Introduction to Trigonometry PDF Past Papers
Document Details
Uploaded by CourtlyKazoo1189
2008
CBSE
Tags
Summary
This document contains a collection of trigonometry questions from past CBSE papers. Sample questions include trigonometric identities, geometric interpretations, values of trigonometric ratios, and trigonometric angle properties. These questions are suitable for practice and preparation for secondary school-level mathematics examinations.
Full Transcript
Introduction to Trigonometry 1 Mark: 3 1 1. If 3𝑥 = cosec 𝜃 and 𝑥 = cot 𝜃, find the value of 3 (𝑥 2 − 𝑥 2). CBSE 2010, Delhi (30/1/1)...
Introduction to Trigonometry 1 Mark: 3 1 1. If 3𝑥 = cosec 𝜃 and 𝑥 = cot 𝜃, find the value of 3 (𝑥 2 − 𝑥 2). CBSE 2010, Delhi (30/1/1) 6 1 2. If 6𝑥 = sec 𝜃 and 𝑥 = tan 𝜃, find the value of 9 (𝑥 2 − 𝑥 2). CBSE 2010, Foreign (30/2/1) 3. If sec2 𝜃 (1 + sin 𝜃)(1 − sin 𝜃) = 𝑘, then find the value of 𝑘. CBSE 2009, Outside Delhi (30/1) 1 4. If sin 𝜃 = 3, then find the value of (2 cot 2 𝜃 + 2). CBSE 2009, Delhi (30/1/1) 15 5. If sec 𝐴 = and 𝐴 + 𝐵 = 90°, find the value of cosec 𝐵. CBSE 2009, Foreign (30/2/1) 7 1 6. What is the maximum value of sec 𝜃 ? CBSE Sample Paper III 2008 3 7. If tan 𝐴 = and 𝐴 + 𝐵 = 90°, then what is the value of cot 𝐵 ? CBSE Sample Paper III 2008 4 1 cosec2 𝜃−sec2 𝜃 8. Given tan 𝜃 = , what is the value of CBSE Sample Paper I 2008 √5 cosec2 𝜃+sec2 𝜃 5 9. If tan 𝐴 = , find the value of (sin 𝐴 + cos 𝐴) sec 𝐴. CBSE 2008, Foreign (30/2/1), (30/2/3) 12 7 10. If cos 𝐴 = 25, find the value of tan 𝐴 + cot 𝐴. CBSE 2008, Foreign (30/2/2) 2 Marks : 1. Without using trigonometric tables, find the value of the following expression: sec(90°−𝜃).cosec 𝜃−tan(90°−𝜃) cot 𝜃+cos2 25°+cos2 65° CBSE 2010, Delhi (30/1/1) 3 tan 27°.tan 63° 2. Find the value of cosec 30°, geometrically. CBSE 2010, Delhi (30/1/1) 3. Without using trigonometric tables, find the value of the following: CBSE 2010, Foreign (30/2/1) cot 𝜃. tan(90° − 𝜃) − sec(90° − 𝜃) cosec 𝜃 + √3. tan 12°. tan 60°. tan 78° 4. Find the value of sec 45° geometrically. CBSE 2010, Foreign (30/2/1) sin3 𝜃+cos3 𝜃 5. Simplify : + sin 𝜃 cos 𝜃 CBSE 2009, Delhi (30/1/1) sin 𝜃+cos 𝜃 15 (2+2 sin 𝜃)(1−sin 𝜃) 6. If cot 𝜃 = , then evaluate. CBSE 2009, Outside Delhi (30/1) 8 (1+cos 𝜃)(2−2 cos 𝜃) 7. Find the value of tan 60°, geometrically. CBSE 2009, Outside Delhi (30/1) 8. Without using trigonometric tables, evaluate: 7 cos 70° 3 cos 55° cosec 35° + 2 tan 5° tan 25° tan 45° tan 85° tan 65° CBSE 2009, Foreign (30/2/1) 2 sin 20° 9. Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45° CBSE Sample Paper II 2008 10. If 𝐴, 𝐵, 𝐶 are interior angles of Δ𝐴𝐵𝐶, then show that 𝐵+𝐶 𝐴 cos ( ) = sin 2 CBSE Sample Paper II 2008 2 cos 70° 11. Without using trigonometric tables, find the value of sin 20° + cos 57° cosec 33° − 2 cos 60° CBSE Sample Paper I 2008 12. If sec 4𝐴 = cosec(𝐴 − 20°), where 4𝐴 is an acute angle, find the value of 𝐴. CBSE 2008, Foreign (30/2/1), (30/2/3) 1 13. In a Δ𝐴𝐵𝐶, right-angled at 𝐶, if tan 𝐴 = , find the value of √3 sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 CBSE 2008, Foreign (30/2/1), (30/2/3) 14. If sec 2𝐴 = cosec(𝐴 − 42°), where 2𝐴 is an acute angle, find the value of 𝐴. CBSE 2008, Foreign (30/2/2) 15. In Δ𝐴𝐵𝐶, right angled at 𝐴, if tan 𝐶 = √3, find the value of sin 𝐵 cos 𝐶 + cos 𝐵 sin 𝐶. CBSE 2008, Foreign (30/2/2) 3 Marks: 1. Prove the following: tan 𝐴 cot 𝐴 1−cot 𝐴 + 1−tan 𝐴 = 1 + tan 𝐴 + cot 𝐴 CBSE 2010, Delhi (30/1/1) 2. Prove the following: 1 (cosec 𝐴 − sin 𝐴)(sec 𝐴 − cos 𝐴) = CBSE 2010, Delhi (30/1/1) tan 𝐴+cot 𝐴 2 2 3. If tan 𝜃 + sin 𝜃 = 𝑚 & tan 𝜃 − sin 𝜃 = 𝑛, show that 𝑚 − 𝑛 = 4√𝑚𝑛. CBSE 2010, Foreign (30/2/1) 4. Show that: 1 1 1 (1 + ) (1 + )=. CBSE 2010, Foreign (30/2/1) tan2 𝜃 cot2 𝜃 sin2 𝜃−sin4 𝜃 5. Find the value of sin 30° geometrically. CBSE 2009, Delhi (30/1/1) 6. Without using trigonometrical tables, evaluate: cos 58° sin 22° cos 30° cosec 52° sin 32° + cos 68° − tan 18° tan 35° tan 60° tan 72° tan 55° CBSE 2009, Delhi (30/1/1) 7. Prove that sin2 𝜃−2 sin4 𝜃 sec 2 𝜃 − 2 cos4 𝜃−cos2 𝜃 = 1 CBSE 2009, Foreign (30/2/1) 8. Evaluate: 2 2 5 cosec2 58° − cot 58° tan 32° − tan 13° tan 37° tan 45° tan 53° tan 77° 3 3 3 CBSE 2009, Outside Delhi (30/1) 9. Prove that: (1 + cot 𝐴 + tan 𝐴)(sin 𝐴 − cos 𝐴) = sin 𝐴 tan 𝐴 − cot 𝐴 cos 𝐴. CBSE 2008, Foreign (30/2/1), (30/2/2), (30/2/3) 10. Without using trigonometric tables, evaluate the following: cos 58° cos 38° cosec 52° 2 ( sin 32° ) − √3 (tan 15° tan 60° tan 75°) CBSE 2008, Foreign (30/2/1), (30/2/2), (30/2/3) 11. Prove that sin 𝜃 sin 𝜃 = 2 + cot 𝜃−cosec 𝜃 CBSE Sample Paper III 2008 cot 𝜃+cosec 𝜃 12. Evaluate sec 29° + 2 cot 8° cot 17° cot 45° cot 73° cot 82° − 3(sin2 38° + sin2 52°) CBSE Sample Paper III 2008 cosec 61° 13. Prove that sec 𝐴−1 sec 𝐴+1 √sec 𝐴+1 + √sec 𝐴−1 = 2 cosec 𝐴 CBSE Sample Paper II 2008 1+cos 𝐴 sin 𝐴 14. Prove that: + 1+cos 𝐴 = 2 cosec 𝐴 CBSE Sample Paper I 2008 sin 𝐴 sin 𝐴+cos 𝐴 sin 𝐴−cos 𝐴 2 15. Prove that: sin 𝐴−cos 𝐴 + sin 𝐴+cos 𝐴 = sin2 𝐴−cos2 𝐴 CBSE Sample Paper I 2008