Math 2A Lecture 1D - Tangents & Limits PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains lecture notes on the topic of tangents and limits in calculus. Examples and calculations are included, along with an introduction to finding limits. The notes use mathematics examples to explore concepts related to calculating limits.
Full Transcript
# MATH 2A ## 2.1-2: Tangents and Limits ### Lecture 1D Assume that a car that constantly accelerates from rest has a position function *s(t) = t<sup>2</sup>*. * **Distance** * **Time** What is the average velocity of the car on the interval *[a, b]*. * **Average Speed:** *(s(b) - s(a)) / (b - a)...
# MATH 2A ## 2.1-2: Tangents and Limits ### Lecture 1D Assume that a car that constantly accelerates from rest has a position function *s(t) = t<sup>2</sup>*. * **Distance** * **Time** What is the average velocity of the car on the interval *[a, b]*. * **Average Speed:** *(s(b) - s(a)) / (b - a)* How can we approximate the exact velocity at time *t = 1*? * **[1, 2]:** *(s(2) - s(1)) / (2 - 1) = (4-1) / 1 = 3* * **[1, 1.1]:** *(s(1.1) - s(1)) / (1.1 - 1) = (1.21 - 1) / 0.1 = 2.1* * **[1, 1.5]:** *(s(1.5) - s(1)) / (1.5 - 1) = (2.25 - 1) / 0.5 = 2.5* * **[1, 1.01]:** *(s(1.01) - s(1)) / (1.01 - 1) = (1.0201 - 1) / 0.01 = 2.01* * **[1, 1 + h]:** *(s(1 + h) - s(1)) / (1 + h - 1) = (1 + 2h + h<sup>2</sup> - 1) / h = (2h + h<sup>2</sup>) / h = 2h / h = 2 + h* When we assume that *h* is very small, we are actually taking a limit. We write *lim f(x) = L* to mean when x is very close to a, *f(x)* gets very close to *L.* * **lim<sub>h→0</sub> (s(1 + h) - s(1))/h = 2** * **lim<sub>x→1</sub> 2x+1 = 3** * **lim<sub>x→-1</sub> 2x+1 = 3** * **lim<sub>x→1-</sub> 2x+1 = 3** * **lim<sub>x→1</sub> x<sup>2</sup>= 1** * **lim<sub>x→-1</sub> x<sup>2</sup> = 1** * **lim<sub>x→1</sub> x<sup>2</sup>= 1** * **lim<sub>x→2</sub> (x-2)/(x<sup>2</sup>-4) = 1/4** * **lim<sub>x→2</sub> (x-2)/(x<sup>2</sup>-4) = 1/4** * **lim<sub>x→2</sub> (x-2)/(x<sup>2</sup>-4) = 1/4** * **lim<sub>x→∞</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0-</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0+</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0</sub> |x| / x = DNE (Does Not Exist)** * **lim<sub>x→0+</sub> |x| / x = 1** * **lim<sub>x→0-</sub> |x| / x = -1** These leads us to define **one-sided limits:** * **lim<sub>x→a+</sub> f(x) = L:** means when x is very close to a and x > a, then f(x) gets close to L. * **lim<sub>x→a-</sub> f(x) = L:** means when x is very close to a and x < a, then f(x) gets close to L. Look back at our previous work to determine the following limits: * **lim<sub>x→1+</sub> 2x+1 = 3** * **lim<sub>x→1-</sub> 2x+1 = 3** * **lim<sub>x→1</sub> 2x+1 = 3** * **lim<sub>x→1+</sub> x<sup>2</sup> = 1** * **lim<sub>x→1-</sub> x<sup>2</sup> = 1** * **lim<sub>x→1</sub> x<sup>2</sup> = 1** * **lim<sub>x→2+</sub> (x-2)/(x<sup>2</sup>-4) = 1/4** * **lim<sub>x→2-</sub> (x-2)/(x<sup>2</sup>-4) = 1/4** * **lim<sub>x→2</sub> (x-2)/(x<sup>2</sup>-4) = 1/4** * **lim<sub>x→0+</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0-</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0</sub> 1/x<sup>2</sup> = +∞** * **lim<sub>x→0+</sub> |x| / x = 1** * **lim<sub>x→0-</sub> |x| / x = -1** * **lim<sub>x→0</sub> |x| / x = DNE** So, under what conditions will a double-sided limit exist? * **If lim<sub>x→a+</sub> f(x) = L and lim<sub>x→a-</sub> f(x) = L, then lim<sub>x→a</sub> f(x) = L.** Do single-sided limits always exist? Try **lim<sub>x→0+</sub> sin (π/x)** * DNE * **x | sin(π/x)** * **0.1 | sin(10π) = 0** * **0.01 | sin(100π) = 0** * **7592 | sin(7592π) = 0** * **N | sin(Nπ) = 0** * **x | sin(π/x)** * **1/2 | sin(2π) = 1** * **1/3 | sin(3π) = 1** * **1/400 | sin(400π) = 1** * **1/(4N+1) | sin(4Nπ + π/2) = 1**