Vector Spaces PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document explains the fundamental concepts of vector spaces, including axioms and examples. It covers the definition of vector spaces and how to verify if a set fulfills these axioms.
Full Transcript
## Vector Spaces **ii) A field has at least two elements** **Vector space** Let *F* be a field and *V* be a non-empty set. In *V*, we define the operations of addition and scalar multiplication *×* where *x* ∈ *V* and *c* ∈ *F*. Then the set *V* is called a vector space over the field *F* if the...
## Vector Spaces **ii) A field has at least two elements** **Vector space** Let *F* be a field and *V* be a non-empty set. In *V*, we define the operations of addition and scalar multiplication *×* where *x* ∈ *V* and *c* ∈ *F*. Then the set *V* is called a vector space over the field *F* if the following axioms are satisfied: 1. (*V*, +) is an Abelian group * (i) *c*(x+y) = *c*x + *c*y * (ii) *(c₁+c₂)*x = *c₁*x + *c₂*x * (iii) *(c₁c₂)*x = *c₁*(*c₂*x) * (iv) 1 * x* = *x* * (v) 0 * x* = 0 2. The vectors space over the field *F* is denoted by *V(F)*. The elements of *F* are called scalars and the elements of *V* are called vectors. **WORKED EXAMPLES** * **1**. The set of all ordered pairs (*x₁ , x₂*) of the elements of the field of real nos forms a vector space w.r.t addition and scalar multiplication defined as * *(c₁ + c₂)* (*x₁, *x₂*) = (*c₁* *x₁* + *c₂* *x₁*, *c₁* *x₂* + *c₂* *x₂*) **Soln:** Let *V*(R) = {(*x₁ , x₂*)/ *x₁* ∈ R}. Let *α*, *β*, *Γ* ∈ *V*(R) *x* = (*x₁ , x₂*), *β* = (*y₁ , y₂*) *Γ* = (*z₁ , z₂*). Let *c*, *c₁*, *c₂* ∈ *F*. I. (*V*, +) is an Abelian group * i) x + *β* = (*x₁ , x₂*) + (*y₁ , y₂*) * = (*x₁+ *y₁* , *x₂* + *y₂*) * ii) *x* + (*β* + *Γ*) = (*x*+*β*) + *Γ* * *LHS:* *x* + (*β* + *Γ*) = (*x₁ , x₂*) + (*y₁ + *z₁* , *y₂* + *z₂*) * = (*x₁+*y₁** + *z₁* , *x₂* +*y₂* + *z₂*) * *RHS:* (*x* + *β*) + *Γ* = (*x₁ + *y₁* , *x₂* + *y₂*) + (*z₁ , *z₂*) * = (*x₁ + *y₁* + *z₁* , *x₂* + *y₂* + *z₂*) * ∴ LHS = RHS * iii) There exists 0 = (*0 , 0*) ∈ *V* such that * (*0 , 0*) + (*x₁ , x₂*) = (*x₁ , x₂*) + (*0 , 0*) = (*x₁ , x₂*) * iv) ∀ *x* ∈ *V* such that (*x₁ , x₂*) ∈ *V*, there exists - *x* = (-*x₁* , -*x₂*) * (*x₁ , x₂*) + (-*x₁* , -*x₂*) = (-*x₁* , -*x₂*) + (*x₁ , x₂*) = (*0 , 0*) = 0 * v) *x* + *β* = (*x₁ , x₂*) + (*y₁ , y₂*) * = (*x₁ + *y₁* , *x₂* + *y₂*) * = (*y₁ + *x₁* , *y₂* + *x₂*) * = *β* + *x* * ∴ (*V*, +) is an Abelian group. * ii) *c*(*x*+*β*) = *c*(*x₁ + *y₁* , *x₂* + *y₂*) * = *c*(*x₁ + *y₁* , *c*(*x₂* + *y₂*)) * = (*c* *x₁* + *c* *y₁* , *c* *x₂* + *c* *y₂*) * = *c*(*x₁ , *x₂*) + *c*(*y₁ , *y₂*) * = *c* *x* + *c* *β* * iii) *(c₁c₂)* *x* = *(c₁c₂)* (*x₁ , *x₂*) * = (*(c₁c₂)* *x₁* , *(c₁c₂)* *x₂*) * = *c₁*(*c₂* *x₁* , *c₂* *x₂*) * = *c₁*(*c₂* *x₁* , *c₂* *x₂*) * = *c₁*(*c₂* *x* , *c₂* *x₂*) * iv) 1 * x* = 1 * (*x₁ , *x₂*) = (*1* *x₁* , *1* *x₂*) = (*x₁ , x₂*) = *x* * v) 0 * x* = 0 * (*x₁ , *x₂*) = (*0* *x₁* , *0* *x₂*) = (*0 , 0*) = 0 * All the axioms of vector space are satisfied. ∴ *V* forms a vector space. * **2**. The set of all ordered triples (*x₁, *y₁, *z₁*) over the field of real nos forms a vector space w.r.t addition and scalar multiplication defined as * *(c₁ + c₂)*(*x₁, *y₁, *z₁*) + *(c₁* *x₁, *c₁* *y₁, *c₁* *z₁*) + *(c₂* *x₁, *c₂* *y₁, *c₂* *z₁*) * **3**. The set of all ordered n tuples of the elements of the field *F* forms a vector space w.r.t addition and scalar multiplication defined as * (*x₁, *x₂, ..., *x<sub>n</sub>*) + (*y₁, *y₂*, ..., *y<sub>n</sub>*) = (*x₁ + *y₁*, *x₂ + *y₂*, ..., *x<sub>n</sub>* + *y<sub>n</sub>*) * *c* (*x₁, *x₂*, ..., *x<sub>n</sub>*) = (*c* *x₁, *c* *x₂*, ..., *c* *x<sub>n</sub>*) *Proof* is the same as in the previous examples. * **4**. The vector space of real nos ordered *n* tuples over the field of real nos is denoted by *V<sub>n</sub>*(R) or *R<sup>n</sup>* which is called the n-dimensional space *In particular*, if *n* = 2, the vector space is *V₂*(R) which is the two dimensional space, and if *n* = 3, the vector space is *V₃*(R) which is the three dimensional space. * **5**. P.T. the set of all real valued continuous (differentiable, integrable) funcs of *x* defined in the interval (0, 1) is a vector space. *Let *V* be the set of all real valued continuous func. of *x* defined in (0, 1) *Let *f* , *g* ∈ *V* and *c* ∈ R. Then *(*f*+*g*)(*x*) = *f*(*x*) + *g*(*x*) *(*c*f)(*x*) = *c*(*f*(*x*)) * ∴ (*V*, +) is an Abelian group. * i) If *f* and *g* are continuous funcs, then we know that their sum *f* + *g* is also continuous. * ii) If *f*, *g*, *h* ∈ *V*, then * *f* + (*g* + *h*)(*x*) = *f*(*x*) + (*g*+*h*)(*x*) * = *f*(*x*) + (*g*(*x*) + *h*(*x*)) * = [ *f*(*x*) + *g*(*x*)] + *h*(*x*) * = (*f*+*g*)(*x*) + *h*(*x*) * = [(*f*+*g*) + *h* ](*x*) * ∴ *f* + (*g* + *h*) = (*f*+*g*) + *h* * iii) The function 0(*x*) = 0 is the identity * (*0*+*f*)(*x*) = 0(*x*) + *f*(*x*) = 0 + *f*(*x*) = *f*(*x*) * ∴ *0* + *f* = *f* * (*f*+*0*)(*x*) = *f*(*x*) + 0(*x*) = *f*(*x*) + 0 = *f*(*x*) * ∴ *f* + 0 = *f* * ∴ *0* + *f* = *f* + *0* = *f* * iv) (-*f*)(*x*) = -(*f*(*x*)) is the additive inverse of *f* * ∴ (-*f*)(*x*) + *f*(*x*) = (-*f*+ *f*)(*x*) = 0(*x*) = 0 * ∴ *f*(*x*) + (-*f*)(*x*) = (*f* + (-*f*))(x) = 0(*x*) = 0 * v) (*f*+*g*)(*x*) = *f*(*x*) + *g*(*x*) * = *g*(*x*) + *f*(*x*) * = (*g*+*f*)(*x*) * ∴ *f* + *g* = *g* + *f* * ∴(*V*, +) is an Abelian group. * i) *c*(*f*+*g*) = *c*f + *cg* * *c*(*f*+*g*)(*x*) = *c*((f*+*g*)(*x*)) * = *c* [ *f*(*x*) + *g*(*x*)] * = *c* *f*(*x*) + *c* *g*(*x*) * = (*c*f)(*x*) + (*cg*)(*x*) * = (*c*f + *cg*)(*x*) * ∴ *c*(*f*+*g*) = *c*f + *cg* * ii) *(c₁+c₂)*f = *c₁*f + *c₂*f * *(c₁+c₂)*f(*x*) = *(c₁+c₂)* *f*(*x*) * = *c₁* *f*(*x*) + *c₂* *f*(*x*) * = (*c₁*f + *c₂*f)(*x*) * ∴ *(c₁+c₂)*f = *c₁*f + *c₂*f * iii) *(c₁c₂)*f = *c₁*(*c₂*f) * *(c₁c₂)*f(*x*) = *(c₁c₂)* *f*(*x*) * = *c₁* (*c₂* *f*(*x*)) * = *c₁* (*c₂*f)(*x*) * ∴ *(c₁c₂)*f= c₁ * (*c₂*f) * iv) 1 * f* = *f* * (1 * f*)(*x*) = 1 * *f*(*x*) = *f*(*x*) = *f*(*x*) * ∴ 1 * f* = *f* * v) 0 * f* = 0 * (0 * f*)(*x*) = 0 * *f*(*x*) = 0 = 0 * ∴ 0 * f* = 0 * ∴ *V* is a vector space over the field of real numbers. * **6**. The set of all ordered *n*-tuples of complex nos forms a vector space over the field of complex numbers. This is denoted by *C<sup>n</sup>* *Soln:* Let *V* = { (*z₁* , *z₂* , ..., *z<sub>n</sub>*) / *z₁* , *z₂* , ..., *z<sub>n</sub>* ∈ *C*}. *Let *α* = (*x₁* , *x₂* , ..., *x<sub>n</sub>*), *β* = (*y₁* , *y₂* , ..., *y<sub>n</sub>*) *Γ* = (*z₁* , *z₂* , ..., *z<sub>n</sub>*) ∈ *V* *Let *c*, *c₁*, *c₂* ∈ *C*. * *c* *α* = *c* (*x₁* , *x₂* , ..., *x<sub>n</sub>*) = (*c* *x₁* , *c* *x₂* , ..., *c* *x<sub>n</sub>*) where *c* ∈ *C* I. (*V*, +) is an Abelian group * i) *α* + *β* = (*x₁* + *y₁* , *x₂* + *y₂* ,… *x<sub>n</sub>* + *y<sub>n</sub>* ) ∈ *V* * ii) *α* + (*β* + *Γ*) = (*α* + *β*) + *Γ* which can be easily verified * iii) 0 = (*0 , 0 , 0 , ... , 0*) ∈ *V*, the additive identity * iv) ∀ *x* = (*x₁ , *x₂* , ..., *x<sub>n</sub>*) ∈ *V* such that there exists - *x* = (-*x₁* , -*x₂* , ..., -*x<sub>n</sub>*) ∈ *V* * *x* + (-*x*) = -*x* + *x* = (*0 , 0 , ... , 0*) = 0 * v) *α* + *β* = *β* + *α* II. *c* (*α* + *β*) = *c* (*x₁*+*y₁* , *x₂*+*y₂* , ..., *x<sub>n</sub>*+ *y<sub>n</sub>*) * = *c* (*x₁*+*y₁* , *c* (*x₂*+*y₂*) , ..., *c* (*x<sub>n</sub>*+*y<sub>n</sub>*)) * = (*c* *x₁* + *c* *y₁* , *c* *x₂* + *c* *y₂* , ..., *c* *x<sub>n</sub>* + *c* *y<sub>n</sub>*) * = (*c* *x₁* , *c* *x₂* , ... , *c* *x<sub>n</sub>*) + (*c* *y₁* , *c* *y₂* , ... , *c* *y<sub>n</sub>*) * = *c* (*x₁* , *x₂* , ... , *x<sub>n</sub>*) + *c* (*y₁* , *y₂* , ... , *y<sub>n</sub>*) * = *c* *α* + *c* *β* * iii) *(c₁+c₂)* *α* = *c₁* *α* + *c₂* *α* which can be verified easily * iv) *(c₁c₂)* *α* = *c₁* (*c₂* *α*) which can be verified easily * v) 1 * α* = 1 * (*x₁* , *x₂* , ... , *x<sub>n</sub>*) = (*1* *x₁* , *1* *x₂* , ... , 1 * *x<sub>n</sub>*) = (*x₁* , *x₂* , ... , *x<sub>n</sub>*) * ∴ *V* is a vector space over the field of complex numbers. ## Subspaces A non-empty subset *W* of a vector space *V* is said to be a subspace of *V* over a field *F* if *W* is a vector space over *F* w.r.t (the same operations as in *V*. * Ex: The set *W* of all ordered triplets (*x₁ , x₂ , 0*) over the field of real nos is a subset of the vector space *V<sub>3</sub>*(R) w.r.t addition and scalar multiplication. The set *W* of all ordered triplets of the form *c*(*x₁ , *x₂ , 0*) is a subset of *V* and *W* is a subspace of *V*. * NOTE: Every vector space has always two subspaces: *0* and *V*. These are called trivial subspaces. *0* and any subspace of *V* is called a non-trivial subspace of *V*. **Criteria for a subset to be a subspace** Theorem 1: A non-empty subset *W* of a vector space *V* is a subspace of *V* iff * i) *x* ∈ *W* , *β* ∈ *W* ⇒ *x* + *β* ∈ *W* * ii) *c* ∈ *F*, *x* ∈ *W* ⇒ *c* *x* ∈ *W* **Note:** Whenever we have to prove that *W* is a subspace of *V*, it is enough to verify that *1* *x* *W* is a non-empty subset of *V*, and * ii) *x*, *β* ∈ *W*, *c₁*, *c₂* ∈ *F*, *c₁* *x* + *c₂* *β* ∈ *W* Theorem 2: A non-empty subset *W* of a vector space *V* is a subspace of *V* iff * i) *x*, *β* ∈ *W*, *c₁*, *c₂* ∈ *F* ⇒ *c₁* *x* + *c₂* *β* ∈ *W* **Note:** Whenever we have to prove that *W* is a subspace of *V*, it is enough to verify that *1* *x* ∈ *W* is a non-empty subset of *V*, and * ii) *x*, *β* ∈ *W*, *c₁*, *c₂* ∈ *F*, *c₁* *x* + *c₂* *β* ∈ *W* Theorem 3: The intersection of any two subspaces of a vector space *V* over a field *F* is a subspace of *V*. * **1**. P.T. the subset *W* = {(*x₁,*x₂, *x₃*)/ *x₁* + *x₂* + *x₃* = 0} of the vector space *V₃*(R) is a subspace of *V₃*(R) * **Soln:** *W* is a non-empty subset of *V₃*(R) since (*0 , 0 , 0*) ∈ *W*, and *c₁*, *c₂* ∈ *R* * Let *x* = (*x₁ , *x₂ , *x₃*) such that *x₁* + *x₂* + *x₃* = 0 * Let *β* = (*y₁ , *y₂ , *y₃*) such that *y₁* + *y₂* + *y₃* = 0 * *c₁* *x* + *c₂* *β* = *c₁* (*x₁ , *x₂ , *x₃*) + *c₂* (*y₁ , *y₂ , *y₃*) * = (*c₁* *x₁* + *c₂* *y₁* , *c₁* *x₂* + *c₂* *y₂* , *c₁* *x₃*+ *c₂* *y₃*) * = (c₁*x₁* + *c₂* *y₁* , *c₁* *x₂* + *c₂* *y₂* , *c₁* *x₃* + *c₂* *y₃*) * = (*c₁*x₁* + *c₂* *y₁* , *c₁* *x₂* + *c₂* *y₂* , *c₁*x₁* + *c₂*y₁* + *c₁*x₂* + *c₂*y₂*) * = (*c₁*x₁* + *c₂* *y₁* , *c₁* *x₂* + *c₂* *y₂* , 0) * ∴ *c₁* *x* + *c₂* *β* ∈ *W* * ∴ *W* is a subspace of *V₃*(R) * **2**. P.T. the subset *W* = {(*x₁, *y₁, *z₁*)/ *x₁* -3*y₁* + 4*z₁* = 0} of the vector space *R³* is a subspace of *R³* * **Soln:** *W* is a non-empty subset of *R³* since at least one element (0 , 0 , 0) ∈ *W* such that 0-3*0* + 4 *0* = 0. Let *x*, *β* ∈ *W* and *c₁*, *c₂* ∈ *R* * Let *x* = (*x₁ , *y₁ , *z₁*) such that *x₁* - 3*y₁* + 4*z₁* = 0 * Let *β* = (*x₂ , *y₂ , *z₂*) such that *x₂* - 3*y₂* + 4*z₂* = 0 * *c₁* *x* + *c₂* *β* = *c₁* (*x₁ , *y₁ , *z₁*) *+ *c₂* (*x₂ , *y₂ , *z₂*) * = (*c₁* *x₁* + *c₂* *x₂, *c₁* *y₁* + *c₂* *y₂*, *c₁* *z₁* + *c₂* *z₂*) * and *c₁* *x₁* + *c₂* *x₂* - 3(*c₁* *y₁* + *c₂* *y₂*) + 4(*c₁* *z₁* + *c₂* *z₂) * = *c₁* (*x₁* - 3 *y₁* + 4 *z₁*) + *c₂* (*x₂* - 3 *y₂* + 4 *z₂*) * = *c₁* (0) + *c₂* (0) = 0 * ∴ *c₁* *x* + *c₂* *β* ∈ *W* * ∴ *W* is a subspace of *V₃*(R). * **3**. P.T. the subset *W* = {(*x₁ , *y₁ , *z₁*)/ *x₁* = *y₁* = *z₁*} is a subspace of *V₃*(R). * **Soln:** *W* is a non-empty subset of *V₃*(R). * Let *x* ∈ *W*, *x* = (*x₁ , *y₁ , *z₁*) such that *x₁* = *y₁* = *z₁* * Let *β* ∈ *W*, *β* = (*x₂ , *y₂ , *z₂*) such that *x₂* = *y₂* = *z₂* * *c₁* *x* + *c₂* *β* = *c₁* (*x₁ , *y₁ , *z₁*) + *c₂* (*x₂ , *y₂ , *z₂*) * = (*c₁* *x₁* + *c₂* *x₂* , *c₁* *y₁* + *c₂* *y₂* , *c₁* *z₁* + *c₂* *z₂*) * and *x₁* = *y₁* = *z₁* and *x₂* = *y₂* = *z₂* * ∴ *x₁* = *y₁* = *z₁* ∴ *c₁* *x₁* + *c₂* *x₂* = *c₁* *y₁* + *c₂* *y₂* = *c₁* *z₁* + *c₂* *z₂* * ∴ *c₁* *x* + *c₂* *β* ∈ *W* * ∴ *W* is a subspace of * V₃*(R) * **4**. If a vector space is the set of real valued continuous funcs. over the field of real nos. Then P.T. the set *W* of solutions of the D.E. 2 *d<sup>2</sup>y*/d*x*<sup>2</sup> - 9 *dy*/d*x* + 2 *y* = 0 is a subspace of *V*. * **Soln:** *W* = { *f* / 2 *d<sup>2</sup>y*/d*x*<sup>2</sup> - 9 *dy*/d*x* + 2 *y* = 0} * Clearly *y = 0* satisfies the given D.E. * ∴ *W* is non-empty. * Let *y₁*, *y₂* ∈ *W* and *c₁*, *c₂* ∈ *R*. Then we have to show that *c₁* *y₁* + *c₂* *y₂* satisfies the D.E. * Consider * 2 *d<sup>2</sup>(*c₁* *y₁* + *c₂* *y₂*)/d*x*<sup>2</sup> - 9 *d(*c₁* *y₁* + *c₂* *y₂*) /d*x* + 2(*c₁* *y₁* + *c₂* *y₂*) * = 2 *c₁* *d<sup>2</sup> *y₁*/d*x*<sup>2</sup> + 2*c₂* *d<sup>2</sup> *y₂*/d*x*<sup>2</sup> - 9 *c₁* *dy₁*/d*x* - 9*c₂* *dy₂*/d*x* + 2 *c₁* *y₁* + 2 *c₂* *y₂* * = *c₁* ( 2 *d<sup>2</sup> *y₁*/d*x*<sup>2</sup> - 9 *dy₁*/d*x* + 2 *y₁*) * + *c₂* (2 *d<sup>2</sup> *y₂*/d*x*<sup>2</sup> - 9 *dy₂*/d*x* + 2 *y₂*) * = *c₁* (0) + *c₂* (0) = 0 * ∴ *c₁* *y₁* + *c₂* *y₂* ∈ *W* * ∴ *W* is a subspace of *V*. * **5**. Verify whether *W* = {(*x₁ , *x₂ , *x₃*)/ *x₁*<sup>2</sup> + *x₂*<sup>2</sup> + *x₃*<sup>2</sup> ≤ 1 } is a subspace of * V₃*(R) iff *W* is a subspace of *V₁*(R) * **Soln:** Consider *x* = (1 , 0 , 0) , *β* = ( 0 , 0 , 1) * Clearly *x* ∈ *W* since 1<sup>2</sup> + 0<sup>2</sup> + 0<sup>2</sup> = 1 ≤ 1 * *β* ∈ *W* since 0<sup>2</sup> + 0<sup>2</sup> + 1<sup>2</sup> = 1 ≤ 1 * Now *x* + *β* = ( 1 , 0 , 0 ) + ( 0 , 0 , 1 ) = ( 1 , 0 , 1 ) * ∴ 1<sup>2</sup> + 0<sup>2</sup> + 1<sup>2</sup> = 2 which is not less than or equal to 1. * ∴ *x* + *β* ∉ *W* * i.e., *x*, *β* ∈ *W* but *x* + *β* ∉ *W*. ∴ *W* is not a subspace of *V*. ## Linear span of a set **Linear Span** Def: Let *V* be a vector space over the field *F* and *y₁*, *y₂*. ... *y<sub>m</sub>* be any *m* vectors of *V*. Any vector of the form *c₁* *y₁* + *c₂* *y₂* + .... + *c<sub>n</sub>* *y<sub>n</sub>* where *(c₁ , c₂ , ... , c<sub>n</sub>)* ∈ *F* is called a linear combination of the vectors *y₁* , *y₂*, ... *y<sub>m</sub>*. Def: Let *V* be a vector space over the field *F* and *S* be any non-empty subset of *V*. Then the linear span of Sis the set of all the linear combination of any finite no of elements of *S* and is denoted by *L(S)*. * ∴ *L(S)* = { *c₁* *y₁* + *c₂* *y₂* + .... + *c<sub>m</sub>* *y<sub>m</sub>* : *c<sub>i</sub>* ∈ *F*, *i* = 1, 2, ... , *m*}. **LINEAR INDEPENDENCE & DEPENDENCE** Def: A set {*}y₁* , *y₂* , ... , *y<sub>n</sub>*} of vectors of a vector space *V* over a field *F* is said to be linearly independent if there exist scalars *c₁* , *c₂* , *c<sub>n</sub>* such that * c₁* *y₁* + *c₂* *y₂* + ... + *c<sub>n</sub>* *y<sub>n</sub>* = 0 then *c₁* = 0, *c₂* = 0, ... *c<sub>n</sub>* = 0. Def: A set {*}y₁* , *y₂* , ... , *y<sub>n</sub>*} of vectors of a vector space *V* over a field *F* is said to be linearly dependent if it is not linearly independent i.e. (the set { *y₁* , *y₂* , ... *y<sub>n</sub>*} of vectors over a field *F* is said to be linearly dependent if there exist scalars *c₁* , *c₂* , *c<sub>n</sub>* not all zero such that * c₁* *y₁* + *c₂* *y₂* + ... + *c<sub>n</sub>* *y<sub>n</sub>* = 0. **Note:** The null set of is always taken as a linearly independent set Given theorem 3 and 4 on the next page. * **1**. Show the set *S* = { (1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly independent in *V₃*(R) * **Soln:** Let *x₁* = (1, 0, 0), *x₂* = (0, 1, 0), *x₃* = (0, 0, 1) * Consider *c₁ *x₁ + *c₂* *x₂* + *c₃* *x₃* = (0, 0, 0) * ⇒ (*c₁* , 0 , 0) + (0 , *c₂* , 0) + (0 , 0 , *c₃*) = (0 , 0 , 0) * ⇒ (*c₁* , *c₂* , *c₃*) = (0 , 0 , 0) * ∴ *c₁* = 0 , *c₂* = 0 , *c₃* = 0 * ∴ *S* = { *x₁* , *x₂* , *x₃*} is linearly independent. * **2**. Show that the set *S* = { (1, 1, 1), (2, 2, 0), (3, 0, 0)} is linearly independent in *V₃*(R) * **Soln:** Let *x₁* = (1, 1, 1), *x₂* = (2, 2, 0), *x₃* = (3, 0, 0) * Consider *c₁* *x₁* + *c₂* *x₂* + *c₃* *x₃* = (0, 0, 0) * ⇒ (*c₁* + *c₂* + *c₃*, *c₁* + *c₂*, *c₃*) = (0, 0, 0) * ∴ *c₁* + *c₂* + *c₃* = 0, *c₁* + *c₂* = 0, *c₃* = 0 * ∴ *c₁* + *c₂* = 0, *c₃* = 0 * ∴ *c₁* + 2*c₂* + 3*c₃* = 0, *c₁* + 2*c₂* = 0, *c₃* = 0 * ∴ *c₁* = 0, *c₂* = 0, *c₃* = 0 * ∴ *S* = { *x₁* , *x₂* , *x₃*} is linearly independent. * **3**. P.T. the set *S₂* = { (1, 3, 2), (1, -7, -8), (2,