Math 1 - Calculus - Sheet (1) PDF Fall 2024

Summary

This document is a calculus exam sheet for the Fall 2024 semester at Alexandria University. It covers multiple topics, including power functions, polynomials, rational functions, absolute functions, composite functions, and trigonometric functions.

Full Transcript

Faculty of Engineering Department of Engineering Mathematics and physics...

Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 Math 1 - Calculus - Sheet (1) Functions โ€“ part A This sheet covers the following topics: - Power function - Polynomials - Rational functions - Absolute function - Even & odd functions - Composite functions - Transformation of functions - Trigonometric functions Essay problems Find the domain of the following functions: Ans. 1) ๐‘ฆ = โˆš2๐‘ฅ + 10 [โˆ’5, โˆž[ ๐‘ฅ+1 2) ๐‘ฆ = ] โˆ’ โˆž, 3[ โˆš3โˆ’๐‘ฅ โˆš๐Ÿ‘๐’™โˆ’๐Ÿ— 3) ๐‘ฆ = [3, โˆž[โˆ’{4} ๐’™๐Ÿ โˆ’๐Ÿ’๐’™ 3 4) ๐‘Ÿ = โˆš๐œƒ โˆ’ 1 ๐‘… โˆš1โˆ’๐‘ก 5) ๐‘ง = ] โˆ’ โˆž, 1] โˆ’ {โˆ’2} ๐‘ก 2 โˆ’2๐‘กโˆ’8 6) ๐‘ฆ = โˆš๐‘ฅ 2 + 2๐‘ฅ โˆ’ 3 ] โˆ’ โˆž, โˆ’3] โˆช [1, โˆž[ โˆš๐‘ฅ 2 โˆ’๐‘ฅโˆ’6 7) ๐‘ฆ = ] โˆ’ โˆž, โˆ’2] โˆช [3,5[ โˆช ]5, โˆž[ ๐‘ฅโˆ’5 ๐‘ฅ+2 8) ๐‘ฆ = โˆš [โˆ’2,3[ 3โˆ’๐‘ฅ ๐‘ฅ+2 9) ๐‘ฆ = โˆš ] โˆ’ โˆž, โˆ’4[ โˆช [โˆ’2, โˆž[ ๐‘ฅ+4 โˆš๐‘ฅ+2 10) ๐‘ฆ = [โˆ’2, โˆž[ โˆš๐‘ฅ+4 Solve the following inequalities: Ans. 11) |๐‘ฅ + 5| โ‰ฅ 1 ] โˆ’ โˆž, โˆ’6] โˆช [โˆ’4, โˆž[ 12) |3 โˆ’ ๐‘ฅ| < 2 ]1,5[ 13) |๐‘ฅ 2 + 2๐‘ฅ โˆ’ 1| < 2 ] โˆ’ 3,1[ โˆ’{โˆ’1} 1 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 14) |๐‘ฅ 2 โˆ’ 4๐‘ฅ โˆ’ 4| โ‰ฅ 8 ] โˆ’ โˆž, โˆ’2] โˆช [6, โˆž[ โˆช {2} Find the domain of the following functions: 15) ๐‘ฆ = โˆš3 โˆ’ |๐‘ฅ โˆ’ 2| [โˆ’1,5] 1 16) ๐‘ฆ = ๐‘… โˆš5+|๐‘ฅโˆ’1| ๐œƒ+1 17) ๐‘Ÿ = ๐‘… โˆ’ {3, โˆ’3} โˆš๐œƒ2 โˆ’3 โˆšโˆš๐‘ก 2 โˆ’2 18) ๐‘  = ] โˆ’ โˆž, โˆ’2[ โˆช [2,3[ โˆช ]3, โˆž[ ๐‘ก 2 โˆ’๐‘กโˆ’6 19) Let ๐‘“(๐‘ฅ) be some given function and define 1 ๐‘”(๐‘ฅ) = [๐‘“(๐‘ฅ) + ๐‘“(โˆ’๐‘ฅ)] 2 1 โ„Ž(๐‘ฅ) = [๐‘“(๐‘ฅ) โˆ’ ๐‘“(โˆ’๐‘ฅ)] 2 Show that ๐‘”(๐‘ฅ) is an even function and โ„Ž(๐‘ฅ) is an odd function. Hence, deduce that any function ๐‘“(๐‘ฅ) can be written as a sum of an even function and an odd function. 20) Show that if ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are two even functions and โ„Ž(๐‘ฅ) is an odd function, then (๐‘“ ๐‘œ ๐‘” ๐‘œ โ„Ž)(๐‘ฅ) is an even function. In each of the following problems, starting from ๐‘“(๐‘ฅ), give a sequence of transformations to produce ๐‘”(๐‘ฅ), and hence sketch ๐‘”(๐‘ฅ): 21) ๐‘“(๐‘ฅ) = โˆš๐‘ฅ , ๐‘” ( ๐‘ฅ ) = 2 โˆš๐‘ฅ + 1. 22) ๐‘“(๐‘ฅ) = โˆš๐‘ฅ, ๐‘”(๐‘ฅ) = โˆš2 โˆ’ 4๐‘ฅ 23) ๐‘“(๐‘ฅ) = |๐‘ฅ|, ๐‘”(๐‘ฅ) = 1 โˆ’ |2๐‘ฅ + 1|. 1 2 24) ๐‘“(๐‘ฅ) = ๐‘ฅ, ๐‘”(๐‘ฅ) = | ๐‘ฅโˆ’4 | 25) ๐‘“(๐‘ฅ) = ๐‘ฅ 3 , ๐‘”(๐‘ฅ) = |(1 โˆ’ ๐‘ฅ)3 | 26) ๐‘“(๐‘ฅ) = ๐‘ฅ 2 , ๐‘”(๐‘ฅ) = (4 โˆ’ 2๐‘ฅ)2. 27) ๐‘“(๐‘ฅ) = ๐‘ฅ 2 ๐‘”(๐‘ฅ) = ๐‘ฅ 2 + 2๐‘ฅ โˆ’ 3. (Hint: ๐‘ฅ 2 + 2๐‘ฅ โˆ’ 3 = (๐‘ฅ + 1)2 โˆ’ 4) 28) ๐‘“(๐‘ฅ) = sin ๐‘ฅ ๐‘”(๐‘ฅ) = |3 sin 2๐‘ฅ | 2 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 ๐œ‹ 29) ๐‘“(๐‘ฅ) = cos ๐‘ฅ, ๐‘”(๐‘ฅ) = cos(2๐‘ฅ + 2 ) Sketch the graph of each of the following function over a complete period: 30) ๐‘“(๐‘ฅ) = 3 sin ๐œ‹๐‘ฅ 31) ๐‘“(๐‘ฅ) = 2 sin2 2๐‘ฅ ๐œ‹ 32) ๐‘“(๐‘ฅ) = 3 cos (2๐‘ฅ โˆ’ 2 ) Find amplitude, period and frequency of the following functions: 33) ๐‘ฆ = โˆ’2 cos(๐œ‹ โˆ’ 3๐‘ฅ). 34) ๐‘ฆ = sin 2๐‘ฅ โˆ’ 2 cos 2๐‘ฅ. 35) ๐‘Ÿ = 6 cos2 2๐œ‹๐‘ฅ. Find the fundamental period of the following functions: ๐œ‹๐‘ฅ 36) ๐‘ฆ = 2 sin ๐œ‹๐‘ฅ + 3 cos 3 37) ๐‘ฆ = sin ๐‘ฅ cos ๐‘ฅ + cos 4๐‘ฅ. 38) ๐‘ฆ = tan 2๐œ‹๐‘ฅ โˆ’ sin 2๐œ‹๐‘ฅ 3 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 Answers 21) โˆš๐‘ฅ โ†’ โˆš๐‘ฅ + 1 โ†’ 2โˆš๐‘ฅ + 1 Horizontal shift -1 Vertical expansion 2 22) โˆš๐‘ฅ โ†’ โˆšโˆ’๐‘ฅ โ†’ โˆšโˆ’(๐‘ฅ โˆ’ 1/2) โ†’ 2โˆšโˆ’(๐‘ฅ โˆ’ 1/2) = โˆš2 โˆ’ 4๐‘ฅ Reflection about y-axis Horizontal shift 2 Horizontal compression 4 23) 1 1 |๐‘ฅ| โ†’ |๐‘ฅ + | โ†’ 2 |๐‘ฅ + | = |2๐‘ฅ + 1 | 2 2 โ†’ โˆ’|2๐‘ฅ + 1| โ†’ 1 โˆ’ |2๐‘ฅ + 1| Horizontal shift โˆ’1 Horizontal compression 2 Reflection about x-axis Vertical shift +1 24) 1 1 1 1 โ†’| |โ†’| | โ†’ 2| | ๐‘ฅ ๐‘ฅ ๐‘ฅโˆ’4 ๐‘ฅโˆ’4 2 =| | ๐‘ฅโˆ’4 Absolute ๐‘ฆ Horizontal shift +4 Vertical expansion 2 4 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 25) ๐‘ฅ 3 โ†’ (๐‘ฅ โˆ’ 1)3 โ†’ |(๐‘ฅ โˆ’ 1)3 | = |(1 โˆ’ ๐‘ฅ)3 | Horizontal shift +1 Absolute ๐‘ฆ 26) ๐‘ฅ 2 โ†’ (๐‘ฅ โˆ’ 4)2 โ†’ (2๐‘ฅ โˆ’ 4)2 = (4 โˆ’ 2๐‘ฅ)2 Horizontal shift +4 Horizontal compression +2 Or ๐‘ฅ 2 โ†’ (๐‘ฅ โˆ’ 2)2 โ†’ 4(๐‘ฅ โˆ’ 2)2 Horizontal shift +2 Vertical expansion +4 27) ๐‘ฅ 2 โ†’ (๐‘ฅ + 1)2 โ†’ (๐‘ฅ + 1)2 โˆ’ 4 Horizontal shift -1 Vertical shift -4 5 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 28) sin ๐‘ฅ โ†’ sin 2๐‘ฅ โ†’ 3 sin 2๐‘ฅ โ†’ |3 sin 2๐‘ฅ| Horizontal compression 2 Vertical expansion 3 Absolute ๐‘ฆ 29) ๐œ‹ cos ๐‘ฅ โ†’ cos 2๐‘ฅ โ†’ cos 2(๐‘ฅ + ) 4 ๐œ‹ = cos (2๐‘ฅ + ) 2 Horizontal compression 2 โˆ’๐œ‹ Horizontal shift 4 (30) (31) (32) (33) 2ฯ€ 3 |A| = 2, T = ,๐‘“ = 3 2๐œ‹ (34) 1 |A| = โˆš5, T = ฯ€, ๐‘“ = ๐œ‹ (35) 1 |A| = 3, T = , ๐‘“ = 2 2 (36) 6 (37) ๐œ‹ (38) 1 6 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 MCQ problems 1 *) For the function f(x) = ๐‘ฅโˆ’1 : โˆš ๐‘ฅโˆ’2 (1) The domain can be determined by the following condition: ๐‘ฅโˆ’1 (a) (๐‘ฅ โˆ’ 1) โ‰ฅ 0 & (๐‘ฅ โˆ’ 2) > 0 (b) (๐‘ฅ โˆ’ 1) > 0 & (๐‘ฅ โˆ’ 2) > 0 (c) ๐‘ฅ โˆ’ 2 > 0 ๐‘ฅโˆ’2 ๐‘ฅโˆ’2 (d) ๐‘ฅ โˆ’ 1 โ‰ฅ 0 (e) ๐‘ฅ โˆ’ 1 > 0 (f) (๐‘ฅ โˆ’ 2) โ‰  0 (2) The domain is: (a) [1,2[ (b) ]1,โˆž [ (c) ]1,2[ (d) ๐‘… - ]1,2] (e) ]2,โˆž [ (f) ๐‘… - [1,2] -------------------------------------------------------------------------------------------------------------------------------------- (๐‘ฅ+1)(๐‘ฅโˆ’3) (3) The domain of is: ๐‘ฅโˆš(๐‘ฅ+1)(2โˆ’๐‘ฅ) (a) ] - โˆž , -1 [ โˆช ]2 , โˆž [ (b) ] -1, 2[ - {0} (c) ]-1 , 2[ (d) ([-1 , 2[ โˆช {3}) - {0} -------------------------------------------------------------------------------------------------------------------------------------- (4) For the function f(x) = โˆšโˆ’3 โˆ’ โˆš๐‘ฅ 2 the domain is: (a) โˆ… (b) ] -โˆž , -3] (c) ๐‘… - {-3} (d) ๐‘… -------------------------------------------------------------------------------------------------------------------------------------- (5) The domain of ๐‘“(๐‘ฅ) = โˆš3 + โˆš(๐‘ฅ)2 is: (a) ๐‘… (b) โˆ… (c) ] โˆ’ โˆž , โˆ’3] (d) ๐‘… โˆ’ {โˆ’3} -------------------------------------------------------------------------------------------------------------------------------------- ๐‘ฅโˆ’1 (6) The domain of โˆš(๐‘ฅ+4)(๐‘ฅ+1) is: (a) (๐‘… - [-1,1[) - {-4} (b) ๐‘… - {-1, -4} (c) [1, โˆž [ (d) ๐‘… - [-1, 1[ (e) ]1, โˆž [ (f) ]-4, -1[ โˆช [1, โˆž [ -------------------------------------------------------------------------------------------------------------------------------------- โˆš๐‘ฅ 2 +4๐‘ฅ+3 (7) The domain of f(x) = is: โˆš๐‘ฅ+2 (a) [-1, โˆž [ (b) ]-2, -1[ c) [-2, โˆž [ (d) [-3, -2[ โˆช [-1, โˆž [ -------------------------------------------------------------------------------------------------------------------------------------- 7 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 1 (8) The domain of the function f(x) = is: โˆš๐‘ฅ 2 (๐‘ฅโˆ’1) (a) ]1, โˆž [ (b) ๐‘… โˆ’ {0,1} (c) ๐‘… (d) ]-โˆž ,0[ โˆช ]1, โˆž [ (e) none of the above *) For ๐‘“(๐‘ฅ) = โˆš4 โˆ’ |4 โˆ’ ๐‘ฅ| (9) The domain ๐ท of ๐‘“(๐‘ฅ) can be obtained by solving: (a) 4 โˆ’ |4 โˆ’ ๐‘ฅ| > 0 (b) โˆš4 โˆ’ โˆš|4 โˆ’ ๐‘ฅ| โ‰ฅ 0 (c) 4 โˆ’ |4 โˆ’ ๐‘ฅ| > 1 (d) 4 โˆ’ |4 โˆ’ ๐‘ฅ| โ‰ฅ 1 (e) 4 โˆ’ |4 โˆ’ ๐‘ฅ| โ‰ฅ 0 (f) |4 โˆ’ ๐‘ฅ| โ‰ฅ 0 (10) Hence, the domain D of ๐‘“(๐‘ฅ) is: (a) ๐‘… โˆ’ {4} (b) [1, 7] (c) [0, 8] (d) ]1, 7[ (e) [4, โˆž [ (f) ๐‘… + 1 (11) the domain of ๐‘“(๐‘ฅ) is: (a) D - [1, 7] (b) ]1,7[ (c) D - ]1,7[ (d) ๐‘… - {3,5} (e) D - {1,7} (f) ]0, 8[ -------------------------------------------------------------------------------------------------------------------------- 1 (12) For the function f(x) = the domain is: โˆšโˆš๐‘ฅ+ |๐‘ฅโˆ’1| (a) ๐‘… + โˆช {0} (b) [1, โˆž [ (c) ๐‘… (d) ๐‘… โˆ’ {0} -------------------------------------------------------------------------------------------------------------------------- (13) The domain of ๐‘“(๐‘ฅ) = โˆš3 + โˆš(๐‘ฅ + 1)2 is: (a) ๐‘… (b) [2 , โˆž[ (c) ] โˆ’ 3 , โˆ’1[ โˆช [2 , โˆž[ (d) ๐‘…โˆ’ ]2 , โˆž[ -------------------------------------------------------------------------------------------------------------------------- (14) The domain of ๐‘“(๐‘ฅ) = โˆš3 โˆ’ โˆš(๐‘ฅ + 1)2 is: (a) ๐‘… (b) [โˆ’4 ,2] (c) ]2 , โˆž[ (d) ๐‘…โˆ’ ] โˆ’ 4 , 2[ -------------------------------------------------------------------------------------------------------------------------- (15) The domain of ๐‘“(๐‘ฅ) = โˆš4 โˆ’ โˆš๐‘ฅ โˆ’ 2 is: (a) ๐‘… (b) [2,18] (c) ] โˆ’ โˆž , 2] โˆช [18, โˆž[ (d) ๐‘… โˆ’ {2} -------------------------------------------------------------------------------------------------------------------------- (16) The domain of ๐‘“(๐‘ฅ) = โˆš4 + โˆš๐‘ฅ โˆ’ 2 is: (a) ๐‘… (b) [2,18] (c) ] โˆ’ โˆž , 2] โˆช [18, โˆž[ (d) [2 , โˆž[ -------------------------------------------------------------------------------------------------------------------------- 8 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 1 (17) The domain of ๐‘“(๐‘ฅ) = โˆš1 + ๐‘ฅ is: (a) ๐‘… โˆ’ {0} (b) ๐‘…โˆ’ ] โˆ’ 1,0] (c) [โˆ’1,0] (d) [โˆ’1, โˆž[ (e) ] โˆ’ 1, โˆž[ -------------------------------------------------------------------------------------------------------------------------- (18) Which of the following relations does not represent a function? (a) ๐‘ฆ = ๐‘ฅ 2 (b) ๐‘ฅ = sin ๐‘ฆ (c) ๐‘ฆ = cos ๐‘ฅ (d) ๐‘ฆ = ๐‘ฅ 3 (19) If ๐‘“(๐‘ฅ) is an odd function, and ๐‘”(๐‘ฅ) is an even function, then ๐‘”(๐‘“(๐‘ฅ)) is: (a) canโ€™t be determined (b) even (c) odd (d) neither even nor odd -------------------------------------------------------------------------------------------------------------------------- (20) If ๐‘“(๐‘ฅ) = 3๐‘ฅ โˆ’ 6 and ๐‘”(๐‘ฅ) = ๐‘ฅ 3 + 2 then the function f(g(x)) is: (a) canโ€™t be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- 3 3 *) If ๐‘“(๐‘ฅ) = โˆš๐‘ฅ 2 + 1 , ๐‘”(๐‘ฅ) = โˆš๐‘ฅ 3 + ๐‘ฅ and โ„Ž(๐‘ฅ) = โˆš๐‘ฅ 3 + 2๐‘ฅ then: (21) (๐‘“ ๐‘œ ๐‘” ) (x) is: (a) canโ€™t be determined (b) even (c) odd (d) general (22) (๐‘“ ๐‘œ โ„Ž ) (x) is: (a) canโ€™t be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- (23) If ๐‘“(๐‘ฅ) is general function, then ๐‘”(๐‘ฅ) = ๐‘“(๐‘ฅ)๐‘“(โˆ’๐‘ฅ) is: (a) canโ€™t be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- (24) For a function ๐‘“ where ๐‘“(๐‘ฅ) โ‰  ๐‘, then the function ๐‘”(๐‘ฅ) = ๐‘“(๐‘Ž + ๐‘ฅ) โˆ’ ๐‘“(๐‘Ž โˆ’ ๐‘ฅ) is: (a) canโ€™t be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- (25) The function ๐‘“(๐‘ฅ) = (1 + ๐‘ฅ 2 )5 is: (a) odd (b) one-to-one (c) even (d) none of the above -------------------------------------------------------------------------------------------------------------------------- ๐‘ฅโˆ’3 (26) If ๐‘“(๐‘ฅ) = , ๐‘”(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 4 then (๐‘“ ๐‘œ ๐‘”)(๐‘ฅ) is: 2๐‘ฅ 9 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 ๐‘ฅโˆ’3 2 ๐‘ฅ 2 โˆ’7 (๐‘ฅโˆ’3)(๐‘ฅ2 โˆ’4) (๐‘ฅโˆ’3) (a) ( 2๐‘ฅ ) โˆ’ 4 (b) 2(๐‘ฅ 2โˆ’4) (c) (d) 2๐‘ฅ(๐‘ฅ 2โˆ’4) 2๐‘ฅ (27) If ๐‘“(๐‘ฅ) is an even function, and ๐‘“(๐‘”(๐‘ฅ)) is an even function, then ๐‘”(๐‘ฅ) may be (a) odd (b) even (c) general (d) even or odd (e) even or general (f) even or odd or general ---------------------------------------------------------------------------------------------------------------- (28) Given the graph of ๐‘“(๐‘ฅ) then the graph of ๐‘”(๐‘ฅ) = ๐‘“(๐‘Ž๐‘ฅ), ๐‘Ž > 1 can be obtained from ๐‘“(๐‘ฅ) by (a) Vertical shift (b) Horizontal expansion (c) Vertical expansion (d) Horizontal shift (e) Horizontal compression (f) Vertical compression -------------------------------------------------------------------------------------------------------------------------- (29) Given the graph of the function ๐‘“(๐‘ฅ) = 3 โˆ’ โˆš4 + ๐‘ฅ , then the graph of ๐‘”(๐‘ฅ) = 3 โˆ’ โˆš4 โˆ’ ๐‘ฅ can be obtained by (a) Reflection about x-axis (b) Reflection about y-axis (c) Vertical shift +3 (d) Horizontal shift -4 -------------------------------------------------------------------------------------------------------------------------- (30) Given the graph of the function ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 6๐‘ฅ , then the graph of ๐‘”(๐‘ฅ) = (๐‘ฅ โˆ’ 3)2 + 1 can be obtained by (a) Vertical shift +1 (b) Horizontal shift +3 (c) Reflection about x-axis (d) Vertical shift +10 -------------------------------------------------------------------------------------------------------------------------- *) Given the graph of the function ๐‘“(๐‘ฅ) = (1 + 2๐‘ฅ)2 (31) Then making a reflection about the y-axis results in the function ๐‘”(๐‘ฅ) = โ‹ฏ (a) โˆ’(1 + 2๐‘ฅ)2 (b) (1 โˆ’ 2๐‘ฅ)2 (c) |1 + 2๐‘ฅ|2 (d) (1 + 2|๐‘ฅ|)2 (32) The graph of the function โ„Ž(๐‘ฅ) = (3 + 2๐‘ฅ)2 can be obtained from ๐‘“(๐‘ฅ) by (a) Vertical shift -2 (b) Horizontal shift +2 (c) Horizontal shift -1 (d) Vertical shift +2 -------------------------------------------------------------------------------------------------------------------------- (33) Given the graph of the function ๐‘“(๐‘ฅ) = ๐‘ฅ 2 , then the graph of ๐‘”(๐‘ฅ) = 1 + (๐‘ฅ โˆ’ 2)2 can be obtained by (a) Horizontal shift +2, Vertical shift +1 (b) Horizontal shift -2, Vertical shift +1 (c) Horizontal shift -2, Vertical shift -1 (d) Horizontal shift +2, Vertical shift -1 -------------------------------------------------------------------------------------------------------------------------- 1 1 (34) Given the graph of the function ๐‘ฅ then the graph of 4+๐‘ฅ can be obtained by (a) Vertical shift โ€“4 (b) Vertical shift +4 (c) Horizontal shift -4 (d) Horizontal shift +4 10 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 (35) The function ๐‘”(๐‘ฅ) = โˆ’3 โˆ’ โˆš๐‘ฅ โˆ’ 3 can be obtained from the function ๐‘“(๐‘ฅ) = 3 + โˆš๐‘ฅ โˆ’ 3 by (a) Reflection about x-axis (b) Horizontal shift +3 (c) Reflection about y-axis (d) Vertical shift +6 ------------------------------------------------------------------------------------------------------------------------- (36) Given the graph of the function ๐‘“(๐‘ฅ) = โˆšโˆ’๐‘ฅ , then the graph of ๐‘”(๐‘ฅ) = โˆš2 โˆ’ ๐‘ฅ can be obtained by (a) Horizontal shift -2 (b) Horizontal shift +2 (c) Vertical shift +2 (d) Reflection about y-axis -------------------------------------------------------------------------------------------------------------------------- (37) The graph of the function ๐‘”(๐‘ฅ) = ๐‘ฅ 2 + 4๐‘ฅ can be obtained from ๐‘“(๐‘ฅ) = ๐‘ฅ 2 โˆ’ 4 by (a) Vertical shift by 4 (b) Horizontal shift by 4 (c) Horizontal shift by 2 (d) Horizontal compression (e) Horizontal shift by -2 ------------------------------------------------------------------------------------------------------------------------ (38) Given ๐‘“(๐‘ฅ) = |๐‘ฅ|, if ๐‘“(๐‘ฅ) is reflected about x-axis and shifted 8 units up and 10 units to the right to generate the function ๐‘”(๐‘ฅ). The function ๐‘”(๐‘ฅ) = โ‹ฏ (a) |๐‘ฅ + 10| + 8 (b) โˆ’|๐‘ฅ โˆ’ 10| + 8 (c) โˆ’|๐‘ฅ โˆ’ 8| + 10 (d) |๐‘ฅ + 8| โˆ’ 10 ------------------------------------------------------------------------------------------------------------------------- (39) By reflecting the graph of the function ๐‘“(๐‘ฅ) = ๐‘ฅ 2 + 2๐‘ฅ + 1 about the y-axis, the resulting function is (a) ๐‘ฅ 2 โˆ’ 2๐‘ฅ โˆ’ 1 (b) โˆ’๐‘ฅ 2 โˆ’ 2๐‘ฅ + 1 (c) (1 โˆ’ ๐‘ฅ)2 (d) ๐‘ฅ 2 + 2๐‘ฅ โˆ’ 1 ------------------------------------------------------------------------------------------------------------------------- sin ๐‘ฅ (40) For the function ๐‘“(๐‘ฅ) = 1โˆ’cos ๐‘ฅ , the domain is ๐œ‹ (a) ๐‘… โˆ’ {2๐œ‹๐‘›}, ๐‘› = 0, ยฑ1, ยฑ2, โ€ฆ (b) ]0,2[ (c) ๐‘… โˆ’ { 2 ๐‘›} , ๐‘› = ยฑ1, ยฑ3, โ€ฆ (d) ๐‘… โˆ’ {0} โ‚ฌ ๐‘… โˆ’ {๐œ‹๐‘›}, ๐‘› = 0, ยฑ1, ยฑ2, โ€ฆ -------------------------------------------------------------------------------------------------------------------------- (41) The function ๐‘“(๐‘ฅ) = tan โˆš๐‘Ž๐‘ฅ , ๐‘Ž โ‰  0 is (a) General (b) Even (c) Odd (d) Depends on ๐‘Ž *) For ๐‘“(๐‘ฅ) = (4 sin ๐‘ฅ cos ๐‘ฅ)2 + 1 (42) The amplitude is (a) 3 (b) 4 (c) 16 (d) 2 11 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 (43) The period is ๐œ‹ ๐œ‹ (a) ๐œ‹ (b) 2๐œ‹ (c) 2 (d) 4 -------------------------------------------------------------------------------------------------------------------------- (44) From the graph of the function ๐‘“(๐‘ฅ) = | sin ๐‘ฅ |, then the fundamental period of ๐‘“(๐‘ฅ) is ๐œ‹ (a) ๐œ‹ (b) 2 ๐œ‹ (c) 2 (d) Non-periodic (45) The range of ๐‘ฆ = | tan 3๐‘ฅ | is ๐‘›๐œ‹ ๐‘›๐œ‹ (a) ๐‘… (b) [0, โˆž[ (c) ๐‘… โˆ’ { } , ๐‘› ๐‘œ๐‘‘๐‘‘ (d) ๐‘… โˆ’ { } , ๐‘› ๐‘œ๐‘‘๐‘‘ 2 6 -------------------------------------------------------------------------------------------------------------------------- *) For the function ๐‘“(๐‘ฅ) = sin2 ๐‘ฅ + 2 cos2 ๐‘ฅ, (46) The amplitude is 1 1 1 1 (a) 2 (b) 16 (c) 4 (d) 8 (47) The fundamental period is 3๐œ‹ ๐œ‹ (a) (b) 2 (c) ๐œ‹ (d) 2๐œ‹ 2 -------------------------------------------------------------------------------------------------------------------------- ๐œ‹๐‘ฅ (48) For ๐‘“(๐‘ฅ) = 5 cos(๐œ‹๐‘ฅ) sin(๐œ‹๐‘ฅ) + 3 tan( 2 ), the fundamental period is (a) 1 (b) Not periodic (c) ๐œ‹ (d) 2 -------------------------------------------------------------------------------------------------------------------------- โˆš๐‘ฅ 2 โˆ’1 sin ๐‘ฅ 2 (49) For ๐‘“(๐‘ฅ) = , the domain is ๐‘ฅโˆ’1 (a) [โˆ’1,1[ (b) ๐‘…โˆ’] โˆ’ 1,1] (c) [0,1[ (d) ]1, โˆž[ (e) ] โˆ’ 1,1[ -------------------------------------------------------------------------------------------------------------------------- ๐œ‹ (50) If ๐‘“ is an odd function, then cos(๐‘“(๐‘ฅ) + 2 ) is (a) Even (b) General (c) Odd (d) cannot be determined ------------------------------------------------------------------------------------------------------------------------- 1 *) For ๐‘“(๐‘ฅ) = (sin ๐‘ฅ + cos ๐‘ฅ) โˆš2 (51) The amplitude = 1 (a) โˆš2 (b) (c) 0 (d) 1 โˆš2 (52) This function is periodic and repeats itself every ๐œ‹ ๐œ‹ (a) 2๐œ‹ (b) ๐œ‹ (c) 2 (d) 3 -------------------------------------------------------------------------------------------------------------------------- 12 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 53) The sketch of ๐‘“(๐‘ฅ) โˆ’ 1 = (๐‘ฅ โˆ’ 2)2 is a) b) c) d) -------------------------------------------------------------------------------------------------------------------------- 54) The sketch of ๐‘“(๐‘ฅ) = 3 cos(๐œ‹ ๐‘ฅ) is a) b) c) d) * ) For the function ๐‘“(๐‘ฅ) = 2 cos 2 (2 ๐‘ฅ) 55) The amplitude equals a) 1 b) 2 c) 0.5 d) โˆš2 13 Faculty of Engineering Department of Engineering Mathematics and physics Fall 2024 56) The frequency equals 2 a) ๐œ‹ b) 2 ๐œ‹ c) 0.5 ๐œ‹ d) ๐œ‹ 57) The sketch of ๐‘“(๐‘ฅ) is a) b) c) d) -------------------------------------------------------------------------------------------------------------------------- (58) For the function ๐‘“(๐‘ฅ) = โˆš๐‘ฅ 2 + 1 and ๐‘”(๐‘ฅ) = tan ๐‘ฅ, then ๐‘“(๐‘”(๐‘ฅ)) is: (a) canโ€™t be determined (b) even (c) odd (d) general -------------------------------------------------------------------------------------------------------------------------- *) If ๐‘“(๐‘ฅ) is an odd function and ๐‘”(๐‘ฅ) is an even function, for โ„Ž(๐‘ฅ) = sin (๐‘”(๐‘“(๐‘ฅ))), โ„Ž(๐‘ฅ) (59) The function 3 is: (๐‘“(๐‘ฅ)) (a) canโ€™t be determined (b) even (c) odd (d) general 4 (60) The function tan ((๐‘“(๐‘ฅ)) ) is: (a) canโ€™t be determined (b) even (c) odd (d) general Ques. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Ans. c f b a a f a a e c f a a b b d b Ques. 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Ans. b b c b d b c c b f e b d b c a c Ques. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Ans. a b e b c a a d c a b a c d b c d Ques. 52 53 54 55 56 57 58 59 60 Ans. a a a a d b b c b 14

Use Quizgecko on...
Browser
Browser