General Physics Chapter 2: Planetary Motion and Gravitation PDF

Summary

This document covers planetary motion and gravitation, exploring the behavior of objects in rotating bodies and simple kinematics relating to rotational motion, the behavior of attraction between objects with mass experiencing linear acceleration, and elliptical planetary orbits around the sun. It includes discussion of scenarios and examples.

Full Transcript

‭Chapter 2‬ ‭Planetary Motion and Gravitation‬ ‭In‬ ‭the‬ ‭previous‬ ‭chapter,‬ ‭we‬ ‭discussed‬ ‭the‬ ‭different‬ ‭characteristics‬ ‭of‬ ‭rotating‬ ‭bodies,‬ ‭the‬ ‭behavior‬ ‭of‬ ‭objects‬ ‭upon‬ ‭rotating‬ ‭bodies,‬ ‭and‬ ‭simple‬ ‭kinematics‬ ‭regarding‬ ‭rotational‬ ‭motion.‬ ‭In‬ ‭this‬ ‭chap...

‭Chapter 2‬ ‭Planetary Motion and Gravitation‬ ‭In‬ ‭the‬ ‭previous‬ ‭chapter,‬ ‭we‬ ‭discussed‬ ‭the‬ ‭different‬ ‭characteristics‬ ‭of‬ ‭rotating‬ ‭bodies,‬ ‭the‬ ‭behavior‬ ‭of‬ ‭objects‬ ‭upon‬ ‭rotating‬ ‭bodies,‬ ‭and‬ ‭simple‬ ‭kinematics‬ ‭regarding‬ ‭rotational‬ ‭motion.‬ ‭In‬ ‭this‬ ‭chapter,‬ ‭we‬ ‭will‬ ‭discuss‬ ‭the‬ ‭celestial‬ ‭applicability‬ ‭of‬ ‭rotational‬ ‭kinematics.‬ ‭Particularly,‬ ‭the‬ ‭behavior‬ ‭of‬ ‭attraction‬ ‭between‬‭two‬‭objects‬‭with‬‭mass‬‭experiencing‬‭linear‬‭acceleration‬‭and‬‭the‬‭elliptical‬ ‭orbit‬ ‭of‬ ‭our‬ ‭planets‬ ‭around‬ ‭the‬ ‭sun.‬ ‭Before‬ ‭proceeding‬ ‭to‬ ‭this‬ ‭chapter,‬ ‭please‬ ‭take note of the following reminders:‬ ‭1.‬ ‭The‬ ‭universal‬ ‭gravitational‬ ‭constant‬ ‭𝐺‬ ‭is‬ ‭completely‬ ‭different‬ ‭with‬ ‭the‬ ‭acceleration due to gravity‬‭𝑔‬ ‭2.‬ ‭In‬ ‭the‬ ‭formula‬ ‭for‬ ‭universal‬ ‭law‬‭of‬‭gravitation,‬ ‭𝑟‬ ‭is‬‭the‬‭distance‬‭between‬ ‭the‬‭mass concentration‬‭of the objects, not their surfaces‬ ‭3.‬ ‭An increase in‬‭𝑟‬ ‭will rapidly decrease the gravitational force‬ ‭4.‬ ‭The‬‭gravitational‬‭force‬‭experienced‬‭by‬‭two‬‭objects‬‭are‬‭equal‬‭regardless‬‭of‬ ‭mass‬ ‭5.‬ ‭The‬‭“orbital‬‭areas”‬‭in‬‭Kepler’s‬‭2nd‬‭law‬‭is‬‭the‬‭the‬‭area‬‭that‬‭the‬‭planet‬‭has‬ ‭swept‬ ‭(the‬ ‭lines‬ ‭connected‬ ‭to‬ ‭the‬ ‭planet‬ ‭and‬ ‭to‬ ‭the‬ ‭sun)‬ ‭and‬ ‭not‬ ‭the‬ ‭circumference of the ellipse‬ ‭6.‬ ‭Perihelion‬ ‭and‬ ‭aphelion‬ ‭are‬ ‭actually‬ ‭distances‬ ‭from‬ ‭the‬ ‭centers‬ ‭of‬ ‭mass‬ ‭between two celestial bodies‬ ‭Chapter 2.1. Newton’s Law of Universal Gravitation‬ ‭SCENARIO 1‬ ‭Have‬‭you‬‭ever‬‭wondered‬‭why‬‭the‬‭moon‬‭won't‬‭crash‬‭upon‬‭us‬‭but‬‭instead,‬‭it‬‭keeps‬ ‭an‬ ‭almost‬ ‭steady‬ ‭orbit‬ ‭around‬ ‭the‬ ‭Earth?‬ ‭The‬ ‭same‬ ‭can‬ ‭also‬ ‭be‬ ‭said‬ ‭upon‬ ‭the‬ ‭planets in our solar system.‬ ‭Figure 17. Planets in their respective orbit‬ ‭As‬ ‭discussed‬‭in‬‭Chapter‬‭1.4,‬‭there‬‭is‬‭a‬‭centripetal‬‭force‬‭acting‬‭upon‬‭the‬‭planets‬ ‭that’s‬ ‭why‬ ‭the‬ ‭moon‬ ‭keeps‬ ‭a‬‭steady‬‭orbit‬‭around‬‭Earth.‬‭Well,‬‭an‬‭almost‬‭steady‬ ‭one‬ ‭since‬ ‭Earth‬ ‭is‬ ‭not‬ ‭a‬ ‭perfect‬ ‭sphere.‬ ‭This‬ ‭centripetal‬ ‭force,‬ ‭according‬ ‭to‬ ‭Newton,‬ ‭was‬ ‭somewhat‬ ‭equivalent‬ ‭to‬ ‭the‬ ‭gravitational‬ ‭force‬ ‭experienced‬ ‭by‬ ‭falling‬‭objects‬‭on‬‭Earth.‬‭Because‬‭of‬‭this,‬‭Newton‬‭stated‬‭that‬‭the‬‭planets‬‭were‬‭in‬ ‭a‬‭state‬‭of‬‭free‬‭fall‬‭around‬‭the‬‭sun‬‭but,‬‭instead‬‭of‬‭crashing‬‭upon‬‭them,‬‭they‬‭are‬‭in‬ ‭orbit around the sun.‬ ‭Newton‬ ‭then‬ ‭strengthened‬ ‭this‬ ‭finding‬ ‭by‬ ‭conducting‬ ‭a‬ ‭thought‬ ‭experiment.‬ ‭This‬‭experiment‬‭involved‬‭a‬‭cannonball‬‭launched‬‭in‬‭the‬‭air‬‭at‬‭an‬‭incredibly‬‭large‬ ‭force‬‭that‬‭it‬‭perfectly‬‭counteracts‬‭gravity‬‭->‬‭the‬‭object’s‬‭speed‬‭is‬‭equal‬‭or‬‭greater‬ ‭than‬ ‭the‬ ‭curvature‬ ‭speed‬ ‭of‬ ‭Earth.‬ ‭Since‬ ‭it‬ ‭perfectly‬ ‭counteracts‬ ‭gravity,‬ ‭the‬ ‭cannonball‬ ‭will‬ ‭orbit‬ ‭around‬ ‭the‬ ‭planet‬ ‭->‬ ‭it‬ ‭will‬ ‭not‬ ‭hit‬‭the‬‭ground‬‭and‬‭it‬‭will‬ ‭enter a continuous state of free fall unless frictional forces (air drag) are present.‬ ‭Figure 18. A cannonball in orbit‬ ‭SCENARIO 2‬ ‭Imagine‬ ‭an‬ ‭apple‬ ‭with‬ ‭a‬ ‭certain‬ ‭distance‬ ‭from‬ ‭Earth.‬ ‭Obviously,‬ ‭Earth‬ ‭will‬ ‭attract the apple but why is it that the apple won’t attract Earth?‬ ‭Figure 19. Gravitation attraction between an apple and the Earth‬ ‭Remember‬ ‭that‬ ‭the‬ ‭apple‬ ‭and‬ ‭Earth‬ ‭exerts‬ ‭an‬ ‭equal‬ ‭gravitational‬ ‭force‬ ‭upon‬ ‭each‬ ‭other‬ ‭which‬ ‭complies‬ ‭to‬ ‭Newton’s‬ ‭Third‬ ‭Law‬‭.‬ ‭Given‬ ‭equal‬ ‭exerted‬ ‭gravitational‬ ‭forces,‬ ‭the‬ ‭apple‬ ‭is‬ ‭being‬ ‭pulled‬ ‭because‬ ‭it‬ ‭experiences‬ ‭greater‬ ‭acceleration and this can be proved mathematically.‬ ‭Assume‬‭that‬‭the‬‭apple‬‭has‬‭mass‬ ‭1‬. ‭24‬‭‬‭𝑘𝑔‬ ‭and‬‭the‬‭distance‬‭between‬‭their‬‭masses‬ ‭is‬ ‭200‬‭‬‭𝑘𝑚‬‭.‬ ‭The‬ ‭gravitational‬ ‭force‬ ‭between‬ ‭them‬ ‭would‬ ‭be‬ ‭approximately‬ ‬ ‬‭.‬ ‭Using‬ ‭this‬ ‭force,‬ ‭we‬ ‭can‬ ‭calculate‬ ‭the‬ ‭acceleration‬ ‭of‬ ‭both‬ ‭objects‬ ‭12348‬. ‭3‬‭‭𝑁 ‭using the universal formula for force‬‭𝐹‬ = ‭𝑚𝑎‬‭.‬ ‭12348‬. ‭3‬‭‭𝑁 ‬ ‬ = ‭1‬. ‭24‬‭‬‭𝑘𝑔‬‭‬(‭𝑎‬) ‭[Apple]‬ ‭2‬ ‭𝑎‬ = ‭9958‬. ‭31‬‭‬‭𝑚‬‭/‬‭𝑠‬ ‭24‬ ‭12348‬. ‭3‬‭‭𝑁 ‬ ‬ = ‭5‬. ‭972‬‭‬‭×‬‭‬‭1‬‭0‬ ‭‬‭𝑘𝑔‬‭‬(‭𝑎‬) ‭[Earth]‬ −‭21‬ ‭2‬ ‭𝑎‬ = ‭2‬. ‭07‬ × ‭1‬‭0‬ ‭‬‭𝑚‬‭/‬‭𝑠‬ ‭‬ ‭2‬ ‭The‬‭apple‬‭accelerates‬‭onto‬‭Earth‬‭by‬‭9958‬. ‭31‬‭‭𝑚 ‬ ‬‭/‬‭𝑠‬ ‭and‬‭the‬‭Earth‬‭accelerates‬‭onto‬ −‭21‬ ‭2‬ ‭the‬‭apple‬‭by‬‭2‬. ‭07‬ × ‭1‬‭0‬ ‭‬‭𝑚‬‭/‬‭𝑠‬ ‭which‬‭is‬‭incredibly‬‭small‬‭and‬‭is‬‭often‬‭a‬‭negligible‬ ‭quantity.‬ ‭The‬ ‭gravitational‬ ‭force‬ ‭between‬ ‭two‬ ‭objects‬ ‭with‬ ‭mass‬ ‭𝑚‬‭1‬ ‭and‬ ‭𝑚‬‭2‬ ‭respectively‬ ‭and their masses are‬‭𝑟‬ ‭meters apart can be calculated as follows:‬ ‭𝑚‬‭1‭𝑚 ‬ ‭𝐹‬‭𝑔‬ = ‭𝐺‬ ‬ ‭2‬ ‭2‬ ‭[2.1]‬ ‭𝑟‬ ‭Figure 20. Parts of Gravitational Attraction between two objects with mass‬ ‭Newton’s‬ ‭formula‬ ‭however,‬ ‭was‬ ‭not‬ ‭complete‬ ‭since‬ ‭the‬ ‭value‬ ‭of‬ ‭𝐺‬ ‭was‬ ‭not‬ ‭defined.‬ ‭However,‬ ‭Henry‬ ‭Cavendish‬ ‭completed‬ ‭his‬ ‭formula‬ ‭by‬ ‭giving‬ ‭the‬ ‭first‬ ‭direct‬ ‭measurement‬ ‭of‬ ‭gravitational‬ ‭attraction‬ ‭71‬ ‭years‬ ‭after‬ ‭Newton‬ ‭passed‬ ‭away.‬ ‭Cavendish‬ ‭provided‬ ‭and‬ ‭named‬ ‭the‬ ‭constant‬ ‭as‬ ‭the‬ ‭universal‬ −‭11‬ ‭2‬ ‭2‬ ‭gravitational constant‬‭which has a value of‬‭6‬. ‭67‬ × ‭1‬‭0‬ ‭‬‭𝑁‬ · ‭𝑘‬‭𝑔‬ ‭/‬‭𝑚‬ ‭.‬ ‭Example‬ ‭2.1.‬ ‭Calculate‬ ‭the‬ ‭force‬ ‭of‬ ‭attraction‬‭between‬‭two‬‭friends‬‭with‬‭masses‬ ‭45‬. ‭92‬‭‬‭𝑘𝑔‬ ‭and‬‭48‬. ‭85‬‭‬‭𝑘𝑔‬ ‭if the distance of their masses is‬‭5‬‭‬‭𝑚‬‭.‬ ‭Solution:‬ ‭A.‬ ‭Since‬ ‭the‬ ‭problem‬ ‭directly‬ ‭states‬ ‭the‬ ‭given‬ ‭values,‬ ‭we‬ ‭can‬ ‭already‬ ‭substitute them into the formula.‬ −‭11‬ ‭2‬ ‭2‬ (‭45‬.‭92‬‭‭𝑘 ‬ 𝑔‬)(‭48‬.‭85‬‭‬‭𝑘𝑔‬) ‭𝐹‬ = (‭6‬. ‭67‬ × ‭1‬‭0‬ ‭‬‭𝑁‬ · ‭𝑘‬‭𝑔‬ ‭/‬‭𝑚‬ ) × ‭2‬ (‭5‭‬‬‭𝑚‬) −‭9‬ ‭𝐹‬ = ‭5‬. ‭98‬ × ‭1‬‭0‬ ‭‬‭𝑁‬ −‭19‬ ‭Therefore,‬ ‭the‬ ‭best‬ ‭friends‬ ‭exert‬ ‭5‬. ‭98‬ × ‭1‬‭0‬ ‭‬‭𝑁‬ ‭of‬ ‭gravitational‬ ‭force‬ ‭in‬ ‭each‬ ‭other.‬‭Yes,‬‭you‬‭heard‬‭it‬‭right!‬‭People‬‭also‬‭exert‬‭gravitational‬‭force‬‭on‬‭each‬‭other‬ ‭but‬ ‭this‬ ‭force‬ ‭is‬ ‭negligible‬ ‭because‬ ‭of‬ ‭the‬ ‭gravitational‬ ‭pull‬ ‭we‬ ‭experience‬ ‭on‬ ‭Earth.‬ ‭Example‬ ‭2.2.‬ ‭Two‬ ‭spheres‬ ‭are‬ ‭at‬ ‭rest‬ ‭on‬ ‭a‬ ‭table.‬ ‭One‬ ‭sphere‬ ‭has‬ ‭a‬ ‭mass‬ ‭of‬ ‭3‬ ‭1‬. ‭92‬‭‬‭𝑘𝑔‬ ‭with‬ ‭a‬ ‭volume‬‭of‬ ‭338‬. ‭37‬‭‬‭𝑚‬ ‭.‬‭The‬‭other‬‭one‬‭has‬‭a‬‭mass‬‭of‬ ‭2‬. ‭22‬‭‬‭𝑘𝑔‬ ‭and‬‭a‬ ‭3‬ ‭volume‬ ‭of‬ ‭401‬. ‭89‬‭‬‭𝑚‬ ‭.‬ ‭If‬ ‭their‬ ‭surfaces‬‭are‬ ‭12‬‭‬‭𝑚‬ ‭apart‬‭from‬‭each‬‭other,‬‭calculate‬ ‭the gravitational force exerted by the spheres to each other.‬ ‭Solution:‬ ‭A.‬ ‭The‬ ‭value‬ ‭for‬ ‭𝑟‬ ‭is‬ ‭not‬ ‭directly‬ ‭given‬ ‭in‬ ‭the‬ ‭problem‬ ‭since‬ ‭only‬ ‭their‬ ‭surfaces‬ ‭are‬ ‭12‬‭‬‭𝑚‬ ‭apart.‬ ‭To‬ ‭determine‬ ‭the‬ ‭value‬ ‭of‬ ‭𝑟‬‭,‬ ‭we‬ ‭need‬ ‭to‬ ‭take‬ ‭account‬ ‭the‬ ‭radius‬ ‭of‬ ‭each‬ ‭sphere‬ ‭which‬ ‭can‬‭be‬‭calculated‬‭by‬‭using‬‭their‬ ‭volumes.‬ ‭Recall‬ ‭that‬ ‭the‬ ‭formula‬ ‭for‬ ‭the‬ ‭volume‬ ‭of‬ ‭a‬ ‭sphere‬ ‭is‬ ‭‬ 4 ‭3‬ ‭𝑉‬‭𝑠𝑝ℎ𝑒𝑟𝑒‬ = ‭3‬ π‭𝑟‬ ‭.‬ ‭3‬ ‭For the 1st sphere (‬‭𝑉‬ = ‭338‬. ‭37‬‭‬‭𝑚‬ ‭):‬ ‭3‬ ‭‬ 4 ‭3‬ ‭338‬. ‭37‬‭‬‭𝑚‬ = ‭3‬ π‭𝑟‬ ‭3‬ ‭338‬.‭37‬‭‭𝑚 ‬ ‬ ‭3‬ ‭4‬π = ‭𝑟‬ ‭3‬ ‭𝑟‬ = ‭8‬. ‭99‬‭‬‭𝑚‬ ‭3‬ ‭For the 2nd sphere (‬‭𝑉‬ = ‭401‬. ‭89‬‭‬‭𝑚‬ ‭):‬ ‭3‬ ‭‬ 4 ‭3‬ ‭401‬. ‭89‬‭‬‭𝑚‬ = ‭3‬ π‭𝑟‬ ‭3‬ ‭401‬.‭89‬‭‭𝑚 ‬ ‬ ‭3‬ ‭4‬π = ‭𝑟‬ ‭3‬ ‭𝑟‬ = ‭9‬. ‭8‬‭‬‭𝑚‬ ‭B.‬ ‭Add‬‭these‬‭values‬‭to‬‭the‬‭distance‬‭between‬‭the‬‭spheres’‬‭surfaces‬‭of‬‭12‬‭‬‭𝑚‬ ‭and‬ ‭we will obtain the distance between their masses of‬‭30‬. ‭79‬‭‬‭𝑚‬‭.‬ ‭C.‬ ‭We‬ ‭are‬ ‭now‬ ‭ready‬ ‭for‬ ‭substitution.‬ ‭Use‬ ‭𝑚‬‭1‬ = ‭1‬. ‭92‬‭‬‭𝑘𝑔‬‭,‬ ‭𝑚‬‭2‬ = ‭2‬. ‭22‬‭‬‭𝑘𝑔‬‭,‬ ‭𝑟‬ = ‭30‬. ‭79‬‭𝑚‭.‬ ‬ −‭11‬ ‭2‬ ‭2‬ (‭1.‬‭92‬‭‬‭𝑘𝑔‬)(‭2.‬‭22‬‭‬‭𝑘𝑔‬) ‭𝐹‬ = (‭6‬. ‭67‬ × ‭1‬‭0‬ ‭‬‭𝑁‬ · ‭𝑘‬‭𝑔‬ ‭/‬‭𝑚‬ ) × ‭2‬ (‭30‬.‭79‬‭‬‭𝑚)‬ −‭13‬ ‭𝐹‬ = ‭3‬ × ‭1‬‭0‬ ‭‬‭𝑁‬ ‭Chapter 2.2. Kepler’s Laws of Planetary Motion‬ ‭The‬ ‭Copernican‬ ‭revolution,‬ ‭which‬ ‭placed‬ ‭the‬ ‭sun‬ ‭as‬ ‭the‬ ‭center‬ ‭of‬ ‭the‬ ‭solar‬ ‭system,‬‭was‬‭a‬‭major‬‭event‬‭during‬‭the‬‭renaissance‬‭period.‬‭It‬‭was‬‭one‬‭among‬‭the‬ ‭many‬ ‭testaments‬ ‭of‬ ‭scientific‬ ‭flourishment.‬ ‭One‬ ‭important‬ ‭figure‬ ‭in‬ ‭such‬ ‭an‬ ‭event‬ ‭was‬ ‭Tycho‬ ‭Brahe,‬ ‭who‬ ‭was‬ ‭known‬ ‭for‬ ‭his‬ ‭instruments‬ ‭for‬ ‭celestial‬ ‭observation,‬ ‭which‬ ‭paved‬ ‭the‬ ‭way‬ ‭to‬ ‭the‬‭Copernican‬‭model‬‭of‬‭the‬‭solar‬‭system.‬ ‭During‬‭his‬‭time,‬‭Copernicus‬‭thought‬‭that‬‭the‬‭planets‬‭were‬‭in‬‭a‬‭perfectly‬‭circular‬ ‭orbit around the sun until Johannes Kepler introduced the data he gathered.‬ ‭Kepler‬ ‭discovered‬ ‭that‬ ‭the‬ ‭planets‬ ‭orbit‬ ‭their‬ ‭stars‬ ‭in‬ ‭an‬ ‭elliptical‬‭manner.‬‭An‬ ‭ellipse‬ ‭is‬ ‭a‬ ‭conic‬ ‭section‬ ‭where‬ ‭there‬ ‭are‬ ‭two‬ ‭foci‬ ‭and‬ ‭these‬ ‭foci,‬ ‭when‬ ‭added,‬ ‭sums‬ ‭up‬ ‭to‬ ‭a‬ ‭constant.‬ ‭Using‬ ‭this‬ ‭data,‬ ‭Kepler‬‭was‬‭able‬‭to‬‭come‬‭up‬‭with‬‭three‬ ‭laws of planetary motion which are as follows:‬ ‭1.‬ ‭Kepler’s‬ ‭1st‬ ‭Law‬ ‭states‬ ‭that‬ ‭the‬ ‭orbit‬ ‭of‬ ‭every‬ ‭planet‬ ‭is‬ ‭an‬‭ellipse‬ ‭with‬ ‭the‬ ‭sun‬ ‭acting‬ ‭as‬ ‭one‬ ‭of‬ ‭its‬ ‭foci‬‭.‬ ‭The‬ ‭point‬ ‭where‬ ‭the‬ ‭planet‬ ‭is‬ ‭closest‬ ‭to‬ ‭its‬‭sun‬‭is‬‭called‬‭the‬‭perihelion‬‭and‬‭the‬‭point‬‭where‬‭the‬‭planet‬ ‭is‬ ‭furthest‬ ‭to‬ ‭its‬ ‭sun‬ ‭is‬ ‭called‬ ‭the‬ ‭aphelion‬‭.‬ ‭The‬ ‭distances‬‭between‬‭the‬ ‭aphelion‬‭and‬‭perihelion‬‭of‬‭the‬‭planets‬‭are‬‭approximately‬‭equal‬‭due‬‭to‬‭the‬ ‭low eccentricity of their elliptical orbits.‬ ‭Figure 21. Perihelion and Aphelion‬ ‭2.‬ ‭Kepler’s‬ ‭2nd‬ ‭Law‬ ‭states‬ ‭that‬‭a‬‭planet‬‭sweeps‬‭out‬‭equal‬‭areas‬‭over‬ ‭the‬ ‭ellipse‬ ‭at‬ ‭equal‬ ‭time‬ ‭intervals‬‭.‬ ‭To‬ ‭state‬ ‭this‬ ‭in‬ ‭a‬ ‭clearer‬ ‭way,‬ ‭a‬ ‭planet’s‬ ‭orbital‬ ‭speed‬ ‭depends‬ ‭upon‬‭its‬‭distance‬‭from‬‭the‬‭sun.‬‭It‬‭is‬‭faster‬ ‭when it is nearer but it is slower when it is further.‬ ‭Figure 22. Demonstration of Kepler’s 2nd Law on Earth’s Orbit‬ ‭If‬‭we‬‭look‬‭at‬‭Figure‬‭22,‬‭assuming‬‭that‬‭the‬‭shaded‬‭areas‬‭(A)‬‭are‬‭equal‬‭areas,‬‭the‬ ‭planet‬‭will‬‭also‬‭travel‬‭from‬‭points‬‭C‬‭to‬‭D‬‭and‬‭points‬‭N‬‭to‬‭M‬‭at‬‭the‬‭same‬‭amount‬ ‭of‬ ‭time‬ ‭because‬ ‭of‬ ‭Kepler’s‬ ‭2nd‬ ‭law.‬ ‭The‬ ‭planet‬ ‭travels‬ ‭faster‬ ‭in‬ ‭points‬ ‭C‬ ‭to‬ ‭D‬ ‭and the planet travels slower in points M to N.‬ ‭3.‬ ‭Kepler’s‬ ‭3rd‬ ‭Law‬ ‭states‬ ‭that‬ ‭the‬ ‭square‬ ‭of‬ ‭any‬ ‭planet’s‬ ‭orbital‬ ‭period will be proportional to the cube of the semi-major axis.‬ ‭Figure 23. The semi-major axis of an elliptical orbit‬ ‭The‬ ‭semi-major‬ ‭axis‬ ‭𝑎‬ ‭of‬ ‭an‬ ‭ellipse‬ ‭is‬ ‭defined‬ ‭as‬ ‭its‬ ‭longest‬ ‭radius.‬‭In‬‭celestial‬ ‭context,‬‭this‬‭is‬‭measured‬‭in‬‭astronomical‬‭units.‬‭The‬‭orbital‬‭period‬‭of‬‭a‬‭planet‬‭𝑃‬‭,‬ ‭on‬ ‭the‬ ‭other‬ ‭hand,‬ ‭is‬ ‭measured‬ ‭in‬ ‭years.‬ ‭These‬ ‭two‬ ‭variables‬ ‭are‬ ‭directly‬ ‭proportional and it can be expressed mathematically as follows:‬ ‭2‬ ‭3‬ ‭𝑃‬ = ‭𝑎‬ ‭[2.2]‬ ‭Since‬ ‭these‬ ‭perihelions‬ ‭and‬ ‭aphelions‬ ‭for‬ ‭most‬ ‭planets‬ ‭are‬ ‭extremely‬ ‭precise,‬ ‭their‬‭orbital‬‭periods‬‭and‬‭semi-major‬‭axes‬‭can‬‭be‬‭measured‬‭using‬‭the‬‭exact‬‭same‬ ‭properties of other planets. This can be expressed mathematically as follows:‬ ‭𝑃‬ ‭2‬ ‭𝑎‬ ‭3‬ ( ‭𝑃‭1‬ ‬ ) = ( ‭𝑎‬‭1‬ ) ‭[2.3]‬ ‭2‬ ‭2‬ ‭Kepler’s‬ ‭laws‬ ‭were‬ ‭a‬ ‭breakthrough‬ ‭in‬ ‭the‬ ‭scientific‬ ‭community‬ ‭because‬‭it‬‭gave‬ ‭birth‬‭to‬‭celestial‬‭mechanics,‬‭especially‬‭the‬‭relative‬‭distances‬‭between‬‭the‬‭planets‬ ‭from‬‭the‬‭sun‬‭and‬‭the‬‭mathematical‬‭formulas‬‭to‬‭describe‬‭the‬‭movement‬‭from‬‭the‬ ‭heavens.‬ ‭Example‬‭2.3.‬‭A‬‭planet‬‭travels‬‭at‬‭four‬‭distinct‬‭points‬‭on‬‭its‬‭orbit‬‭consecutively‬‭as‬ ‭shown‬ ‭in‬ ‭the‬ ‭diagram‬ ‭below.‬ ‭The‬ ‭distance‬ ‭between‬ ‭points‬ ‭A‬ ‭to‬ ‭B‬ ‭to‬ ‭the‬ ‭sun‬ ‭respectively‬ ‭are‬ ‭3‬. ‭2‬‭‬‭𝐴𝑈‬ ‭and‬ ‭1‬. ‭8‬‭‬‭𝐴𝑈‬ ‭and‬ ‭the‬ ‭distance‬ ‭from‬ ‭C‬ ‭to‬ ‭D‬ ‭to‬ ‭the‬ ‭sun‬ ‭respectively‬ ‭are‬ ‭1‬. ‭48‬‭‬‭𝐴𝑈‬ ‭and‬ ‭2‬. ‭81‬‭‬‭𝐴𝑈‬‭.‬ ‭The‬ ‭velocity‬ ‭of‬ ‭the‬ ‭planet‬ ‭from‬ ‭point‬ ‭B‬ ‭and‬‭point‬‭A‬‭respectively‬‭are‬‭66‬‭‬‭𝑘𝑚‬‭/‬‭𝑠‬ ‭and‬‭92‬‭‬‭𝑘𝑚‬‭/‬‭𝑠‬‭.‬‭Find‬‭the‬‭velocity‬‭of‬‭the‬‭planet‬ ‭at‬ ‭point‬ ‭D‬ ‭assuming‬ ‭that‬ ‭areas‬ ‭E‬ ‭and‬ ‭F‬ ‭are‬ ‭equal‬‭and‬‭the‬‭planet‬‭speeds‬‭up‬‭to‬ ‭109‬‭𝑘𝑚‬‭/‬‭𝑠‬ ‭at point C.‬ ‭Figure 24. The elliptical orbit of a planet in Example 2.3‬ ‭Solution:‬ ‭A.‬ ‭We‬ ‭will‬ ‭use‬ ‭Kepler’s‬ ‭2nd‬ ‭law‬ ‭and‬ ‭the‬ ‭Law‬ ‭of‬ ‭Conservation‬ ‭of‬ ‭Angular‬ ‭Momentum‬ ‭to‬ ‭solve‬ ‭this‬ ‭problem.‬ ‭We‬ ‭will‬ ‭first‬ ‭start‬ ‭by‬ ‭the‬ ‭problem‬ ‭assumes‬‭equal‬‭areas‬‭between‬‭E‬‭and‬‭F.‬‭Since‬‭this‬‭is‬‭the‬‭case,‬‭according‬‭to‬ ‭the‬‭law‬‭of‬‭conservation‬‭of‬‭angular‬‭momentum,‬‭the‬‭distances‬‭of‬‭the‬‭points‬ ‭to the foci‬‭𝑟‬ ‭is inversely proportional to the planet’s‬‭velocity‬‭𝑣‭.‬ ‬ ‭B.‬ ‭Area‬ ‭E‬ ‭includes‬ ‭points‬ ‭A‬ ‭and‬ ‭B.‬‭Therefore,‬‭we‬‭can‬‭establish‬‭an‬‭equation‬ ‭that relates the‬‭𝑟‬ ‭and‬‭𝑣‬ ‭of the planet at points‬‭A and B which is as follows:‬ ‭𝑟‬‭𝐴‭𝑣 ‬ = ‭𝑟‬‭𝐵‭𝑣 ‬ ‭𝐴‬ ‬ ‬ ‭𝐵‬ ‭We can also establish for points C and D:‬ ‭𝑟‬‭𝐶‭𝑣 ‬ = ‭𝑟‬‭𝐷‭𝑣 ‬ ‭𝐶‬ ‬ ‬ ‭𝐷‬ ‭C.‬ ‭Due‬‭to‬‭Kepler’s‬‭2nd‬‭Law,‬‭the‬‭time‬‭it‬‭takes‬‭for‬‭the‬‭planet‬‭to‬‭travel‬‭from‬‭A‬ ‭to‬ ‭B‬ ‭is‬ ‭equal‬ ‭from‬ ‭C‬ ‭to‬ ‭D.‬ ‭Therefore,‬ ‭we‬ ‭will‬ ‭set‬ ‭the‬ ‭ratio‬ ‭between‬ ‭the‬ ‭planet’s‬ ‭status‬ ‭from‬ ‭A‬ ‭to‬ ‭B‬ ‭equal‬ ‭to‬ ‭C‬ ‭to‬ ‭D.‬ ‭Therefore,‬ ‭the‬ ‭established‬ ‭formula is:‬ ‭𝑟‬‭𝐴‭𝑣 ‬ ‭𝑟‬‭𝐶‭𝑣 ‬ ‬ ‭𝐴‬ ‭𝑟‬‭𝐵‭𝑣 ‬ = ‬ ‭𝐶‬ ‭𝑟‬‭𝐷‭𝑣 ‬ ‭[2.4]‬ ‬ ‭𝐵‬ ‬ ‭𝐷‬ ‭D.‬ ‭Substitute‬‭all‬‭given‬‭values‬‭from‬‭the‬‭problem‬‭and‬‭you‬‭can‬‭now‬‭solve‬‭for‬‭the‬ ‭velocity at point D (‬‭𝑣‬‭𝑑‬‭).‬ (‭3‬.‭2‭‬‬‭𝐴𝑈‬)(‭66‬‭‬‭𝑘𝑚‬‭/‬‭𝑠)‬ (‭1.‬‭48‬‭‬‭𝐴𝑈‬)(‭109‬‭‬‭𝑘𝑚‬‭/‭𝑠‬ )‬ (‭1‬.‭8‭‬‬‭𝐴𝑈‬)(‭92‬‭‬‭𝑘𝑚‬‭/‬‭𝑠)‬ = (‭2‬.‭81‬‭‭𝐴 ‬ 𝑈‬)(‭𝑣‬‭𝑑‬) (‭1.‬‭48‬‭‭𝐴 ‬ 𝑈‬)(‭109‬‭‬‭𝑘𝑚‬‭/‭𝑠‬ )‬ (‭1.‬‭8‭‬‬‭𝐴𝑈‬)(‭92‬‭‬‭𝑘𝑚‬‭/‭𝑠‬ )‬ ‭𝑣‬‭𝑑‬ = (‭3.‬‭2‭‬‬‭𝐴𝑈‬)(‭66‬‭‭𝑘 ‬ 𝑚‬‭/‭𝑠‬ )‬ (‭2.‬‭81‬‭‬‭𝐴𝑈‬) ‭𝑣‬‭𝑑‬ = ‭45‬. ‭01‬‭‬‭𝑘𝑚‬‭/‬‭𝑠‬ ‭We‬ ‭can‬ ‭see‬ ‭that‬ ‭the‬ ‭velocity‬ ‭at‬ ‭point‬ ‭D‬ ‭decreased‬ ‭because‬ ‭the‬ ‭planet‬ ‭is‬ ‭going‬ ‭away from the sun.‬ ‭‬ 1 ‭Example‬ ‭2.4.‬ ‭Planet‬ ‭A‬ ‭can‬ ‭complete‬ ‭4‬ ‭of‬ ‭its‬ ‭orbit‬ ‭around‬ ‭its‬ ‭star‬ ‭by‬‭6.5‬‭years‬ ‭‬ 3 ‭while‬ ‭Planet‬ ‭B‬ ‭can‬ ‭complete‬ ‭8‬ ‭of‬ ‭its‬ ‭orbit‬ ‭at‬ ‭the‬ ‭same‬ ‭star‬ ‭by‬ ‭7.7‬ ‭years.‬ ‭In‬ ‭planet‬‭A,‬‭the‬‭distances‬‭of‬‭its‬‭aphelion‬‭and‬‭perihelion‬‭respectively‬‭are‬‭1‬. ‭9‬‭‬‭𝐴𝑈‬ ‭and‬ ‭3‬. ‭9‬‭‬‭𝐴𝑈‬‭. Calculate the major axis of Planet B.‬ ‭Solution:‬ ‭A.‬ ‭This‬‭problem‬‭can‬‭be‬‭solved‬‭using‬‭Kepler’s‬‭3rd‬‭Law.‬‭When‬‭two‬‭planets‬‭are‬ ‭involved‬ ‭and‬ ‭rotating‬ ‭at‬ ‭the‬ ‭same‬ ‭star,‬ ‭the‬ ‭ratio‬ ‭between‬ ‭their‬ ‭orbital‬ ‭periods‬ ‭and‬ ‭their‬ ‭semi-major‬ ‭axes‬ ‭can‬ ‭be‬ ‭described‬ ‭the‬ ‭the‬ ‭equation‬ ‭below:‬ ‭𝑃‬ ‭2‬ ‭𝑎‬ ‭3‬ ( ‭𝑃‭1‬ ‬ ) = ( ‭𝑎‬‭1‬ ) ‭[2.5]‬ ‭2‬ ‭2‬ ‭B.‬ ‭Since‬‭the‬‭problem‬‭involves‬‭partial‬‭orbits,‬‭we‬‭would‬‭want‬‭first‬‭to‬‭solve‬‭for‬ ‭their full orbital periods which can be solved as follows:‬ ‭6‬. ‭5‬ × ‭4‬ = ‭26‬‭‬‭𝑦𝑒𝑎𝑟𝑠‬ ‭‬ 8 ‭7‬. ‭7‬ × ‭3‬ = ‭20‬. ‭53‬‭‬‭𝑦𝑒𝑎𝑟𝑠‬ ‭C.‬ ‭In‬ ‭planet‬ ‭A,‬ ‭the‬ ‭distances‬ ‭of‬ ‭its‬ ‭aphelion‬ ‭and‬ ‭perihelion‬ ‭respectively‬‭are‬ ‭1‬. ‭9‬‭‬‭𝐴𝑈‬ ‭and‬ ‭3‬. ‭9‬‭‬‭𝐴𝑈‬‭.‬‭Aphelion‬‭and‬‭Perihelion‬‭added‬‭make‬‭up‬‭the‬‭major‬‭axis‬ ‭of‬‭its‬‭elliptical‬‭orbit.‬‭To‬‭solve‬‭for‬‭the‬‭semi-major‬‭axis,‬‭we‬‭will‬‭add‬‭aphelion‬ ‭and perihelion and divide the result by 2.‬ ‭1‬.‭9‭‬‬‭𝐴𝑈‬+‭3.‬‭9‭‬‬‭𝐴𝑈‬ ‭2‬ = ‭2‬. ‭9‭‬‬‭𝐴𝑈‬ ‭D.‬ ‭We‬ ‭can‬ ‭now‬ ‭substitute‬ ‭these‬ ‭values‬ ‭into‬ ‭our‬‭formula‬‭in‬‭order‬‭to‬‭find‬‭the‬ ‭semi-major axis of Planet B first.‬ ‭26‬ ‭2‬ ‭.‬‭9‬ ‭3‬ 2 ( ‭20‬.‭53‬ ) = ( ‭𝑎‭2‬ ‬ ) ‭ ‬.‭9‬ 2 ‭26‬ ‭2‬ ‭𝑎‬‭2‬ = ( ‭20‬.‭53‬ ) ‭2.‬‭9‬ ‭𝑎‬‭2‬ = ‭2‬ ‭26‬ ( ‭20‬.‭53‬ ) ‭𝑎‬‭2‬ = ‭2‬. ‭48‬‭‬‭𝐴𝑈‬ ‭Note‬ ‭that‬ ‭this‬ ‭value‬ ‭is‬ ‭just‬ ‭the‬ ‭semi-major‬ ‭axis‬ ‭of‬ ‭Planet‬ ‭B’s‬ ‭orbit.‬ ‭To‬ ‭calculate‬ ‭its‬ ‭major‬ ‭axis,‬ ‭we‬ ‭will‬ ‭multiply‬ ‭its‬ ‭semi-major‬ ‭axis‬ ‭by‬ ‭2‬ ‭which‬ ‭results in‬‭4‬. ‭96‬‭‬‭𝐴𝑈‬‭.‬ ‭Example‬‭2.5.‬‭Planet‬‭C‬‭can‬‭complete‬‭one‬‭orbit‬‭in‬‭2‬. ‭5‬ ‭years‬‭around‬‭its‬‭star‬‭with‬‭a‬ ‭semi-major‬‭axis‬‭of‬ ‭1‬. ‭7‬‭‬‭𝐴𝑈‬‭.‬‭If‬‭Planet‬‭D’s‬‭major‬‭axis‬‭is‬‭41%‬‭longer‬‭than‬‭Planet‬‭C’s‬ ‭major axis, calculate the orbital period of Planet D.‬ ‭Solution:‬ ‭A.‬ ‭This‬‭problem‬‭can‬‭be‬‭solved‬‭using‬‭Kepler’s‬‭Third‬‭Law‬‭using‬‭the‬‭ratio‬‭of‬‭the‬ ‭orbital‬ ‭periods‬ ‭and‬ ‭the‬ ‭semi-major‬ ‭axes‬ ‭of‬ ‭the‬ ‭planets‬ ‭as‬ ‭discussed‬ ‭in‬ ‭formula‬‭2.5‬‭.‬‭But‬‭first,‬‭we‬‭will‬‭solve‬‭for‬‭the‬‭length‬‭of‬‭the‬‭semi-major‬‭axis‬‭of‬ ‭Planet D.‬ ‭B.‬ ‭The‬ ‭semi-major‬ ‭axis‬ ‭of‬ ‭planet‬ ‭D‬ ‭can‬ ‭be‬ ‭calculated‬ ‭by‬ ‭increasing‬ ‭the‬ ‭semi-major axis of planet C by 41%.‬ ‭1‬. ‭7‬‭‬‭𝐴𝑈‬ × ‭‬(‭1‬ + ‭0‬. ‭41‬) = ‭2‬. ‭397‬‭‬‭𝐴𝑈‬ ‭C.‬ ‭Substitute the given values into formula‬‭2.5‬‭.‬ ‭.‬‭5‬ ‭2‬ 2 ‭1‬.‭7‬‭‭𝐴 ‬ 𝑈‬ ‭3‬ ( ‭𝑃‬‭𝐷‬ ) = ( ‭2.‬‭397‬‭‬‭𝐴𝑈‬ ) ‭ ‬.‭5‬ 2 ‭1.‬‭7‭‬‬‭𝐴𝑈‬ ‭3‬ ‭𝑃‬‭𝐷‬ = ( ‭2‬.‭397‬‭‭𝐴‬ 𝑈‬ ) ‭2‬.‭5‬ ‭𝑃‬‭𝐷‬ = ‭ ‬.‭7‭‬‬‭𝐴𝑈‬ ‭3‬ 1 ( ‭2.‬‭397‬‭‭𝐴 ‬ 𝑈‬ ) ‭𝑃‬‭𝐷‬ = ‭4‬. ‭19‬‭‬‭𝑦𝑒𝑎𝑟𝑠‬ ‭This implies that Planet D completes one orbit in 4.19 years.‬ ‭Chapter 2.3. Satellites‬ ‭Have‬ ‭you‬ ‭ever‬ ‭wondered‬ ‭how‬ ‭“satellite”‬ ‭was‬ ‭defined‬ ‭during‬ ‭the‬ ‭junior‬ ‭years?‬ ‭Maybe‬ ‭some‬ ‭of‬ ‭us‬ ‭immediately‬ ‭associate‬‭the‬‭word‬‭satellite‬‭for‬‭those‬‭man-made‬ ‭infrastructures‬ ‭wandering‬ ‭around‬ ‭space‬ ‭while‬ ‭observing‬ ‭and‬ ‭capturing‬ ‭the‬ ‭essence‬‭of‬‭our‬‭planet.‬‭This‬‭is‬‭what‬‭this‬‭particular‬‭subchapter‬‭will‬‭discuss‬‭->‬‭the‬ ‭definition of the word “satellite” and its various types.‬ ‭A‬ ‭satellite‬ ‭is‬ ‭a‬ ‭small‬ ‭object‬ ‭that‬ ‭revolves‬ ‭around‬ ‭a‬ ‭larger‬ ‭object‬ ‭in‬ ‭space‬‭.‬ ‭Yes,‬ ‭anything‬‭small‬‭that‬‭revolves‬‭around‬‭a‬‭big‬‭object‬‭is‬‭already‬‭considered‬‭a‬‭satellite‬ ‭which‬ ‭is‬ ‭not‬ ‭limited‬ ‭upon‬ ‭man-made‬ ‭infrastructure.‬‭An‬‭object‬‭requires‬‭to‬‭be‬‭in‬ ‭orbit‬ ‭around‬ ‭another‬ ‭object‬ ‭to‬ ‭be‬ ‭a‬ ‭satellite.‬ ‭An‬ ‭orbit‬ ‭is‬ ‭the‬ ‭curved‬ ‭path‬ ‭of‬ ‭an‬ ‭object around another object‬‭.‬ ‭An‬ ‭example‬ ‭of‬ ‭satellites‬ ‭include‬ ‭our‬ ‭moon‬ ‭and‬ ‭the‬ ‭moons‬ ‭of‬ ‭the‬ ‭other‬ ‭planets,‬ ‭and the planets themselves since they are revolving around the sun.‬ ‭The two types of satellites are‬‭natural‬‭and‬‭artificial‬‭satellites.‬ ‭1.‬ ‭Natural‬ ‭satellites‬ ‭involve‬ ‭a‬ ‭smaller‬ ‭natural‬ ‭object‬ ‭revolving‬ ‭around‬ ‭a‬ ‭bigger‬‭natural‬‭object.‬‭Examples‬‭of‬‭natural‬‭satellites‬‭include‬‭the‬‭moon‬‭(‬‭due‬ ‭to‬ ‭its‬ ‭orbit‬ ‭around‬ ‭Earth‬‭)‬ ‭and‬ ‭the‬ ‭planets‬ ‭(‭d ‬ ue‬ ‭to‬ ‭their‬ ‭orbit‬ ‭around‬ ‭the‬ ‭sun‬‭).‬ ‭➔‬ ‭Only‬ ‭Earth‬ ‭(1),‬ ‭Mars‬ ‭(2),‬ ‭Jupiter‬ ‭(67),‬ ‭Saturn‬ ‭(62),‬ ‭Uranus‬ ‭(27),‬ ‭and‬ ‭Neptune (14) have moons‬ ‭2.‬ ‭Artificial‬ ‭satellites‬ ‭involve‬ ‭man-made‬ ‭objects‬ ‭that‬ ‭are‬ ‭designed‬ ‭to‬ ‭orbit‬ ‭around‬ ‭the‬ ‭Earth‬ ‭or‬ ‭other‬ ‭natural‬ ‭objects‬ ‭in‬ ‭space.‬ ‭These‬ ‭satellites‬ ‭are‬ ‭used‬ ‭to‬ ‭transmit,‬ ‭receive‬ ‭signals,‬ ‭and‬ ‭capture‬ ‭the‬ ‭essence‬ ‭of‬ ‭our‬ ‭planet‬ ‭and other planets.‬ ‭➔‬ ‭They‬ ‭are‬ ‭released‬ ‭into‬ ‭space‬ ‭through‬ ‭rockets‬ ‭or‬ ‭space‬ ‭shuttles.‬ ‭Rockets‬ ‭need‬ ‭enough‬ ‭fuel‬ ‭to‬ ‭generate‬ ‭enough‬ ‭thrust‬ ‭and‬ ‭speed‬ ‭to‬ ‭atleast‬ ‭17,800‬ ‭mph to stay in orbit around Earth.‬ ‭➔‬ ‭The‬ ‭principles‬ ‭of‬ ‭momentum‬ ‭and‬ ‭gravity‬ ‭can‬ ‭help‬ ‭a‬ ‭satellite‬ ‭stay‬ ‭into‬ ‭orbit‬ ‭➔‬ ‭The first artificial satellite is Sputnik-1 (Russia)‬

Use Quizgecko on...
Browser
Browser