Calculus I - Chapter 1 - Limits and Continuity PDF

Summary

This document is a lecture presentation on Calculus I, Chapter 1. It covers the concepts of limits and continuity, including definitions, theorems, and examples relating to polynomial and rational functions, as well as radical functions.

Full Transcript

Friendly Reminder from the Mathematics Department: Stay healthy! Follow the DOH Health Protocols!. GOD BLESS…..... Math 13 | Calculus I Chapter 1. Limits and Continuity Chapter 1. Limits and Continuity...

Friendly Reminder from the Mathematics Department: Stay healthy! Follow the DOH Health Protocols!. GOD BLESS…..... Math 13 | Calculus I Chapter 1. Limits and Continuity Chapter 1. Limits and Continuity Definition of a Limit LIMIT Limit Theorems OF A One –Sided Limits FUNCTION Infinite Limits. Limits at Infinity.. Continuity of a Function... LIMIT OF A FUNCTION How does f(x) behave? How does 𝑓 𝑥 behave? Behaviour of the function 𝒇(𝒙) Trend of the values Graph of 𝑓(𝑥)...... How does 𝑓 𝑥 behave? Example. Complete the table below using the function 𝑓(𝑥) for the specified values of 𝑥. 𝑥2 − 4 𝑓 𝑥 = 𝑓 𝑥 = 𝑥 2 −4 = (𝑥+2)(𝑥−2) = 𝑥 + 2, 𝑥 ≠ 2 𝑥−2 𝑥−2 𝑥−2 x 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.99 1.999 1.9999 1.99999 1.999999 y. x 2.000001 2.00001 2.0001 2.001 2.01 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 4. y.... 𝑥2 − 4 𝑓 𝑥 = How does 𝑓 𝑥 behave? 𝑥−2 x 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.99 1.999 1.9999 1.99999 1.999999 y 2 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.99 3.999 3.9999 3.99999 3.999999 y 7 One-sided limits Limit of 𝑓(𝑥) as 𝑥 approaches 4 6 2 from the right is 4. 2+ 5 4 Limit of 𝑓(𝑥) as 𝑥 approaches 2 is 4. Two-sided Limit 3 2 Limit of 𝑓(𝑥) as 𝑥 approaches 2 from the left is 4. 2− 4 4. 1 2 0. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x.. x 2.000001 2.00001 2.0001 2.001 2.01 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 4 y 4.000001 4.00001 4.0001 4.001 4.01 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 6.. Informal Definition of a Limit Consider a function 𝑓 of a single variable 𝑥. Consider a constant 𝑎 which the variable 𝑥 approach (𝑎 may or may not be in the domain of 𝑓). The limit, denoted by 𝐿, is the unique real value that 𝑓(𝑥) will approach as 𝑥 approaches 𝑎. In symbols, we write this process as.. 𝑎.... y 7 4 6 2 5 L 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 𝐿 + 𝜀 = 𝒇(𝒙𝟐 ) L 𝜀. 𝜀 𝛿1 𝛿2. 𝐿 − 𝜀 = 𝒇(𝒙𝟏 ) 𝒙𝟏 𝒂 𝒙𝟐 𝛿 = min{𝛿1 , 𝛿2 }.... Formal Definition of a Limit...... LIMIT THEOREMS (Part 1) What are the Limit properties? Limit Theorems 𝑓 𝑥 =4. lim 4 = 4 lim 4 = 4 lim 4 = 4. 𝑥→2 𝑥→0 𝑥→3.. How about 𝑥 → −5??? lim 4 = 4. 𝑥→−5. Limit Theorems 𝑓 𝑥 =𝑥. lim 𝑥 = 2 lim 𝑥 = 0 lim 𝑥 = 3. 𝑥→2 𝑥→0 𝑥→3.. How about 𝑥 → −5??? lim 𝑥 = −5. 𝑥→−5. Limit Theorems lim 𝑥 + 7 = lim 𝑥 + lim 7 = 4 + 7 = 11 𝑥→4 𝑥→4 𝑥→4... lim 2𝑥 − 3 + 3𝑥 − 5 = lim 2𝑥 − 3 +lim 3𝑥 − 5 𝑥→4 𝑥→4 𝑥→4... Limit Theorems lim 2𝑥= lim 2 lim 𝑥 = 2 3 = 6 𝑥→3 𝑥→3 𝑥→3.. lim 2𝑥 3𝑥 − 1 = lim 2𝑥 lim (3𝑥 − 1). 𝑥→4 𝑥→4 𝑥→4... Polynomial Function 𝑓 𝑥 = 𝑐0 + 𝑐1 𝑥 + 𝑐2 𝑥 2 + ⋯ + 𝑐𝑛 𝑥 𝑛 lim 𝑓 𝑥 = lim 𝑐0 + 𝑐1 𝑥 + 𝑐2 𝑥 2 + ⋯ + 𝑐𝑛 𝑥 𝑛 = 𝑓(𝑎) 𝑥→𝑎 𝑥→𝑎... Remark. Substitute 𝑎 in 𝑓(𝑥) to obtain the limit of a polynomial. function as 𝑥 approaches 𝑎... Evaluate the following: 1. lim 2𝑥 3 + 3𝑥 2 − 1 = 2(23 ) + 3(22 ) − 1 = 27 𝑥→2 2. lim 3𝑥 7 − 5𝑥 4 + 2𝑥 3 + 9 = −1 𝑥→−1...... Summary Limit Theorems Polynomial Function... Substitute 𝑎 in 𝑓(𝑥) to obtain the limit of the polynomial. function as x approaches 𝑎... LIMIT THEOREMS (Part 2) What are the Limit properties? Polynomial Functions Substitution Rational Functions 𝑓(𝑥) ℎ 𝑥 = ,𝑔 𝑥 ≠ 0 𝑔(𝑥) 𝑛𝑜𝑛𝑧𝑒𝑟𝑜/𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 ℎ 𝑎 = ℎ 𝑎 = ℎ 𝑎 = 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 Reduced to a You need to apply Limit Does Not Exist. real number something Infinite Limits.. What to do first? Try substituting the value of 𝑎 in the given rational function and check which case it falls into.... Limit Theorems 𝑛𝑜𝑛𝑧𝑒𝑟𝑜/𝑧𝑒𝑟𝑜 ℎ 𝑎 = lim (2𝑥 − 1) 1 2𝑥 − 1 𝑥→1 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 lim = = 2𝑥 − 1 2(1) − 1 1 𝑥→1 3𝑥 + 5 lim (3𝑥 + 5) 8 = = 𝑥→1 3𝑥 + 5 3(1) + 5 8.. 𝑥2 + 𝑥 − 2 lim (𝑥 2 + 𝑥 − 2) 4 𝑥2 + 𝑥 − 2 (2)2 +(2) − 2 4 lim 𝑥→2 = =. 𝑥→2 2𝑥 2 − 𝑥 − 1 = 2 = 2𝑥 2 − 𝑥 − 1 2(22 ) − (2) − 1 5 lim (2𝑥 − 𝑥 − 1) 5. 𝑥→2.. 𝑥2 + 𝑥 − 2 4 Limit Theorems lim 2 = 𝑧𝑒𝑟𝑜 𝑥→2 2𝑥 − 𝑥 − 1 5 ℎ 𝑎 = 𝑧𝑒𝑟𝑜 𝑥2 + 𝑥 − 2 lim 2 =? ? ? 𝑥→1 2𝑥 − 𝑥 − 1 𝑥2 + 𝑥 − 2 (1)2 +(1) − 2 0 = = 2𝑥 2 − 𝑥 − 1 2(12 ) − (1) − 1 0 Do something! 𝑥2 + 𝑥 − 2 (𝑥 − 1)(𝑥 + 2) lim 2 = lim 𝑥→1 2𝑥 − 𝑥 − 1 𝑥→1 (𝑥 − 1)(2𝑥 + 1). 𝑥+2 lim (𝑥 + 2) 3 𝑥→1. = lim = = =1 𝑥→1 2𝑥 + 1 lim (2𝑥 + 1) 3. 𝑥→1... Limit Theorems 𝑥+2−2 𝑧𝑒𝑟𝑜 lim =? ? ? ℎ 𝑎 = 𝑥→2 𝑥−2 𝑧𝑒𝑟𝑜 𝑥+2−2 2+2−2 0 = = Do something! 𝑥−2 2−2 0 𝑥+2−2 𝑥+2−2 𝑥+2+2 lim = lim ∙ 𝑥→2 𝑥−2 𝑥→2 𝑥−2 𝑥+2+2. (𝑥 + 2) − 4. = lim. 𝑥→2 (𝑥 − 2)( 𝑥 + 2 + 2). 𝑥−2 1 1 = lim = lim =. 𝑥→2 (𝑥 − 2)( 𝑥 + 2 + 2) 𝑥→2 𝑥 + 2 + 2) 4. Limit Theorems 𝑥2 + 1 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 lim =? ? ? ℎ 𝑎 = 𝑥→2 𝑥 − 2 𝑧𝑒𝑟𝑜 𝑥 2 + 1 22 + 1 5 The Limit does not exist. 𝑥−2 = 2−2 = 0 𝑥2 + 1 lim does not exist 𝑥→2 𝑥 − 2. The behaviour of the graph for this case can be. observed using the concept of infinite limits..... Limit Theorems Existence of Limits The limit exists if we find a single real function value upon applying the limit theorems. Uniqueness of Limits If lim 𝑓 𝑥 = 𝐿1 and lim 𝑓 𝑥 = 𝐿2 , then 𝐿1 = 𝐿2. 𝑥→𝑎 𝑥→𝑎...... Summary Rational Functions 𝑓(𝑥) ℎ 𝑥 = ,𝑔 𝑥 ≠ 0 𝑔(𝑥) 𝑛𝑜𝑛𝑧𝑒𝑟𝑜/𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 ℎ 𝑎 = ℎ 𝑎 = ℎ 𝑎 = 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 𝑧𝑒𝑟𝑜 Reduced to a You need to apply Limit Does Not Exist. real number something Infinite Limits..... LIMIT THEOREMS (Part 3) What are the Limit properties? Limit Theorems Radical functions 𝑛 ℎ(𝑥) = 𝑓(𝑥)...... Limit Theorems 𝑓 𝑥 = 𝑥 lim 𝑥 = 2 Why? 𝑥→4 lim 𝑥 = lim 𝑥 = 4 = 2 𝑥→4 𝑥→4... How about lim 𝑥 ??? lim 𝑥 = 3. 𝑥→9 𝑥→9.. Limit Theorems lim 𝑥 =? ? ? 𝑥→−4 lim 𝑥 does not exist Why? 𝑥→−4 lim 𝑥 = lim 𝑥 = −4 𝑥→−4 𝑥→−4 Which is not a real number.. Try this!. lim 2𝑥 𝑥 − 6 + 18.. 𝑥→6. Limit Theorems lim 2𝑥 𝑥 − 6 + 18 = lim [2𝑥 𝑥 − 6 + 18] 𝑥→6 𝑥→6 = 18 = 2(9) =3 2.. Try this!. 3. lim 𝑥 2 2𝑥 2 − 5 + 2𝑥 − 7. 𝑥→2. Limit Theorems 3 lim 𝑥 2 2𝑥 2 − 5 + 2𝑥 − 7 𝑥→2 3 = lim [𝑥 2 2𝑥 2 − 5 + 2𝑥 − 7] 𝑥→2 3 = 9... 3𝑥 − 7 Try this! lim 𝑥→1 2𝑥 2 − 9𝑥 − 5... Limit Theorems 3𝑥 − 7 3𝑥 − 7 lim = lim 𝑥→1 2𝑥 2 − 9𝑥 − 5 𝑥→1 2𝑥 2 − 9𝑥 − 5 lim [3𝑥 − 7] 𝑥→1 = lim [2𝑥 2 − 9𝑥 − 5] 𝑥→1.. −4 1 3. = = =. −12 3 3.. The limit does not exist when 𝑛. 𝐿 is not a real number......

Use Quizgecko on...
Browser
Browser