Centre Of Mass Short Notes PDF
Document Details
Tags
Summary
These are short notes about centre of mass calculations. Topics covered include calculating centre of mass for various shapes. There are also examples of collisions and moments of mass related to the centre of mass.
Full Transcript
# Short Notes- - What mass assume to be conc. - *Ki on intersection of Aos - Kcom = m1*r1 + m2*r2 / m1+m2 - Vcom = m1*v1 + m2*v2 / m1+m2 - *acm = m1*a1 + m2*a2 / m1+m2 # Position depends on choice of origin #2 Rem from any one mass - (xcm)1 = m2*R / m1+m2 - (xcm)2 = m1*R / m1+m2 #3 Vimp. Moment...
# Short Notes- - What mass assume to be conc. - *Ki on intersection of Aos - Kcom = m1*r1 + m2*r2 / m1+m2 - Vcom = m1*v1 + m2*v2 / m1+m2 - *acm = m1*a1 + m2*a2 / m1+m2 # Position depends on choice of origin #2 Rem from any one mass - (xcm)1 = m2*R / m1+m2 - (xcm)2 = m1*R / m1+m2 #3 Vimp. Moment of mass - Com wo point jisko along 2 body ka momentof mass equal nata h #4 Continuous mass system - *xcm = ∫ x dm / ∫ dm - dm *fdm -> Rod [1D] - dm ** oda -> Square, Wing [2D] - dm * Idv -> Sphere [3D] #5 Com of Special bodies - Rod: 4/2 - Hay Disc: 4R/3π - Half Ring: 2R/π - **Hollow Hemisphrere: 4R/8 - Hollow core: h/3 - Solid core: h/4 - Pot Hemisphrere: 4πR/8 #6 Cavity wall ques- - Cavity aur remaining ka moment of mass centri h along equal kar dena #2 Shift in Pos of com - *d*r*cm = m1*d*r1 + m2*d*r2 / m1+m2 - For No movement of com - m1*d*r1 = -m2*d*r2 #8 acm in Pulley Block System - acm = -(m2-m1)^2 / (m1+m2)*g #9 Momentum - For a body: F = dP / dt - : If Fem = 0 Pcm = Const - Vcm = Const - acm = 0 - Vcom = 0 [may be] - If V com = 0 - For System: Fext = dPcm / dt # Internal forces - Since com no koi farak nahi - But KE change hog? #10 Explosion - - M - Fext=0 - Pcm = Const - (sys) - 1/2 * mV^2f + 1/2 * mV^2i - Q = Kf - Ki = 1/2 * mv^2f + 1/2 * mV^2i - Energy release in Explosion #11 Collision * - e = separation / muom - = (V1-V2) / (U2-U1) #12 Elastic Collision - KEi = KEf - Pi = Pf - V1 = (m1-m2/m1+m2) * U1 + 2m2/m1+m2 * U2 - ΔKE = 0 # Special loses! - (m1 + m2) v = m - Vel interchange hojayegi #13 Inelastic Collisions - Pi = Pf - KGi ≠ KEf - V1 = (m1-m2/m1+m2) * U1 + b*U2 (m1+m2/m1+m2) - ΔNE =~ 1/2 * mm / m1+m2 * (V^2i - V^2f) #14 Perfectly Inelastic < - Pi = Pf - Brick to Each Other - KCi ≠ KEf - Vο comunes = m1*U1 + m2 *U2/ m1+m2 - ANE = 1/2 * m1 * m2 /m1+m2 *(V0)^2 #15 Inelastic Collision - Blue Ball & Ground - V^2f = √2ghBc - Sm =L hBc - L = √hAc/hBc #16 Oblique Collision - 1 * on * every ≠ omnis pe khel - 2 * P= Conserved kar de - 3 * Agar Plastic h to KEi = KEf kar de - 4 And Phoddi quy-ka.