Trigonometry Practice Sheet Warrior 2025 PDF
Document Details
Uploaded by WellEducatedOnyx4809
Gurukul The School
2025
P W
Tags
Summary
This is a trigonometry practice sheet for the year 2025. It includes multiple choice questions and proofs. The sheet is suitable for secondary school students.
Full Transcript
Warrior 2025 Practice Sheet TRIGONOMETRY 1. If the value of cos A = 4/5, then tan A = ? tan x 8....
Warrior 2025 Practice Sheet TRIGONOMETRY 1. If the value of cos A = 4/5, then tan A = ? tan x 8. =1 (A) 1 (B) 3/4 sin x3 + sin x cos x (C) 4/3 (D) 4/5 cos x (A) true 4sin A − cosA (B) false 2. If 4 tan A = 3, then =? 4sin A + cosA (C) can't say 2 1 (D) None of these (A) (B) 3 3 1 tan 2 (C) (D) 1 9. + 1equals to : 2 1 + sec 1 (A) tan θ (B) 1 cos 3. If sin = , then the value of 2cot2 + 2is: 3 sec –1 (C) (D) sec θ + tan θ (A) 6 (B) 1 cot (C) 18 (D) 10 10. If x = a sec cos , y = bsec sin and z = c tan, 4. (sin 30° + cos 60°) – (sin 60° + cos 30°) is equal to: x 2 y2 (A) 0 (B) 1 then + = a 2 b2 (C) 1– 3 (D) 1 + 3 z2 z2 (A) 2 + a2 (B) 1 – c c2 a 5. If cos x = , then tan x is equal to : z2 z2 b (C) –1 (D) 1 + c2 c2 a2 (A) b2 – b 11. In a ABC, right angled at B, AB = 15 cm, BC = 8 b–a cm. Determine (B) b (i) sin A, cos A b2 – a 2 (ii) sin C, cos C (C) a 1 (b – a) 12. In a ABC, right angled at B, if tan A = , find (D) 3 b the value of (i) sinA cosC + cosA sinC 1 6. In cot = , the value of sec2 + cosec2 is (ii) cosA cosC – sinA sinC. 3 40 (A) 1 (B) 1– tan 2 A 9 13. If 3 cotA = 4, check whether 1 + tan 2 A 38 1 (C) (D) 5 = cos2 A – sin2 A or not. 9 3 1 + tan 14. Find the value of each of the following: 7. Given that sec = 2 , the value of is: sin 5sin 2 30 + cos2 45 − 4tan 2 30 (i) (A) 2 2 (B) 2 2sin30 cos30 + tan 45 (ii) sin 45° (1 + cot2 45°) + cos2 45°(1 + tan2 45°) 2 (C) 3 2 (D) 2 + sin2 20° + cos2 20° 15. Find the value of in each of the following : 18. Prove that: tan cot (i) 2 sin 2 = 3 + = 1 + sec cosec 1 − cot 1 − tan (ii) 2 cos 3 = 1 19. Prove that: tan 2 1– cos cosA − sin A + 1 = = cosecA + cot A 16. Prove that : sec + 1 cos cosA + sin A − 1 20. Prove that: 17. Prove that cosec (1 – cos ) + sec (1 – sin ) = 2 2 2 2 2 1 (cosecA − sin A)(secA − cosA) = tan A + cot A ANSWER KEY 1. (B) 11. (Check Solution) 2. (C) 12. (Check Solution) 3. (C) 13. (Check Solution) 4. (C) 14. (Check Solution) 5. (C) 15. (Check Solution) 6. (D) 16. (Check Solution) 7. (A) 17. (Check Solution) 8. (A) 18. (Check Solution) 9. (B) 19. (Check Solution) 10. (D) 20. (Check Solution) HINTS AND SOLUTIONS 1. (B) 3/4 12. We know that 1 2. (C) 2 3. (C) 18 BC 1 4. (C) 1– 3 tanA = = AB 3 BC 1 b2 – a 2 tan A = = 5. (C) AB 3 a BC : AB = 1 : 3 1 Let BC = k and AB = 3k 6. (D) 5 3 Then, AC = AB + BC2 (Pythagoras theorem) 2 7. (A) 2 2 = ( 3k)2 + (k)2 = 3k2 + k2 = 4k 2 = 2k 8. (A) true BC k 1 Now, sin A = = = AC 2k 2 1 13. 3 cot A = 4 [Given] 9. (B) cos 4 cot A = 3 z2 Draw a right triangle ABC, right angled at B. 10. (D) 1 + c2 11. In right ABC, we have AC2 = AB2 + BC2 [By Pythagoras theorem] AC2 = (15 cm)2 + (8 cm)2 = 289 cm2 AC = 17 cm AB 4 Then, cot A = = BC 3 If AB = 4 k, then BC = 3k, where k is a positive number. In right ABC, we have AC2 = AB2 + BC2 [By Pythagoras theorem] With reference to A, we have AC2 = (4k)2 + (3k)2 = 16k2 + 9k2 = 25k2 Base AB = 15 cm, perpendicular BC = 8 cm and AC = 5k BC 3k 3 hypotenuse AC = 17 cm. Now, sinA = = = BC 8 cm 8 AC 5k 5 sin A = = = AB 4k 4 AC 17 cm 17 cosA = = = AB 15 cm 15 AC 5k 5 and cos A = = = BC 3k 3 AC 17 cm 17 and tanA = = = AB 4k 4 With reference to C, we have 2 3 9 Base BC = 8 cm, perpendicular AB = 15 cm and 1 − 4 1− 1 − tan 2 A hypotenuse AC = 17 cm. LHS = = = 16 1 + tan 2 A 2 9 1 + 1 + 16 AB 15 cm 15 3 sin C = = = AC 17 cm 17 4 BC 8 cm 8 7 16 7 and cos C = = = = = AC 17 cm 17 16 25 25 5sin 2 30 + cos2 45 − 4tan 2 30 17. LHS = cosec2 (1 – cos2 ) + sec2 (1 – sin2 ) 14. (i) 2sin30 cos30 + tan 45 = cosec2 sin2 + sec2 cos2 [ 1 – cos2 = sin2 2 1 1 2 1 2 5 1 4 and 1 – sin2 = cos2] 5 + − 4 + − 1 1 2 2 3 = 4 2 3 = cosec2 + sec2 = cosec 2 sec2 1 3 3 2 +1 +1 = 1 + 1 = 2 = RHS 2 2 2 15 + 6 − 16 5 tan cot 18. + = 1 + sec cosec = 12 = 12 1 − cot 1 − tan 3+2 2+ 3 sin cos tan cot = cos + sin 2 2 = + 5 2 5 1 − cot 1 − tan 1 − cos 1 − sin = = sin cos 12 2 + 3 6(2 + 3) sin cos (ii) sin2 45° (1 + cot2 45°) + cos2 45 (1 + tan2 45°) = cos + sin + sin2 20° + cos2 20° sin − cos cos − sin 1 2 1 2 sin cos = 1 + (1) + 1 + (1) 2 2 2 2 sin 2 cos2 = + cos (sin − cos ) sin (sin − cos ) + sin2 20 + cos2 20 1 sin 2 cos 2 1 1 = − = 2 + 2 + 1 [ sin2 20° + cos2 20° = 1] (sin − cos ) cos sin 2 2 sin − cos 3 3 1 =1+1+1=3 = sin − cos sin cos 15. (i) we have, = 1 ( (sin − cos ) sin + cos + sin cos 2 2 ) 2 sin 2 = 3 sin − cos sin cos 3 (1 + sin cos ) sin 2 = = = sec cosec + 1 = R.H.S. 2 sin cos sin 2 = sin 60° 19. L.H.S. 2 = 60° = 30° cos A sin A − + 1 cot A − 1 + cosecA (ii) we have, = sin A sin A sin A = cos A sin A + + 1 cot A + 1 − cosecA 2 cos 3 = 1 sin A sin A sin A 1 {(cot A) − (1 − cosecA)}{(cot A) − (1 − cosecA)} cos 3 = = 2 {(cot A) + (1 − cosecA)}{(cot A) − (1 − cosecA)} cos 3 = cos 60° (cot A − 1 + cosecA)2 3 = 60° = 20 = (cot A)2 − (1 − cosecA)2 cot 2 A+1+cosec2 A–2cot A–2cosecA+2cot AcosecA = ( cot 2 A– 1+cosec2 A–2cosecA ) tan 2 sec2 − 1 16. LHS = = [ tan2 = sec2 – 1] 2cosec2 A+2cot AcosecA–2cot A–2cosecA sec + 1 sec + 1 = (sec − 1)(sec + 1) ( cot 2 A– 1+cosec2 A–2cosecA ) = (sec + 1) (cosecA + cot A)(2cosecA − 2) = −1 − 1 + 2cosecA 1 1 − cos = sec – 1 + –1= = RHS (cosecA + cot A)(2cosecA − 2) cos cos = (2cosecA − 2) = cosec A + cot A = R.H.S. 20. L.H.S. R.H.S. = (cosec A – sin A)(sec A – cos A) 1 1 = = 1 1 tan A + cot A sin A + cos A = − sin A − cos A sin A cos A cos A sin A 1 − sin 2 A 1 − cos 2 A 1 sin AcosA = 2 = 2 = sin AcosA = sin A + cos A sin A + cos2 A 2 sin A cos A sin AcosA = ( cos A)(sin A) = sin Acos A 2 2 Hence, L.H.S. = R.H.S. sin Acos A PW Web/App - https://smart.link/7wwosivoicgd4 Library- https://smart.link/sdfez8ejd80if