) For ๐(๐ฅ) = (4 sin ๐ฅ cos ๐ฅ)2 + 1 (42) The amplitude is (a) 3 (b) 4 (c) 16 (d) 2 11 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 (43) The period is ๐ ๐ (a) ๐ (b) 2๐ (c) 2 (d) 4 -------------------------------------------------------------------------------------------------------------------------- (44) From the graph of the function ๐(๐ฅ) = | sin ๐ฅ |, then the fundamental period of ๐(๐ฅ) is ๐ (a) ๐ (b) 2 ๐ (c) 2 (d) Non-periodic (45) The range of ๐ฆ = | tan 3๐ฅ | is ๐๐ ๐๐ (a) ๐ (b) [0, โ[ (c) ๐ โ { } , ๐ ๐๐๐ (d) ๐ โ { } , ๐ ๐๐๐ 2 6 -------------------------------------------------------------------------------------------------------------------------- *) For the function ๐(๐ฅ) = sin2 ๐ฅ + 2 cos2 ๐ฅ, (46) The amplitude is 1 1 1 1 (a) 2 (b) 16 (c) 4 (d) 8 (47) The fundamental period is 3๐ ๐ (a) (b) 2 (c) ๐ (d) 2๐ 2 -------------------------------------------------------------------------------------------------------------------------- ๐๐ฅ (48) For ๐(๐ฅ) = 5 cos(๐๐ฅ) sin(๐๐ฅ) + 3 tan( 2 ), the fundamental period is (a) 1 (b) Not periodic (c) ๐ (d) 2 -------------------------------------------------------------------------------------------------------------------------- โ๐ฅ 2 โ1 sin ๐ฅ 2 (49) For ๐(๐ฅ) = , the domain is ๐ฅโ1 (a) [โ1,1[ (b) ๐ โ] โ 1,1] (c) [0,1[ (d) ]1, โ[ (e) ] โ 1,1[ -------------------------------------------------------------------------------------------------------------------------- ๐ (50) If ๐ is an odd function, then cos(๐(๐ฅ) + 2 ) is (a) Even (b) General (c) Odd (d) cannot be determined ------------------------------------------------------------------------------------------------------------------------- 1 *) For ๐(๐ฅ) = (sin ๐ฅ + cos ๐ฅ) โ2 (51) The amplitude = 1 (a) โ2 (b) (c) 0 (d) 1 โ2 (52) This function is periodic and repeats itself every ๐ ๐ (a) 2๐ (b) ๐ (c) 2 (d) 3 -------------------------------------------------------------------------------------------------------------------------- 12 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 53) The sketch of ๐(๐ฅ) โ 1 = (๐ฅ โ 2)2 is a) b) c) d) -------------------------------------------------------------------------------------------------------------------------- 54) The sketch of ๐(๐ฅ) = 3 cos(๐ ๐ฅ) is a) b) c) d) * ) For the function ๐(๐ฅ) = 2 cos 2 (2 ๐ฅ) 55) The amplitude equals a) 1 b) 2 c) 0.5 d) โ2 13 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 56) The frequency equals 2 a) ๐ b) 2 ๐ c) 0.5 ๐ d) ๐ 57) The sketch of ๐(๐ฅ) is a) b) c) d) -------------------------------------------------------------------------------------------------------------------------- (58) For the function ๐(๐ฅ) = โ๐ฅ 2 + 1 and ๐(๐ฅ) = tan ๐ฅ, then ๐(๐(๐ฅ)) is: (a) canโt be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- *) If ๐(๐ฅ) is an odd function and ๐(๐ฅ) is an even function, for โ(๐ฅ) = sin (๐(๐(๐ฅ))), โ(๐ฅ) (59) The function 3 is: (๐(๐ฅ)) (a) canโt be determined (b) even (c) odd (d) general 4 (60) The function tan ((๐(๐ฅ)) ) is: (a) canโt be determined (b) even (c) odd (d) general Ques. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ans. c f b a a f a a e c f a a b b d b Ques. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Ans. b b c b d b c c b f e b d b c a c Ques. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Ans. a b e b c a a d c a b a c d b c d Ques. 52 53 54 55 56 57 58 59 60 Ans. a a a a d b b c b 14