Applications of Basic Identities 1 - DPP (11th Elite) PDF

Summary

These are problems covering applications of basic identities in algebra, covering the concepts of 11th grade. It includes various questions with their solutions.

Full Transcript

Applications of basic identities 1 -DPP Q1. If 3x +2y = 12 and xy = 6, find the value of 9x2 + 4y2. Q2. If find the value of Q3. If find the value of Q4. If (3a + 4b) = 16 and ab = 4, find the value of (9a2 + 16b2). Q5. If x + y = 12 and xy = 27, find the value of x3 + y3. Q6. If (a + 3b)...

Applications of basic identities 1 -DPP Q1. If 3x +2y = 12 and xy = 6, find the value of 9x2 + 4y2. Q2. If find the value of Q3. If find the value of Q4. If (3a + 4b) = 16 and ab = 4, find the value of (9a2 + 16b2). Q5. If x + y = 12 and xy = 27, find the value of x3 + y3. Q6. If (a + 3b) = 6, show that a3 + 27b3 + 54ab = 216. Q7. Evaluate 933 - 1073. Q8. Evaluate: 303 + 203 - 503. 1 1 Q9. If a + = 5, then find a3 + a a3 Q10. Prove that 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = [(a - b)2 + (b - c)2 + (c - a)2] Q11. If a2 + b2 + c2 = 250 and ab + bc + ca = 3, find a + b + c. Q12. If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca. Q13. If a + b =10 and ab = 21, find the value of a3 + b3. Q14. If (a + b + c) = 14 and (a2 + b2 + c2) = 74, find the value of (ab + bc + ca). Q15. Prove (sin8θ - cos8θ) = (sin2θ - cos2θ) (1 - 2 sin2θ cos2θ) Q16. If 4x2 + 9y2 + z2 – 6xy – 3yz –2xz = 0 , then prove that 2x = 3y = z Q17. Find the relation between p, q, r in 36p2 + 100q2 + 4r2 - 60pq - 20qr - 12pr = 0 Q18. Find the relation between p, q, r in p2 + 64q2 + 16r2 + 8pq - 32qr + 4pr = 0 Q19. Find positive numbers a, b and c such that 2a + b + 3c = 6 and 8a3 + b3 + 27c3 = 18abc Q20. If a ≠ 2b and a3 + 8b3 = 18ab - 27 then find the value of a + 2b A -1 B 1 C 2 D -3 Q21. If a + b + c = 15 and a2 + b2 + c2 = 83, find the value of a3 + b3 + c3 - 3abc. Q22. If x + y + z = 1, xy + yz + zx = -1 and xyz = -1, find the value of x 3 + y3 + z3. Q23. Solve 2x - 1 ≤ 0 Q24. Solve 3x - 3 ≤ 2 Q25. Solve -2x + 5 ≤ 7 Q26. Represent the following on real number line x ≤ 2 ∪ x > 5. Applications of basic identities 1 -DPP solutions Q1. If 3x +2y = 12 and xy = 6, find the value of 9x2 + 4y2. Solution: Q2. If find the value of Solution: Q3. If find the value of Solution: Q4. If (3a + 4b) = 16 and ab = 4, find the value of (9a2 + 16b2). Solution: Q5. If x + y = 12 and xy = 27, find the value of x3 + y3. Solution: Q6. If (a + 3b) = 6, show that a3 + 27b3 + 54ab = 216. Solution: Q7. Evaluate 933 - 1073. Solution: Q8. Evaluate: 303 + 203 - 503. Solution: 1 1 Q9. If a + = 5, then find a3 + a a3 Solution: 3 1 3 a + a = 5 1 1 1 ⇒ 3 a + 3 +3 a × a + = 125 a a a 1 ⇒ a3 + 3 + 3 (1) (5) = 125 a 1 1 ⇒ a3 + 3 = 125 – 15 ⇒ a3 + 3 = 110 a a Q10. Prove that 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = [(a - b)2 + (b - c)2 + (c - a)2] Solution: Q11. If a2 + b2 + c2 = 250 and ab + bc + ca = 3, find a + b + c. Solution: Q12. If a2 + b2 + c2 = 20 and a + b + c = 0, find ab + bc + ca. Solution: Q13. If a + b =10 and ab = 21, find the value of a3 + b3. Solution: Q14. If (a + b + c) = 14 and (a2 + b2 + c2) = 74, find the value of (ab + bc + ca). Solution: Q15. Prove (sin8θ - cos8θ) = (sin2θ - cos2θ) (1 - 2 sin2θ cos2θ) Solution: 2 2 2 Q16. If 4x + 9y + z – 6xy – 3yz –2xz = 0 , then prove that 2x = 3y = z Solution: Can we write the expression 4x2 + 9y2 + z2 – 6xy – 3yz – 2xz = 0 as (2x)2 + (3y)2 + (z)2 – (2x)(3y) – (3y)(z) – (2x)(z) = 0 a2 + b2 + c2 – ab – bc – ca = 0 ⇒ a = b = c ⇒ 2x = 3y = z Q17. Find the relation between p, q, r in 36p2 + 100q2 + 4r2 - 60pq - 20qr - 12pr = 0 Solution: Q18. Find the relation between p, q, r in p2 + 64q2 + 16r2 + 8pq - 32qr + 4pr = 0 Solution: Q19. Find positive numbers a, b and c such that 2a + b + 3c = 6 and 8a3 + b3 + 27c3 = 18abc Solution: Q20. If a ≠ 2b and a3 + 8b3 = 18ab - 27 then find the value of a + 2b A -1 B 1 C 2 D -3 Solution: Q21. If a + b + c = 15 and a2 + b2 + c2 = 83, find the value of a3 + b3 + c3 - 3abc. Solution: Q22. If x + y + z = 1, xy + yz + zx = -1 and xyz = -1, find the value of x 3 + y3 + z3. Solution: x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx) ⇒ x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 + 2xy + 2yz + 2zx - 3xy - 3yz - 3zx) [Adding the subtracting 2xy + 2yz + 2zx] ⇒ x3 + y3 + z3 - 3xyz = (x + y + z) {(x + y + z)2 - 3(xy + yz + zx)} ⇒ x3 + y3 + z3 - 3(- 1) = 1 × {(1)2 - 3(-1)} [Putting the values of x + y + z, xy + yz + zx and xyz] ⇒ x3 + y 3 + z 3 + 3 = 4 ⇒ x3 + y 3 + z 3 = 4 - 3 = 1 Q23. Solve 2x - 1 ≤ 0 Solution: 1/2 is not included 2x is less than or equal to 1 2 is a positive number, so if we divide by 2, inequality will remain same 1 1 x < 2 2 Q24. Solve 3x - 3 ≤ 2 Solution: 3x ≤ 5 is not included 3 is a positive number, so if we divide by 3, inequality will remain same 5 3 Q25. Solve -2x + 5 ≤ 7 Solution: -2x ≤ 7 - 5 -2x ≤ 2 To have x on L.H.S. let's divide both sides by – 2 –1 Inequality reverses when we divide or multiply by a negative number Q26. Represent the following on real number line x ≤ 2 ∪ x > 5. Solution: x ∈ (-∞, 2) ∪ (5, ∞) –∞ 2 5 ∞ Join Vedantu JEE Telegram channel NOW! Assignments Notes Daily Update https://vdnt.in/jeepro

Use Quizgecko on...
Browser
Browser