Cellular Respiration Overview PDF

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Summary

This document presents an overview of cellular respiration. It explains the process, including the stages like glycolysis, the Krebs cycle, and the electron transport chain. The document also touches on the differences between aerobic and anaerobic respiration.

Full Transcript

Cellular Respiration Chapter 9 Chemical Energy and Food Energy source = food = ATP A “calorie” is the unit for the amount of energy needed to raise the temp. of 1 gm of water 1 degree Celsius. 1 calorie gets you approx. 9000 ATP’s! Food you eat will be used for restoring ATP,...

Cellular Respiration Chapter 9 Chemical Energy and Food Energy source = food = ATP A “calorie” is the unit for the amount of energy needed to raise the temp. of 1 gm of water 1 degree Celsius. 1 calorie gets you approx. 9000 ATP’s! Food you eat will be used for restoring ATP, lost as heat, waste or stored for later use. Where is this ATP produced in a cell? MITOCHONDRIA Mitochondria Double membrane bound organelle. Inner membrane encloses a fluid-filled matrix. Folded cristae project into the matrix. Increases surface area Small circular DNA. Cellular Respiration Overview Glycolysis Occurs in the cytoplasm of cell. Anaerobic process Glucose is broken down into 2 molecules of Pyruvic Acid. NADH is produced and carries the high energy electrons to the ETC (last step). Total ATP made are: 2 Section 9-1 Glycolysis Glucose Animation 2 Pyruvic acid To the electron transport chain Aerobic Respiration Krebs Cycle Krebs Cycle Location: matrix of mitochondria. First, pyruvic acid is broken down into Acetyl Co-enzyme A. CO2 is produced (What happens to this?) Electron carriers produced: FADH2 and NADH. Net of 2 ATP are formed. (1 from each pyruvic acid from glycolysis) Krebs Cycle Section 9-2 NADH and FADH2 carry high energy electrons. Those electrons will generate ATP in the next step: ETC! Electron Transport Chain Location: cristae (inner membranes) of the mitochondria. The electron carriers (NADH and FADH2) release their high energy electrons to carrier membrane proteins. H+ ions move through ATP Synthase channel to generate the ATP. Oxygen is the final electron acceptor in the chain and combines with the H+ ions = H2O. Net total of 32 ATP. Animation Section 9-2 ETC Electron Transport Hydrogen Ion Movement Channel Mitochondrion Intermembrane Space ATP synthase Inner Membrane Matrix ATP Production Aerobic Cellular Respiration: An Overview Electrons carried in NADH Pyruvic Electrons acid carried in NADH and FADH2 Electron Glucose Krebs Glycolysis Transport Cycle Chain Cytoplasm Mitochondrion How many ATP’s were made at each step? Section 9-1 AEROBIC Pathway Glucose Glycolysis Krebs Electron cycle transport Fermentation Alcohol or (without oxygen) lactic acid ANAEROBIC Pathway What if NO OXYGEN is available? Anaerobic Respiration Fermentation! Krebs Cycle Anaerobic Respiration Occurs in just the cytoplasm of cell. ANAEROBIC process. Starts off with Glycolysis (same as Aerobic) After glycolysis: 1. Lactic Acid Fermentation – pyruvic acid is turned into lactic acid. Bacteria produce dairy products with lactic acid. 2. Alcoholic Fermentation – Yeast cells produce CO2 and ethanol. Total ATP produced is: 2 (from glycolysis, not fermentation) Humans Why do photosynthesis and cell respiration need each other?

Use Quizgecko on...
Browser
Browser