Helicopter Flight Mechanics PDF
Document Details
Uploaded by DaringDream
Tags
Summary
This document provides an in-depth explanation of the different aspects of helicopter mechanics, including airflow patterns, lift, and the various forces involved. It details different types of rotors, their mechanisms, how they respond to change in flight, and different control methods used in a helicopter.
Full Transcript
1–5 knots y of locit rd ve a w n Dow air ec u m ol u le s sed by aft secti on of ro to r Figure 2-37. The airflow pattern for 1–5 knots of forward airspeed. Note how the downwind vortex is beginning to dissipate and induced flow down through the rear of the rotor system is more horizontal....
1–5 knots y of locit rd ve a w n Dow air ec u m ol u le s sed by aft secti on of ro to r Figure 2-37. The airflow pattern for 1–5 knots of forward airspeed. Note how the downwind vortex is beginning to dissipate and induced flow down through the rear of the rotor system is more horizontal. Airflow pattern just prior to effective translational lift 10–15 knots Figure 2-38. An airflow pattern at a speed of 10–15 knots. At this increased airspeed, the airflow continues to become more horizontal. The leading edge of the downwash pattern is being overrun and is well back under the nose of the helicopter. be a means of compensating, correcting, or eliminating this unequal lift to attain symmetry of lift. More horizontal flow of air No recirculation of air 16–24 knots Reduced induced flow increases angle of attack Tail rotor operates in relatively clean air Figure 2-39. Effective translational lift is easily recognized in actual flight by a transient induced aerodynamic vibration and increased performance of the helicopter. When the helicopter moves through the air, the relative airflow through the main rotor disc is different on the advancing side than on the retreating side. The relative wind encountered by the advancing blade is increased by the forward speed of the helicopter; while the relative windspeed acting on the retreating blade is reduced by the helicopter’s forward airspeed. Therefore, as a result of the relative windspeed, the advancing blade side of the rotor disc produces more lift than the retreating blade side. [Figure 2-40] If this condition was allowed to exist, a helicopter with a counterclockwise main rotor blade rotation would roll to the left because of the difference in lift. In reality, the main rotor blades flap and feather automatically to equalize lift across the rotor disc. Articulated rotor systems, usually with three or 2-24 Direction of Flight Advancing Side tion Blade tip speed minus helicopter speed (200 knots) Blade tip speed plus helicopter speed (400 knots) Relative wind a rot de tio ota n Relative wind Bl a Retreating Side As the rotor blade reaches the advancing side of the rotor disc, it reaches its maximum upward flapping velocity. [Figure 2-41A] When the blade flaps upward, the angle between the chord line and the resultant relative wind decreases. This decreases the AOA, which reduces the amount of lift produced by the blade. At position C, the rotor blade is at its maximum downward flapping velocity. Due to downward flapping, the angle between the chord line and the resultant relative wind increases. This increases the AOA and thus the amount of lift produced by the blade. r Blade The combination of blade flapping and slow relative wind acting on the retreating blade normally limits the maximum forward speed of a helicopter. At a high forward speed, the retreating blade stalls due to high AOA and slow relative wind speed. This situation is called “retreating blade stall” and is evidenced by a nose-up pitch, vibration, and a rolling tendency—usually to the left in helicopters with counterclockwise blade rotation. Pilots can avoid retreating blade stall by not exceeding the never-exceed speed. This speed is designated VNE and is indicated on a placard and marked on the airspeed indicator by a red line. Forward flight at 100 knots Figure 2-40. The blade tip speed of this helicopter is approximately 300 knots. If the helicopter is moving forward at 100 knots, the relative windspeed on the advancing side is 400 knots. On the retreating side, it is only 200 knots. This difference in speed causes a dissymmetry of lift. more blades, incorporate a horizontal hinge (flapping hinge) to allow the individual rotor blades to move, or flap up and down as they rotate. A semirigid rotor system (two blades) utilizes a teetering hinge, which allows the blades to flap as a unit. When one blade flaps up, the other blade flaps down. During aerodynamic flapping of the rotor blades as they B Angle of attack over nose Chord line C Angle of attack at 9 o’clock position Bl a Resultant relative wind de n atio B rot A Angle of attack at 3 o’clock position Chord line C Downflap velocity A wind Resultant relative Chord line Resultant relati ve wind Upflap velocity D D Angle of attack over tail Chord line Relative wind Angle of attack Resultant relative wind Figure 2-41. The combined upward flapping (reduced lift) of the advancing blade and downward flapping (increased lift) of the retreating blade equalizes lift across the main rotor disc counteracting dissymmetry of lift. 2-25 compensate for dissymmetry of lift, the advancing blade achieves maximum upward flapping displacement over the nose and maximum downward flapping displacement over the tail. This causes the tip-path plane to tilt to the rear and is referred to as blowback. Figure 2-42 shows how the rotor disc is originally oriented with the front down following the initial cyclic input. As airspeed is gained and flapping eliminates dissymmetry of lift, the front of the disc comes up, and the back of the disc goes down. This reorientation of the rotor disc changes the direction in which total rotor thrust acts; the helicopter’s forward speed slows, but can be corrected with cyclic input. The pilot uses cyclic feathering to compensate for dissymmetry of lift allowing them to control the attitude of the rotor disc. Cyclic feathering compensates for dissymmetry of lift (changes the AOA) in the following way. At a hover, equal lift is produced around the rotor system with equal pitch and AOA on all the blades and at all points in the rotor system (disregarding compensation for translating tendency). The rotor disc is parallel to the horizon. To develop a thrust force, the rotor system must be tilted in the desired direction of movement. Cyclic feathering changes the angle of incidence differentially around the rotor system. Forward cyclic movements decrease the angle of incidence at one part on the rotor system while increasing the angle at another part. Maximum downward flapping of the blade over the nose and maximum upward flapping over the tail tilt both rotor disc and thrust vector forward. To prevent blowback from occurring, the pilot must continually move the cyclic forward as the velocity of the helicopter increases. Figure 2-42 illustrates the changes in pitch angle as the cyclic is moved forward at increased airspeeds. At a hover, the cyclic is centered and the pitch angle on the advancing and retreating blades is the same. At low forward speeds, moving the cyclic forward reduces pitch angle on the advancing blade and increases pitch angle on the retreating blade. This causes a slight rotor tilt. At higher forward speeds, the pilot must continue to move the cyclic forward. This further reduces pitch angle on the advancing blade and further increases pitch angle on the retreating blade. As a result, there is even more tilt to the rotor than at lower speeds. This horizontal lift component (thrust) generates higher helicopter airspeed. The higher airspeed induces blade flapping to maintain symmetry of lift. The combination of flapping and cyclic feathering maintains symmetry of lift and desired attitude on the rotor system and helicopter. Figure 2-42. To compensate for blowback, move the cyclic forward. Blowback is more pronounced with higher airspeeds. Autorotation Autorotation is the state of flight in which the main rotor system of a helicopter is being turned by the action of air moving up through the rotor rather than engine power driving the rotor. [Figure 2-43] In normal, powered flight, air is drawn into the main rotor system from above and exhausted downward, but during autorotation, air moves up into the rotor system from below as the helicopter descends. Autorotation is permitted Di re cti on Direction of flight Autorotation of flig ht Normal Powered Flight Figure 2-43. During an autorotation, the upward flow of relative wind permits the main rotor blades to rotate at their normal speed. In effect, the blades are “gliding” in their rotational plane. 2-26 Pitch link Stationary swash plate Rotating swash plate Control rod Figure 2-44. Stationary and rotating swash plate. mechanically by a freewheeling unit, which is a special clutch mechanism that allows the main rotor to continue turning even if the engine is not running. If the engine fails, the freewheeling unit automatically disengages the engine from the main rotor allowing the main rotor to rotate freely. It is the means by which a helicopter can be landed safely in the event of an engine failure; consequently, all helicopters must demonstrate this capability in order to be certificated. Rotorcraft Controls Swash Plate Assembly The purpose of the swash plate is to transmit control inputs from the collective and cyclic controls to the main rotor blades. It consists of two main parts: the stationary swash plate and the rotating swash plate. [Figure 2-44] The stationary swash plate is mounted around the main rotor mast and connected to the cyclic and collective controls by a series of pushrods. It is restrained from rotating by an antidrive link but is able to tilt in all directions and move vertically. The rotating swash plate is mounted to the stationary swash plate by a uniball sleeve. It is connected to the mast by drive links and is allowed to rotate with the main rotor mast. Both swash plates tilt and slide up and down as one unit. The rotating swash plate is connected to the pitch horns by the pitch links. There are three major controls in a helicopter that the pilot must use during flight. They are the collective pitch control, cyclic pitch control, and antitorque pedals or tail rotor control. In addition to these major controls, the pilot must also use the throttle control, which is mounted directly to the collective pitch control in order to fly the helicopter. Collective Pitch Control The collective pitch control is located on the left side of the pilot’s seat and is operated with the left hand. The collective is used to make changes to the pitch angle of all the main rotor blades simultaneously, or collectively, as the name implies. As the collective pitch control is raised, there is a simultaneous and equal increase in pitch angle of all main rotor blades; as it is lowered, there is a simultaneous and equal decrease in pitch angle. [Figure 2-45] This is done through a series of mechanical linkages, and the amount Figure 2-45. Raising the collective pitch control increases the pitch angle by the same amount on all blades. 2-27 of movement in the collective lever determines the amount of blade pitch change. An adjustable friction control helps prevent inadvertent collective pitch movement. Throttle Control The function of the throttle is to regulate engine rpm. If the correlator or governor system does not maintain the desired rpm when the collective is raised or lowered, or if those systems are not installed, the throttle must be moved manually with the twist grip to maintain rpm. The throttle control is much like a motorcycle throttle, and works almost the same way; twisting the throttle to the left increases rpm, twisting the throttle to the right decreases rpm. [Figure 2-46] Governor/Correlator A governor is a sensing device that senses rotor and engine rpm and makes the necessary adjustments in order to keep rotor rpm constant. Once the rotor rpm is set in normal operations, the governor keeps the rpm constant, and there is no need to make any throttle adjustments. Governors are common on all turbine helicopters (as it is a function of the fuel control system of the turbine engine), and used on some piston-powered helicopters. A correlator is a mechanical connection between the collective lever and the engine throttle. When the collective lever is raised, power is automatically increased and when lowered, power is decreased. This system maintains rpm close to the desired value, but still requires adjustment of the throttle for fine tuning. Some helicopters do not have correlators or governors and require coordination of all collective and throttle movements. When the collective is raised, the throttle must be increased; when the collective is lowered, the throttle must be decreased. As with any aircraft control, large adjustments of either collective pitch or throttle should be avoided. All corrections should be made with smooth pressure. In piston helicopters, the collective pitch is the primary control for manifold pressure, and the throttle is the primary control for rpm. However, the collective pitch control also influences rpm, and the throttle also influences manifold pressure; therefore, each is considered to be a secondary control of the other’s function. Both the tachometer (rpm indicator) and the manifold pressure gauge must be analyzed to determine which control to use. Figure 2-47 illustrates this relationship. Cyclic Pitch Control The cyclic pitch control is mounted vertically from the flight deck floor, between the pilot’s legs or, in some models, between the two pilot seats. [Figure 2-48] This primary flight control allows the pilot to fly the helicopter in any horizontal direction; fore, aft, and sideways. The total lift force is always perpendicular to the tip-path place of the main rotor. The purpose of the cyclic pitch control is to tilt the tip-path plane in the direction of the desired horizontal direction. The cyclic control changes the direction of this force and controls the attitude and airspeed of the helicopter. The rotor disc tilts in the same direction the cyclic pitch control is moved. If the cyclic is moved forward, the rotor disc tilts forward; if the cyclic is moved aft, the disc tilts aft, and so on. Because the rotor disc acts like a gyro, the mechanical linkages for the cyclic control rods are rigged in such a way that they decrease the pitch angle of the rotor blade approximately 90° before it reaches the direction of cyclic displacement, and increase the pitch angle of the rotor blade approximately 90° after it passes the direction of displacement. An increase in pitch angle increases AOA; a decrease in pitch angle decreases AOA. For example, if the cyclic is moved forward, the AOA decreases as the rotor blade passes the right side of the helicopter and increases on the left side. This results in maximum downward deflection of the If manifold pressure is and rpm is Solution LOW LOW Increasing the throttle increases manifold pressure and rpm HIGH LOW Lowering the collective pitch decreases manifold pressure and increases rpm LOW HIGH Raising the collective pitch increases manifold pressure and decreases rpm HIGH HIGH Reducing the throttle decreases manifold pressure and rpm Twist grip throttle Figure 2-46. A twist grip throttle is usually mounted on the end of the collective lever. The throttles on some turbine helicopters are mounted on the overhead panel or on the floor in the flight deck. Figure 2-47. Relationship between manifold pressure, rpm, collective, and throttle. 2-28 Cyclic pitch control Cyclic pitch control Figure 2-49. Antitorque pedals compensate for changes in torque and control heading in a hover. Figure 2-48. The cyclic pitch control may be mounted vertically between the pilot’s knees or on a teetering bar from a single cyclic located in the center of the helicopter. The cyclic can pivot in all directions. rotor blade in front of the helicopter and maximum upward deflection behind it, causing the rotor disc to tilt forward. Antitorque Pedals The antitorque pedals are located on the cabin floor by the pilot’s feet. They control the pitch and, therefore, the thrust of the tail rotor blades. [Figure 2-49] Newton’s third law applies to the helicopter fuselage and how it rotates in the opposite direction of the main rotor blades unless counteracted and controlled. To make flight possible and to compensate for this torque, most helicopter designs incorporate an antitorque rotor or tail rotor. The antitorque pedals allow the pilot to control the pitch angle of the tail rotor blades which in forward flight puts the helicopter in longitudinal trim and while at a hover, enables the pilot to turn the helicopter 360°. The antitorque pedals are connected to the pitch change mechanism on the tail rotor gearbox and allow the pitch angle on the tail rotor blades to be increased or decreased. Helicopters that are designed with tandem rotors do not have an antitorque rotor. These helicopters are designed with both rotor systems rotating in opposite directions to counteract the torque, rather than using a tail rotor. Directional antitorque pedals are used for directional control of the aircraft while in flight, as well as while taxiing with the forward gear off the ground. With the right pedal displaced forward, the forward rotor disc tilts to the right, while the aft rotor disc tilts to the left. The opposite occurs when the left pedal is pushed forward; the forward rotor disc inclines to the left, and the aft rotor disc tilts to the right. Differing combinations of pedal and cyclic application can allow the tandem rotor helicopter to pivot about the aft or forward vertical axis, as well as pivoting about the center of mass. Stabilizer Systems Bell Stabilizer Bar System Arthur M. Young discovered that stability could be increased significantly with the addition of a stabilizer bar perpendicular to the two blades. The stabilizer bar has weighted ends, which cause it to stay relatively stable in the plane of rotation. The stabilizer bar is linked with the swash plate in a manner that reduces the pitch rate. The two blades can flap as a unit and, therefore, do not require lag-lead hinges (the whole rotor slows down and accelerates per turn). Two-bladed systems require a single teetering hinge and two coning hinges to permit modest coning of the rotor disc as thrust is increased. The configuration is known under multiple names, including Hiller panels, Hiller system, Bell-Hiller system, and flybar system. Offset Flapping Hinge The offset flapping hinge is offset from the center of the rotor hub and can produce powerful moments useful for controlling the helicopter. The distance of the hinge from the hub (the offset) multiplied by the force produced at the hinge produces a moment at the hub. Obviously, the larger the offset, the greater the moment for the same force produced by the blade. The flapping motion is the result of the constantly changing 2-29 balance between lift, centrifugal, and inertial forces. This rising and falling of the blades is characteristic of most helicopters and has often been compared to the beating of a bird’s wing. The flapping hinge, together with the natural flexibility found in most blades, permits the blade to droop considerably when the helicopter is at rest and the rotor is not turning over. During flight, the necessary rigidity is provided by the powerful centrifugal force that results from the rotation of the blades. This force pulls outward from the tip, stiffening the blade, and is the only factor that keeps it from folding up. or lateral. A 1/rev is caused simply by one blade developing more lift at a given point than the other blade develops at the same point. Stability Augmentation Systems (SAS) Some helicopters incorporate stability augmentation systems (SAS) to help stabilize the helicopter in flight and in a hover. The simplest of these systems is a force trim system, which uses a magnetic clutch and springs to hold the cyclic control in the position at which it was released. More advanced systems use electric actuators that make inputs to the hydraulic servos. These servos receive control commands from a computer that senses helicopter attitude. Other inputs, such as heading, speed, altitude, and navigation information may be supplied to the computer to form a complete autopilot system. The SAS may be overridden or disconnected by the pilot at any time. SAS reduces pilot workload by improving basic aircraft control harmony and decreasing disturbances. These systems are very useful when the pilot is required to perform other duties, such as sling loading and search and rescue operations. High Frequency Vibration Helicopter Vibration The following paragraphs describe the various types of vibrations. Figure 2-50 shows the general levels into which frequencies are divided. Extreme Low Frequency Vibration Extreme low frequency vibration is pretty well limited to pylon rock. Pylon rocking (two to three cycles per second) is inherent with the rotor, mast, and transmission system. To keep the vibration from reaching noticeable levels, transmission mount dampening is incorporated to absorb the rocking. Low frequency vibrations (1/rev and 2/rev) are caused by the rotor itself. 1/rev vibrations are of two basic types: vertical Helicopter Vibration Types Extreme low frequency Low frequency Medium frequency High frequency Medium frequency vibration (4/rev and 6/rev) is another vibration inherent in most rotors. An increase in the level of these vibrations is caused by a change in the capability of the fuselage to absorb vibration, or a loose airframe component, such as the skids, vibrating at that frequency. High frequency vibrations can be caused by anything in the helicopter that rotates or vibrates at extremely high speeds. A high frequency vibration typically occurs when the tail rotor gears, tail drive shaft or the tail rotor engine, fan or shaft assembly vibrates or rotates at an equal or greater speed than the tail rotor. Rotor Blade Tracking Blade tracking is the process of determining the positions of the tips of the rotor blade relative to each other while the rotor head is turning, and of determining the corrections necessary to hold these positions within certain tolerances. The blades should all track one another as closely as possible. The purpose of blade tracking is to bring the tips of all blades into the same tip path throughout their entire cycle of rotation. Various methods of blade tracking are explained below. Flag & Pole The flag and pole method, as shown in Figure 2-51, shows the relative positions of the rotor blades. The blade tips are marked with chalk or a grease pencil. Each blade tip should be marked with a different color so that it is easy to determine the relationship of the other tips of the rotor blades to each other. This method can be used on all types of helicopters that do not have jet propulsion at the blade tips. Refer to the applicable maintenance manual for specific procedures. Electronic Blade Tracker Low Frequency Vibration Frequency Level Medium Frequency Vibration Vibration Less than 1/rev PYLON ROCK 1/rev or 2/rev type vibration Generally 4, 5, or 6/rev Tail rotor speed or faster Figure 2-50. Various helicopter vibration types. The most common electronic blade tracker consists of a Balancer/Phazor, Strobex tracker, and Vibrex tester. [Figures 2-52 through 2-54] The Strobex blade tracker permits blade tracking from inside or outside the helicopter while on the ground or inside the helicopter in flight. The system uses a highly concentrated light beam flashing in sequence with the rotation of the main rotor blades so that a fixed target at the blade tips appears to be stopped. Each blade is identified by an elongated retroreflective number taped or attached to the underside of the blade in a uniform location. When viewed at an angle from inside the helicopter, the taped numbers will appear normal. Tracking can be accomplished with tracking tip cap reflectors and a strobe light. The tip 2-30 Curtain Curtain Blade 7 Leading edge 0° 80° to BLADE Pole Position of chalk mark (approximately 2 inches long) Pole Line parallel to longitudinal axis of helicopter Handle Curtain 1/2" max spread (typical) Approximate position of chalk marks Pole Figure 2-51. Flag and pole blade tracking. Strobe flash tube RPM dial Meter A Channel B A B TRACK COMMON FUNCTION MAGNETIC PICKUP RPM Band-pass filter BALANCER STROBEX MODEL 135M-11 MODEL 177M-6A RPM TONE X10 X100 X1 PUSH FOR SCALE 2 Phase meter RPM RANGE DOUBLE 11 TEST 12 1 2 10 PHAZOR 3 9 8 4 7 Figure 2-52. Balancer/Phazor. 6 5 Figure 2-53. Strobex tracker. 2-31 Interrupter plate Motor TES TER Figure 2-54. Vibrex tracker. caps are temporarily attached to the tip of each blade. The high-intensity strobe light flashes in time with the rotating blades. The strobe light operates from the aircraft electrical power supply. By observing the reflected tip cap image, it is possible to view the track of the rotating blades. Tracking is accomplished in a sequence of four separate steps: ground tracking, hover verification, forward flight tracking, and autorotation rpm adjustment. Tail Rotor Tracking The marking and electronic methods of tail rotor tracking are explained in the following paragraphs. Marking Method Procedures for tail rotor tracking using the marking method, as shown in Figure 2-55, are as follows: • • After replacement or installation of tail rotor hub, blades, or pitch change system, check tail rotor rigging and track tail rotor blades. Tail rotor tip clearance shall be set before tracking and checked again after tracking. The strobe-type tracking device may be used if available. Instructions for use are provided with the device. Attach a piece of soft rubber hose six inches long on the end of a ½ × ½ inch pine stick or other flexible device. Cover the rubber hose with Prussian blue or similar type of coloring thinned with oil. Note: Ground run-up shall be performed by authorized personnel only. Start engine in accordance with applicable Figure 2-55. Tail rotor tracking. maintenance manual. Run engine with pedals in neutral position. Reset marking device on underside of tail boom assembly. Slowly move marking device into disc of tail rotor approximately one inch from tip. When near blade is marked, stop engine and allow rotor to stop. Repeat this procedure until tracking mark crosses over to the other blade, then extend pitch control link of unmarked blade one half turn. Electronic Method The electronic Vibrex balancing and tracking kit is housed in a carrying case and consists of a Model 177M-6A Balancer, a Model 135M-11 Strobex, track and balance charts, an accelerometer, cables, and attaching brackets. The Vibrex balancing kit is used to measure and indicate the level of vibration induced by the main rotor and tail rotor of a helicopter. The Vibrex analyzes the vibration induced by out-of-track or out-of-balance rotors, and then by plotting vibration amplitude and clock angle on a chart the amount and location of rotor track or weight change is determined. In addition, the Vibrex is used in troubleshooting by measuring the vibration levels and frequencies or rpm of unknown disturbances. 2-32 Rotor Blade Preservation & Storage Accomplish the following requirements for rotor blade preservation and storage: • Condemn, demilitarize, and dispose of locally any blade which has incurred nonrepairable damage. • Tape all holes in the blade, such as tree damage, or foreign object damage (FOD) to protect the interior of the blade from moisture and corrosion. • Thoroughly remove foreign matter from the entire exterior surface of blade with mild soap and water. • Protect blade outboard eroded surfaces with a light coating of corrosion preventive or primer coating. • Protect blade main bolt hole bushing, drag brace retention bolt hole bushing, and any exposed bare metal (i.e., grip and drag pads) with a light coating of corrosion preventive. • Secure blade to shock-mounted support and secure container lid. • Place copy of manufacturer’s blade records, containing information required by Title 14 of the Code of Federal Regulations (14 CFR) section 91.417(a)(2)(ii), and any other blade records in a waterproof bag and insert into container record tube. • Obliterate old markings from the container that pertained to the original shipment or to the original item it contained. Annotate the blade model, part number (P/N) and serial number, as applicable, on the outside of the container. Helicopter Power Systems Powerplant The two most common types of engines used in helicopters are the reciprocating engine and the turbine engine. Reciprocating engines, also called piston engines, are generally used in smaller helicopters. Most training helicopters use reciprocating engines because they are relatively simple and inexpensive to operate. Turbine engines are more powerful and are used in a wide variety of helicopters. They produce a tremendous amount of power for their size but are generally more expensive to operate. Reciprocating Engine The reciprocating engine consists of a series of pistons connected to a rotating crankshaft. As the pistons move up and down, the crankshaft rotates. The reciprocating engine gets its name from the back-and-forth movement of its internal parts. The four-stroke engine is the most common type, and refers to the four different cycles the engine undergoes to produce power. [Figure 2-56] Intake valve Exhaust valve Spark plug Piston Crankshaft Connecting rod 1. Intake 2. Compression 3. Power 4. Exhaust Figure 2-56. The arrows indicate the direction of motion of the crankshaft and piston during the four-stroke cycle. When the piston moves away from the cylinder head on the intake stroke, the intake valve opens and a mixture of fuel and air is drawn into the combustion chamber. As the cylinder moves back toward the cylinder head, the intake valve closes, and the air-fuel mixture is compressed. When compression is nearly complete, the spark plugs fire and the compressed mixture is ignited to begin the power stroke. The rapidly expanding gases from the controlled burning of the air-fuel mixture drive the piston away from the cylinder head, thus providing power to rotate the crankshaft. The piston then moves back toward the cylinder head on the exhaust stroke where the burned gases are expelled through the opened exhaust valve. Even when the engine is operated at a fairly low speed, the four-stroke cycle takes place several hundred times each minute. In a four-cylinder engine, each cylinder operates on a different stroke. Continuous rotation of a crankshaft is maintained by the precise timing of the power strokes in each cylinder. 2-33 Turbine Engine The gas turbine engine mounted on most helicopters is made up of a compressor, combustion chamber, turbine, and accessory gearbox assembly. The compressor draws filtered air into the plenum chamber and compresses it. The compressed air is directed to the combustion section through discharge tubes where atomized fuel is injected into it. The air-fuel mixture is ignited and allowed to expand. This combustion gas is then forced through a series of turbine wheels causing them to turn. These turbine wheels provide power to both the engine compressor and the accessory gearbox. Power is provided to the main rotor and tail rotor systems through the freewheeling unit which is attached to the accessory gearbox power output gear shaft. The combustion gas is finally expelled through an exhaust outlet. [Figure 2-57] Transmission System The transmission system transfers power from the engine to the main rotor, tail rotor, and other accessories during normal flight conditions. The main components of the transmission system are the main rotor transmission, tail rotor drive system, clutch, and freewheeling unit. The freewheeling unit, or autorotative clutch, allows the main rotor transmission to drive the tail rotor drive shaft during autorotation. Helicopter transmissions are normally lubricated and cooled with their own oil supply. A sight gauge is provided to check the oil level. Some transmissions have chip detectors located in the sump. These detectors are wired to warning lights located on the pilot’s instrument panel that illuminate in the event of an internal problem. The chip detectors on modern Centrifugal Compression Section Gearbox Section Exhaust air outlet helicopters have a “burn off” capability and attempt to correct the situation without pilot action. If the problem cannot be corrected on its own, the pilot must refer to the emergency procedures for that particular helicopter. Main Rotor Transmission The primary purpose of the main rotor transmission is to reduce engine output rpm to optimum rotor rpm. This reduction is different for the various helicopters. As an example, suppose the engine rpm of a specific helicopter is 2,700. A rotor speed of 450 rpm would require a 6:1 reduction. A 9:1 reduction would mean the rotor would turn at 300 rpm. Most helicopters use a dual-needle tachometer or a vertical scale instrument to show both engine and rotor rpm or a percentage of engine and rotor rpm. The rotor rpm indicator normally is used only during clutch engagement to monitor rotor acceleration, and in autorotation to maintain rpm within prescribed limits. [Figure 2-58] In helicopters with horizontally mounted engines, another purpose of the main rotor transmission is to change the axis of rotation from the horizontal axis of the engine to the vertical axis of the rotor shaft. [Figure 2-59] Clutch In a conventional airplane, the engine and propeller are directly connected. However, in a helicopter there is a different relationship between the engine and the rotor. Because of the greater weight of a rotor in relation to the power of the engine, as compared to the weight of a propeller and the power in an airplane, the rotor must be disconnected from the engine when the starter is engaged. A clutch allows Turbine Section N2 Rotor Stator Combustion Section N1 Rotor Compressor rotor Igniter plug Air inlet Fuel nozzle Inlet air Compressor discharge air Combustion gases Exhaust gases Gear Output Shaft Combustion liner Figure 2-57. Many helicopters use a turboshaft engine as shown above to drive the main transmission and rotor systems. The main difference between a turboshaft and a turbojet engine is that most of the energy produced by the expanding gases is used to drive a turbine rather than producing thrust through the expulsion of exhaust gases. 2-34 15 20 10 E 25 3 2 4 1 30 5 RPM R X X100 5 35 R 0 ROTOR 110 100 90 110 100 90 80 70 60 50 80 70 60 50 40 ENGINE R % RPM % RPM 120 110 105 50 60 70 100 ROTOR 80 PEEVER EE E TURBINEA R 90 40 95 30 100 R 20 10 PERCENT C RPM TP 0 110 120 NR 90 80 70 60 40 0 NP Figure 2-58. There are various types of dual-needle tachometers; however, when the needles are superimposed, or married, the ratio of the engine rpm is the same as the gear reduction ratio. Main rotor transmission and rotor system dragging it down. As the gas pressure increases through the power turbine, the rotor blades begin to turn, slowly at first and then gradually accelerate to normal operating rpm. On reciprocating helicopters, the two main types of clutches are the centrifugal clutch and the belt drive clutch. Centrifugal Clutch The centrifugal clutch is made up of an inner assembly and an outer drum. The inner assembly, which is connected to the engine driveshaft, consists of shoes lined with material similar to automotive brake linings. At low engine speeds, springs hold the shoes in, so there is no contact with the outer drum, which is attached to the transmission input shaft. As engine speed increases, centrifugal force causes the clutch shoes to move outward and begin sliding against the outer drum. The transmission input shaft begins to rotate, causing the rotor to turn, slowly at first, but increasing as the friction increases between the clutch shoes and transmission drum. As rotor speed increases, the rotor tachometer needle shows an increase by moving toward the engine tachometer needle. When the two needles are superimposed, the engine and the rotor are synchronized, indicating the clutch is fully engaged and there is no further slippage of the clutch shoes. Belt Drive Clutch Antitorque rotor Main transmission to engine Gearbox Figure 2-59. The main rotor transmission and gearbox reduce engine output rpm to optimum rotor rpm and change the axis of rotation of the engine output shaft to the vertical axis for the rotor shaft. the engine to be started and then gradually pick up the load of the rotor. On free turbine engines, no clutch is required, as the gas producer turbine is essentially disconnected from the power turbine. When the engine is started, there is little resistance from the power turbine. This enables the gas producer turbine to accelerate to normal idle speed without the load of the Some helicopters utilize a belt drive to transmit power from the engine to the transmission. A belt drive consists of a lower pulley attached to the engine, an upper pulley attached to the transmission input shaft, a belt or a series of V-belts, and some means of applying tension to the belts. The belts fit loosely over the upper and lower pulley when there is no tension on the belts. This allows the engine to be started without any load from the transmission. Once the engine is running, tension on the belts is gradually increased. When the rotor and engine tachometer needles are superimposed, the rotor and the engine are synchronized, and the clutch is then fully engaged. Advantages of this system include vibration isolation, simple maintenance, and the ability to start and warm up the engine without engaging the rotor. Freewheeling Unit Since lift in a helicopter is provided by rotating airfoils, these airfoils must be free to rotate if the engine fails. The freewheeling unit automatically disengages the engine from the main rotor when engine rpm is less than main rotor rpm. This allows the main rotor and tail rotor to continue turning at normal in-flight speeds. The most common freewheeling unit assembly consists of a one-way sprag clutch located between the engine and main rotor transmission. This is usually in the upper pulley in a piston helicopter or mounted on the accessory gearbox in a turbine helicopter. When the 2-35 engine is driving the rotor, inclined surfaces in the sprag clutch force rollers against an outer drum. This prevents the engine from exceeding transmission rpm. If the engine fails, the rollers move inward, allowing the outer drum to exceed the speed of the inner portion. The transmission can then exceed the speed of the engine. In this condition, engine speed is less than that of the drive system, and the helicopter is in an autorotative state. Airplane Assembly & Rigging The primary assembly of a type certificated aircraft is normally performed by the manufacturer at the factory. The assembly includes putting together the major components, such as the fuselage, empennage, wing sections, nacelles, landing gear, and installing the powerplant. Attached to the wing and empennage are primary flight control surfaces including ailerons, elevators, and rudder. Additionally, installation of auxiliary flight control surfaces may include wing flaps, spoilers, speed brakes, slats, and leading edge flaps. The assembly of other aircraft outside of a manufacturer’s facility is usually limited to smaller size and experimental amateur-built aircraft. Typically, after a major overhaul, repair, or alteration, the reassembly of an aircraft may include reattaching wings to the fuselage, balancing of and installation of flight control surfaces, installation of the landing gear, and installation of the powerplant(s). when supported from its own CG. There are two ways in which a control surface may be out of static balance. They are called underbalance and overbalance. When a control surface is mounted on a balance stand, a downward travel of the trailing edge below the horizontal position indicates underbalance. Some manufacturers indicate this condition with a plus (+) sign. An upward movement of the trailing edge, above the horizontal position indicates overbalance. This is designated by a minus (–) sign. These signs show the need for more or less weight in the correct area to achieve a balanced control surface, as shown in Figure 2-60. A tail-heavy condition (static underbalance) causes undesirable flight performance and is not usually allowed. Better flight operations are gained by nose-heavy static overbalance. Most manufacturers advocate the existence of nose-heavy control surfaces. Dynamic Balance Dynamic balance is that condition in a rotating body wherein all rotating forces are balanced within themselves so that no vibration is produced while the body is in motion. Dynamic balance as related to control surfaces is an effort to maintain balance when the control surface is submitted to movement on the aircraft in flight. It involves the placing of weights in the correct location along the span of the surfaces. The Rebalancing of Control Surfaces This section is presented for familiarization purposes only. Explicit instructions for the balancing of control surfaces are given in the manufacturer’s service and overhaul manuals for the specific aircraft and must be followed closely. Any time repairs on a control surface add weight fore or aft of the hinge center line, the control surface must be rebalanced. When an aircraft is repainted, the balance of the control surfaces must be checked. Any control surface that is out of balance is unstable and does not remain in a streamlined position during normal flight. For example, an aileron that is trailing edge heavy moves down when the wing deflects upward, and up when the wing deflects downward. Such a condition can cause unexpected and violent maneuvers of the aircraft. In extreme cases, fluttering and buffeting may develop to a degree that could cause the complete loss of the aircraft. Rebalancing a control surface concerns both static and dynamic balance. A control surface that is statically balanced is also dynamically balanced. Chord line Tail-down underbalance Plus ( + ) condition Chord line Nose-down overbalance Minus Ŧ condition Chord line Level-horizontal position Balance condition Static Balance Static balance is the tendency of an object to remain stationary Figure 2-60. Control surface static balance. 2-36