Photosynthetic Cells Capture Light Energy (PDF)
Document Details
Uploaded by GenerousBeech4364
Tags
Summary
This document provides an overview of the process of photosynthesis in cells. It explains how cells capture light energy and convert it to chemical energy, including the structure of chloroplasts and the role of different pigments. The document also discusses the steps involved in photosynthesis and the importance of this process to the global carbon cycle and other organisms.
Full Transcript
1-4 Photosynthetic Cells Capture Light Energy and Convert It to Chemical Energy Cells get nutrients from their environment, but where do those nutrients come from? Virtually all organic material on Earth has been produced by cells that convert energy from the Sun into energy-containing macromolec...
1-4 Photosynthetic Cells Capture Light Energy and Convert It to Chemical Energy Cells get nutrients from their environment, but where do those nutrients come from? Virtually all organic material on Earth has been produced by cells that convert energy from the Sun into energy-containing macromolecules. This process, called photosynthesis, is essential to the global carbon cycle and organisms that conduct photosynthesis represent the lowest level in most food chains. What Is Photosynthesis? Why Is it Important? Cells use carbon dioxide and energy from the Sun to make sugar molecules and oxygen. These sugar molecules are the basis for more complex molecules made by the photosynthetic cell, such as glucose. Then, via respiration processes, cells use oxygen and glucose to synthesize energy- rich carrier molecules, such as ATP, and carbon dioxide is produced as a waste product. Therefore, the synthesis of glucose and its breakdown by cells are opposing processes. Photosynthesis doesn't just drive the carbon cycle — it also creates the oxygen necessary for respiring organisms. Although green plants contribute much of the 30 oxygen in the air we breathe, phytoplankton and cyanobacteria in the world's oceans are thought to produce between one-third and one-half of atmospheric oxygen on Earth. Photosynthetic cells contain special pigments that absorb light energy. Different pigments respond to different wavelengths of visible light. Chlorophyll, the primary pigment used in photosynthesis, reflects green light and absorbs red and blue light most strongly. In plants, photosynthesis takes place in chloroplasts, which contain the chlorophyll. Structure: Chloroplasts are surrounded by a double membrane and contain a third inner membrane, called the thylakoid membrane, that forms long folds within the organelle. In electron micrographs, thylakoid membranes look like stacks of coins, although the compartments they form are connected like a maze of chambers. The green pigment chlorophyll is located within the thylakoid membrane, and the space between the thylakoid and the chloroplast membranes is called the stroma. Chlorophyll A is the major pigment used in photosynthesis, but there are several types of chlorophyll and numerous other pigments that respond to light, including red, brown, and blue pigments. These other pigments may help channel light energy to chlorophyll A or protect the cell from photo-damage. For example, the photosynthetic protists called dinoflagellates, which are responsible for the "red tides" that often prompt warnings against eating shellfish, contain a variety of light-sensitive pigments, including both chlorophyll and the red pigments responsible for their coloration. 31 What Are the Steps of Photosynthesis? Photosynthesis consists of both light-dependent reactions and light-independent reactions. The so-called "light" reactions occur within the chloroplast thylakoids, where the chlorophyll pigments reside. When light energy reaches the pigment molecules, it energizes the electrons within them, and these electrons are shunted to an electron transport chain in the thylakoid membrane. Every step in the electron transport chain then brings each electron to a lower energy state and harnesses its energy by producing ATP and NADPH. Meanwhile, each chlorophyll molecule replaces its lost electron with an electron from water; this process essentially splits water molecules to produce oxygen. 32 Once the light reactions have occurred, the light-independent or "dark" reactions take place in the chloroplast stroma. During this process, also known as carbon fixation, energy from the ATP and NADPH molecules generated by the light reactions drives a chemical pathway that uses the carbon in carbon dioxide to build a three-carbon sugar called glyceraldehyde-3-phosphate (G3P). Cells then use G3P to build a wide variety of other sugars (such as glucose) and organic molecules. Many of these interconversions occur outside the chloroplast, following the transport of G3P from the stroma. The products of these reactions are then transported to other parts of the cell, including the mitochondria, where they are broken down to make more energy carrier molecules to satisfy the metabolic demands of the cell. In plants, some sugar molecules are stored as sucrose or starch. 1.5 Metabolism is the Complete Set of Biochemical Reactions within a Cell A cell's daily operations are accomplished through the biochemical reactions that take place within the cell. Reactions are turned on and off or sped up and slowed down according to the cell's immediate needs and overall functions. At any given time, the numerous pathways involved in building up and breaking down cellular components must be monitored and balanced in a coordinated fashion. To achieve this goal, cells organize reactions into various enzyme-powered pathways. What Do Enzymes Do? Enzymes are protein catalysts that speed biochemical reactions by facilitating the molecular rearrangements that support cell function. Recall that chemical reactions convert substrates into products, often by attaching chemical groups to or breaking off chemical groups from the substrates. Enzymes are flexible proteins that change shape when they bind with substrate molecules. In fact, this binding and shape changing ability is how enzymes manage to increase reaction rates. 33