Geometry Vocabulary PDF
Document Details
Uploaded by FinerElation1402
Tags
Summary
This document provides definitions, examples, and non-examples for various geometry concepts, such as congruent segments, angles, acute angles, right angles, obtuse angles, straight angles, and adjacent angles. The document also includes examples for segment addition postulate and angle addition postulate.
Full Transcript
## 1-2 Geometry Basics Vocab ### Congruent Segments **Definition:** Segments with the same length or measure. **Examples:** * 5 cm * 4m * 4m * 5 cm **Non-Examples:** * 8 m * 9 mm * 5 mm * 3 m ### Congruent Angles **Definition:** Angles with the same measure. **Examples:** * These angles a...
## 1-2 Geometry Basics Vocab ### Congruent Segments **Definition:** Segments with the same length or measure. **Examples:** * 5 cm * 4m * 4m * 5 cm **Non-Examples:** * 8 m * 9 mm * 5 mm * 3 m ### Congruent Angles **Definition:** Angles with the same measure. **Examples:** * These angles are congruent. **Non-Examples:** * These angles are not congruent. ### Acute Angle **Definition:** $0° < x < 90°$ **Examples:** * 33° * 89° * 58° **Non-Examples:** * 91° * 100° ### Right Angle **Definition:** $= 90°$ **Examples:** * 90° * 90° **Non-Examples:** * 30° * 80° * 150° ### Obtuse Angle **Definition:** $90°<x<180°$ **Examples:** * 101° * 91° * 129° **Non-Examples:** * 38° * 89° ### Straight Angle **Definition:** $= 180°$ **Examples:** **Non-Examples:** * make a straight line ### Adjacent Angles **Definition:** Angles who share a common vertex and side. **Examples:** * ∠ 1 and ∠ 2 are adjacent angles. **Non-Examples:** * ∠ 1 and ∠ 2 are not adjacent angles. * ∠ 1 and ∠ ABC are not adjacent angles. ### Segment Addition Postulate **Given:** A C B **If 3 points A, B and C are collinear and C is between A and B then...** $AC + CB = AB$ ### Angle Addition Postulate **Given:** * A D B C **If D is a point in the interior of $ABC$ then...** $m∠ABD + m∠DBC = m∠ABC$ ### Distance Formula **Given:** $(x_1, y_1)$ and $(x_2, y_2)$ $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$