Summary

This chapter provides an overview of the historical relationship between science, technology and society. It explores how scientific and technological advancements have shaped and been shaped by societal, political and cultural factors. The chapter highlights the interplay between these fields, providing examples of their impact on various aspects of daily life.

Full Transcript

  Chapter  1   Historical  Antecedents  in  Which  Social  Considerations  Changed     the  Course  of  Science  and  Technology    ...

  Chapter  1   Historical  Antecedents  in  Which  Social  Considerations  Changed     the  Course  of  Science  and  Technology       Introduction     This  section  presents  an  overview  of  how  science  and  technology  evolved  from   ancient  times  to  the  present.  It  shows  how  man  was  able  to  develop  crude  technological   tools  and  eventually  improve  them  through  time  to  make  his  way  of  living  more  convenient   and  the  society  more  progressive.       Intended  Learning  Outcomes:     1.   Discuss  the  interactions  between  science  and  technology  and  society  throughout   history   2.   Discuss   how   scientific   and   technological   developments   affect   society   and   the   environment   3.   Identify  the  paradigm  shifts  in  history       A.   General  Concepts     What  is  Science,  Technology  and  Society?         Science   and   Technology   and   Society   is   an   interdisciplinary   course   designed   to   examine  the  ways  that  science  and  technology  shape,  and  are  shaped  by,  our  society,   politics,  and  culture.  It  explores  the  conditions  under  which  production,  distribution  and   utilization   of   scientific   knowledge   and   technological   systems   occur;;   and   the   effects   of   these   processes   upon   the   entire   society.   History   and   philosophy   of   science   and   technology,  sociology  and  anthropology  are  greatly  interconnected  to  the  discussion  of   STS   because   these   are   the   very   factors   that   molded   the   development   of   science   and   technology  as  we  know  it  today.         Science  is  an  evolving  body  of  knowledge  that  is  based  on  theoretical  expositions   and  experimental  and  empirical  activities  that  generates  universal  truths.  Technology,  on   the   other   hand   is   the   application   of   science   and   creation   of   systems,   processes   and   objects  designed  to  help  humans  in  their  daily  activities.  The  development  of  science  and   technology  has  brought  immense  progress  in  society  and  men.  Scientific  knowledge  and   technology   influences   individuals   and   society.   Better   understanding   of   science   and   technology  is  essential  to  know  the  unique  attributes  of  each  enterprise,  then  addressing   their  implications  for  society.               Society  is  the  sum  total  of  our  interactions  as  humans,  including  the  interactions   that  we  engage  in  to  understand  the  nature  of  things  and  to  create  things.  It  is  also  defined   as  a  group  of  individuals  involved  in  persistent  social  interaction,  or  a  large  social  group   sharing  the  same  geographical  or  social  territory,  typically  subject  to  the  same  political   authority  and  dominant  cultural  expectations  (Science  Daily).     Science,  technology  and  society  is  important  to  the  public  because  it  helps  address   issues   and   problems   that   are   of   concern   to   the   general   population.   Scientific   and   technological   principles   have   been   and   continue   to   be   applied   to   solve   problems   that   people   experience   in   their   day-­to-­day   aspects   of   living.   But   scientific   findings   must   be   applied  at  the  right  scales.  The  impact  of  technological  breakthroughs  on  people,  society   and  the  environment  must  be  critically  assessed  to  preserve  its  value.                                                                        Figure  1  The  Interrelationship  of  science,  technology  and  society                                                                    Source:  Ihueze  et  al.,  2015.  researchgate.net   A  lot  of  our  problems  in  modern  society  involve  not  only  technology  but  also  human   values,   social   organization,   environmental   concerns,   economic   resources,   political   decisions,  and  a  myriad  of  other  factors.  These  things  sits  at  the  interface  between  the   three   fields   and   can   also   be   solved   (if   they   can   be   solved   at   all)   by   the   application   of   scientific  knowledge,  technical  expertise,  social  understanding,  and  humane  compassion.     In  the  past,  science  is  learned  as  an  independent  study  from  other  fields.  It  focuses   on  the  scientific  methods,  natural  processes  and  understanding  nature.  But  in  the  current   global   scenario,   science   is   studied   holistically,   often   in   an   interdisciplinary   method,   emphasizing  systems  rather  than  processes,  synthesis  more  than  analysis  and  predicting   nature’s  behavior  in  order  to  have  useful  application  in  solving  contemporary  problems.   2 The   scientific   data   that   have   built   up   a   considerable   base   of   knowledge   led   to   a   vast   portfolio   of   useful   technologies,   especially   in   the   21st   century,   to   solve   many   of   the   problems  now  facing  humankind  (UNESCO,  1999).       To   solve   our   contemporary   problems,   science   needs   to   become   more   multidisciplinary   and   its   practitioners   should   continue   to   promote   cooperation   and   integration  between  the  social  and  natural  sciences.  A  holistic  approach  also  demands   that  science  draw  on  the  contributions  of  the  humanities  (such  as  history  and  philosophy),   local  knowledge  systems,  aboriginal  wisdom,  and  the  wide  variety  of  cultural  values.     The   influence   of   science   and   technology   on   people’s   lives   is   expanding.   While   recent  benefits  to  humanity  are  unparalleled  in  the  history  of  the  human  species,  in  some   instances  the  impact  has  been  harmful  or  the  long-­term  effects  give  causes  for  serious   concerns.  A  considerable  measure  of  public  mistrust  of  science  and  fear  of  technology   exists  today.  In  part,  this  stems  from  the  belief  by  some  individuals  and  communities  that   they  will  be  the  ones  to  suffer  the  indirect  negative  consequences  of  technical  innovations   introduced   to   benefit   only   a   privileged   minority.   The   power   of   science   to   bring   about   change  places  a  duty  on  scientists  to  proceed  with  great  caution  both  in  what  they  do  and   what  they  say.  Scientists  should  reflect  on  the  social  consequences  of  the  technological   applications  or  dissemination  of  partial  information  of  their  work  and  explain  to  the  public   and   policy   makers   alike   the   degree   of   scientific   uncertainty   or   incompleteness   in   their   findings.  At  the  same  time,  though,  they  should  not  hesitate  to  fully  exploit  the  predictive   power   of   science,   duly   qualified,   to   help   people   cope   with   environmental   change,   especially  in  cases  of  direct  threats  like  natural  disasters  or  water  shortages.     The  Role  of  Science  and  Technology     1.   alter   the   way   people   live,   connect,   communicate   and   transact,   with   profound   effects  on  economic  development;;   2.   key   drivers   to   development,   because   technological   and   scientific   revolutions   underpin   economic   advances,   improvements   in   health   systems,   education   and   infrastructure;;     3.   The  technological  revolutions  of  the  21st  century  are  emerging  from  entirely  new   sectors,   based   on   micro-­processors,   tele-­communications,   bio-­technology   and   nano-­technology.   Products   are   transforming   business   practices   across   the   economy,  as  well  as  the  lives  of  all  who  have  access  to  their  effects.  The  most   remarkable   breakthroughs   will   come   from   the   interaction   of   insights   and   applications  arising  when  these  technologies  converge.   4.   have  the  power  to  better  the  lives  of  poor  people  in  developing  countries     5.   differentiators   between   countries   that   are   able   to   tackle   poverty   effectively   by   growing  and  developing  their  economies,  and  those  that  are  not.     6.   engine  of  growth     7.   interventions   for   cognitive   enhancement,   proton   cancer   therapy   and   genetic   engineering       3   Reflective  Question:   With   the   whole   world   suffering   from   CoViD-­19   pandemic,   discuss   the   interplay   between  science,  technology  and  society  in  mitigating  this  problem.       ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________     4 B.   Historical  Antecedents  in  the  World     Just  like  with  any  other  discipline,  the  best  way  to  truly  understand  where   we  are  in  science  today  is  to  look  back  at  what  happened  in  the  past.  The  history   of   science   can   teach   us   many   lessons   about   the   way   scientists   think   and   understand  the  world  around  us.  A  historical  perspective  will  make  us  appreciate   more  what  science  really  is.       From  Ancient  Times  to  600  BC     Science  during  ancient  times  involved  practical  arts  like  healing  practices   and  metal  tradition.  Some  of  the  earliest  records  from  history  indicate  that  3,000   years  before  Christ,  the  ancient  Egyptians  already  had  reasonably  sophisticated   medical   practices.   Sometime   around   2650   B.C.,   for   example,   a   man   named   Imhotep  was  renowned  for  his  knowledge  of  medicine.  Most  historians  agree  that   the  heart  of  Egyptian  medicine  was  trial  and  error.  Egyptian  doctors  would  try  one   remedy,  and  if  it  worked,  they  would  continue  to  use  it.  If  a  remedy  they  tried  didn’t   work,   the   patient   might   die,   but   at   least   the   doctors   learned   that   next   time   they   should  try  a  different  remedy.  Despite  the  fact  that  such  practices  sound  primitive,   the  results  were,  sometimes,  surprisingly  effective.       The  Egyptian  medicine  was  considered  advanced  as  compared  with  other   ancient  nations  because  of  one  of  the  early  inventions  of  Egyptian  civilization  –  the   papyrus.  The  papyrus  is  an  ancient  form  of  paper,  made  from  the  papyrus  plant,   a  reed  which  grows  in  the  marshy  areas  around  the  Nile  river.  As  early  as  3,000   years  before  Christ,  Egyptians  took  thin  slices  of  the  stem  of  the  papyrus  plant,  laid   them  crosswise  on  top  of  each  other,  moistened  them,  and  then  pressed  and  dried   them.  The  result  was  a  form  of  paper  that  was  reasonably  easy  to  write  on  and   store.   The   invention   of   this   ancient   form   of   paper   revolutionized   the   way   information  was  transmitted  from  person  to  person  and  generation  to  generation.   Before  papyrus,  Egyptians,  Sumerians,  and  other  races  wrote  on  clay  tablets  or   smooth   rocks.   This   was   a   time-­consuming   process,   and   the   products   were   not   easy  to  store  or  transport.  When  Egyptians  began  writing  on  papyrus,  all  of  that   changed.  Papyrus  was  easy  to  roll  into  scrolls.  Thus,  Egyptian  writings  became   easy  to  store  and  transport.  As  a  result,  the  knowledge  of  one  scholar  could  be   easily  transferred  to  other  scholars.  As  this  accumulated  knowledge  was  passed   down   from   generation   to   generation,   Egyptian   medicine   became   the   most   respected   form   of   medicine   in   the   known   world.   Papyrus   was   used   as   a   writing   material  as  early  as  3,000  BC  in  ancient  Egypt,  and  continued  to  be  used  to  some   extent  until  around  1100  AD.     Although  the  Egyptians  were  renowned  for  their  medicine  and  for  papyrus,   other  cultures  had  impressive  inventions  of  their  own.  Around  the  time  that  papyrus   was  first  being  used  in  Egypt,  the  Mesopotamians  were  making  pottery  using  the   first  known  potter’s  wheel.  Not  long  after,  horse-­drawn  chariots  were  being  used.   5 As  early  as  1,000  years  before  Christ,  the  Chinese  were  using  compasses  to  aid   themselves  in  their  travels.  The  ancient  world,  then,  was  filled  with  inventions  that,   although  they  sound  commonplace  today,  revolutionized  life  during  those  times.   These  inventions  are  history’s  first  inklings  of  science.         The  Advent  of  Science  (600  BC  to  500  AD)     The  ancient  Greeks  were  the  early  thinkers  and  as  far  as  historians  can  tell,   they  were  the  first  true  scientists.  They  collected  facts  and  observations  and  then   used  those  observations  to  explain  the  natural  world.  Although  many  cultures  like   the  ancient  Egyptians,  Mesopotamians,  and  Chinese  had  collected  observations   and  facts,  they  had  not  tried  to  use  those  facts  to  develop  explanations  of  the  world   around  them.       Scientific   thought   in   Classical   Antiquity   becomes   tangible   from   the   6th   century   BC   in   pre-­Socratic   philosophy   (Thales,   Pythagoras).   In   circa   385   BC,   Plato   founded   the   Academy.   With   Plato's   student   Aristotle   begins   the   "scientific   revolution"   of   the   Hellenistic   period   culminating   in   the   3rd   to   2nd   centuries   with   scholars   such   as   Eratosthenes,   Euclid,   Aristarchus   of   Samos,  Hipparchus  and  Archimedes.     This   period   produced   substantial   advances   in   scientific   knowledge,   especially  in  anatomy,  zoology,  botany,  mineralogy,  geography,  mathematics  and   astronomy;;   an   awareness   of   the   importance   of   certain   scientific   problems,   especially  those  related  to  the  problem  of  change  and  its  cause;;  and  a  recognition   of  the  methodological  importance  of  applying  mathematics  to  natural  phenomena   and  of  undertaking  empirical  research.     The  scholars  frequently  employed  the  principles  developed  in  earlier  Greek   thought:  the  application  of  mathematics  and  deliberate  empirical  research,  in  their   scientific  investigations.  This  was  passed  on  from  ancient  Greek  philosophers  to   medieval  Muslim  philosophers  and  scientists,  to  the  European  Renaissance  and   Enlightenment,  to  the  secular  sciences  of  the  modern  day.         Islamic  Golden  Age     The  Islamic  Golden  Age  was  a  period  of  cultural,  economic  and  scientific   flourishing  in  the  history  of  Islam,  traditionally  dated  from  the  eighth  century  to  the   fourteenth  century,  with  several  contemporary  scholars  dating  the  end  of  the  era   to  the  fifteenth  or  sixteenth  century.  This  period  is  traditionally  understood  to  have   begun  during  the  reign  of  the  Abbasid  caliph  Harun  al-­Rashid  (786  to  809)  with  the   inauguration   of   the   House   of   Wisdom   in   Baghdad,   where   scholars   from   various   parts  of  the  world  with  different  cultural  backgrounds  were  mandated  to  gather  and   translate   all   of   the   world's   classical   knowledge   into   the   Arabic   language   and   subsequently   development   in   various   fields   of   sciences   began.   Science   and   6 technology   in   the   Islamic   world   adopted   and   preserved   knowledge   and   technologies  from  contemporary  and  earlier  civilizations,  including  Persia,  Egypt,   India,  China,  and  Greco-­Roman  antiquity,  while  making  numerous  improvements,   innovations  and  inventions.     Islamic   scientific   achievements   encompassed   a   wide   range   of   subject   areas,   especially   astronomy,   mathematics,   and   medicine.   Scientific   inquiry   was   practiced   in   other   subjects   like   alchemy   and   chemistry,   botany   and   agronomy,   geography  and  cartography,  ophthalmology,  pharmacology,  physics  and  zoology.       Islamic  science  was  characterized  by  having  practical  purposes  as  well  as   the  goal  of  understanding.  Astronomy  was  useful  in  determining  the  Qibla,  which   is   the   direction   in   which   to   pray,   botany   is   applied   in   agriculture   and   geography   enabled  scientists  to  make  accurate  maps.  Mathematics  also  flourished  during  the   Islamic   Golden   Age   with   the   works   of   Al-­Khwarizmi,   Avicenna   and   Jamshid   al   Kashi   that   led   to   advanced   in   algebra,   trigonometry,   geometry   and   Arabic   numerals.     There  was  also  great  progress  in  medicine  during  this  period.  Al-­Biruni,  and   Avicenna  produced  books  that  contain  descriptions  of  the  preparation  of  hundred   of   drugs   made   from   medicinal   plants   and   chemical   compounds.   Islamic   doctors   describe   diseases   like   smallpox   and   measles,   and   challenged   classical   Greek   medical  knowledge.           Likewise,  Islamic  physicists  such  as  Ibn  Al-­Haytham,  Al-­Biruni  and  others   studied  optics  and  mechanics  as  well  as  astronomy,  and  criticized  Aristotle’s  view   of  motion.     The   significance   of   medieval   Islamic   science   has   been   debated   by   historians.  The  traditionalist  view  holds  that  it  lacked  innovation,  and  was  mainly   important  for  handing  on  ancient  knowledge  to  medieval  Europe.  The  revisionist   view  holds  that  it  constituted  a  scientific  revolution.  Whatever  the  case,  science   flourished   across   a   wide   area   around   the   Mediterranean   and   further   afield,   for   several  centuries,  in  a  wide  range  of  institutions.       Science  and  Technology  in  Ancient  China       Ancient   Chinese   scientists   and   engineers   made   significant   scientific   innovations,   findings   and   technological   advances   across   various   scientific   disciplines   including   the   natural   sciences,   engineering,   medicine,   military   technology,  mathematics,  geology  and  astronomy.     Ancient  China  gave  the  world  the  Four  Great  Inventions  that  include  the   compass,  gunpowder,  papermaking  and  printing.  These  were  considered  as   among  the  most  important  technological  advances  and  were  only  known  to  Europe   7 1000  years  later  or  during  the  end  of  the  Middle  ages.  These  four  inventions  had   a   profound   impact   on   the   development   of   civilization   throughout   the   world.   However,   some   modern   Chinese   scholars   have   opined   that   other   Chinese   inventions  were  perhaps  more  sophisticated  and  had  a  greater  impact  on  Chinese   civilization  –  the  Four  Great  Inventions  serve  merely  to  highlight  the  technological   interaction  between  East  and  West.     As  stated  by  Karl  Marx,  "Gunpowder,  the  compass,  and  the  printing  press   were  the  three  great  inventions  which  ushered  in  bourgeois  society.  Gunpowder   blew  up  the  knightly  class,  the  compass  discovered  the  world  market  and  found   the  colonies,  and  the  printing  press  was  the  instrument  of  Protestantism  and  the   regeneration   of   science   in   general;;   the   most   powerful   lever   for   creating   the   intellectual  prerequisites.”         The  Renaissance  (1300  AD  –  1600AD)       The   14th   century   was   the   beginning   of   the   cultural   movement   of   the   Renaissance,   which   was   considered   by   many   as   the   Golden   Age   of   Science.   During   the   Renaissance   period,   great   advances   occurred   in   geography,   astronomy,   chemistry,   physics,   mathematics,   anatomy,   manufacturing,   and   engineering.   The   rediscovery   of   ancient   scientific   texts   was   accelerated   after   the   Fall   of   Constantinople   in   1453,   and   the   invention   of  printing  democratized  learning  and  allowed  a  faster  propagation  of  new  ideas.       Marie   Boas   Hall   coined   the   term   Scientific   Renaissance   to   designate   the   early   phase   of   the   Scientific   Revolution,   1450–1630.   More   recently,   Peter   Dear   has   argued   for   a   two-­phase   model   of   early   modern   science:   a   Scientific   Renaissance   of   the   15th   and   16th   centuries,   focused   on   the   restoration   of   the   natural  knowledge  of  the  ancients;;  and  a  Scientific  Revolution  of  the  17th  century,   when  scientists  shifted  from  recovery  to  innovation.     But   this   initial   period   is   usually   seen   as   one   of   scientific   backwardness.   There  were  no  new  developments  in  physics  or  astronomy,  and  the  reverence  for   classical   sources   further   enshrined   the   Aristotelian   and   Ptolemaic   views   of   the   universe.  Renaissance  philosophy  lost  much  of  its  rigour  as  the  rules  of  logic  and   deduction   were   seen   as   secondary   to   intuition   and   emotion.   At   the   same   time,   Renaissance   humanism   stressed   that   nature   came   to   be   viewed   as   an   animate  spiritual  creation  that  was  not  governed  by  laws  or  mathematics.  Science   would   only   be   revived   later,   with   such   figures   as   Copernicus,   Gerolamo   Cardano,  Francis  Bacon,  and  Descartes.     The   most   important   technological   advance   of   all   in   this   period   was   the   development  of  printing,  with  movable  metal  type,  about  the  mid-­15th  century  in   Germany.   Johannes   Gutenberg   is   usually   called   its   inventor,   but   in   fact   many   people  and  many  steps  were  involved.  Block  printing  on  wood  came  to  the  West   8 from  China  between  1250  and  1350,  papermaking  came  from  China  by  way  of  the   Arabs  to  12th-­century  Spain,  whereas  the  Flemish  technique  of  oil  painting  was   the   origin   of   the   new   printers’   ink.   Three   men   of   Mainz—Gutenberg   and   his   contemporaries   Johann   Fust   and   Peter   Schöffer—seem   to   have   taken   the   final   steps,  casting  metal  type  and  locking  it  into  a  wooden  press.  The  invention  spread   like   the   wind,   reaching   Italy   by   1467,   Hungary   and   Poland   in   the   1470s,   and   Scandinavia   by   1483.   By   1500   the   presses   of   Europe   had   produced   some   six   million   books.   Without   the   printing   press   it   is   impossible   to   conceive   that   the   Reformation  would  have  ever  been  more  than  a  monkish  quarrel  or  that  the  rise  of   a   new   science,   which   was   a   cooperative   effort   of   an   international   community,   would  have  occurred  at  all.  In  short,  the  development  of  printing  amounted  to  a   communications   revolution   of   the   order   of   the   invention   of   writing;;   and,   like   that   prehistoric   discovery,   it   transformed   the   conditions   of   life.   The   communications   revolution   immeasurably   enhanced   human   opportunities   for   enlightenment   and   pleasure   on   one   hand   and   created   previously   undreamed-­of   possibilities   for   manipulation   and   control   on   the   other.   The   consideration   of   such   contradictory   effects  may  guard  us  against  a  ready  acceptance  of  triumphalist  conceptions  of   the  Renaissance  or  of  historical  change  in  general.       The  Enlightenment  Period  (1715  A.D.  to  1789  A.D.)     The   Enlightenment   Period   or   the   Age   of   Reason   was   characterized   by   radical  reorientation  in  science,  which  emphasized  reason  over  superstition  and   science   over   blind   faith.   This   period   produced   numerous   books,   essays,   inventions,  scientific  discoveries,  laws,  wars  and  revolutions.  The  American  and   French   Revolutions   were   directly   inspired   by   Enlightenment   ideals   and   respectively  marked  the  peak  of  its  influence  and  the  beginning  of  its  decline.  The   Enlightenment  ultimately  gave  way  to  19th-­century  Romanticism.     The   Enlightenment’s   important   17th-­century   precursors   included   the   key   natural   philosophers   of   the   Scientific   Revolution,   including   Galileo   Galilei,   Johannes   Kepler   and   Gottfried   Wilhelm   Leibniz.   Its   roots   are   usually   traced   to   1680s   England,   where   in   the   span   of   three   years   Isaac   Newton   published   his   “Principia   Mathematica”   (1686)   and   John   Locke   his   “Essay   Concerning   Human   Understanding”  (1689)—two  works  that  provided  the  scientific,  mathematical  and   philosophical  toolkit  for  the  Enlightenment’s  major  advances.     In  this  era  dedicated  to  human  progress,  the  advancement  of  the  natural   sciences  is  regarded  as  the  main  exemplification  of,  and  fuel  for,  such  progress.   Isaac  Newton’s  epochal  accomplishment  in  his  Principia  Mathematica  consists  in   the  comprehension  of  a  diversity  of  physical  phenomena  –  in  particular  the  motions   of   heavenly   bodies,   together   with   the   motions   of   sublunary   bodies   –   in   few   relatively  simple,  universally  applicable,  mathematical  laws,  was  a  great  stimulus   to   the   intellectual   activity   of   the   eighteenth   century   and   served   as   a   model   and   inspiration   for   the   researches   of   a   number   of   Enlightenment   thinkers.   Newton’s   9 system  strongly  encourages  the  Enlightenment  conception  of  nature  as  an  orderly   domain   governed   by   strict   mathematical-­dynamical   laws   and   the   conception   of   ourselves  as  capable  of  knowing  those  laws  and  of  plumbing  the  secrets  of  nature   through  the  exercise  of  our  unaided  faculties.  –  The  conception  of  nature,  and  of   how  we  know  it,  changes  significantly  with  the  rise  of  modern  science.  It  belongs   centrally   to   the   agenda   of   Enlightenment   philosophy   to   contribute   to   the   new   knowledge   of   nature,   and   to   provide   a   metaphysical   framework   within   which   to   place  and  interpret  this  new  knowledge.       Industrial  Revolution  (1760  -­  1840)     The   rise   of   modern   science   and   the   Industrial   Revolution   were   closely   connected.  It  is  difficult  to  show  any  direct  effect  of  scientific  discoveries  upon  the   rise  of  the  textile  or  even  the  metallurgical  industry  in  Great  Britain,  the  home  of   the  Industrial  Revolution,  but  there  certainly  was  a  similarity  in  attitude  to  be  found   in   science   and   nascent   industry.   Close   observation   and   careful   generalization   leading   to   practical   utilization   were   characteristic   of   both   industrialists   and   experimentalists  alike  in  the  18th  century.       What   science   offered   in   the   18th   century   was   the   hope   that   careful   observation   and   experimentation   might   improve   industrial   production   significantly.   The   science   of   metallurgy   permitted   the   tailoring   of   alloy   steels   to   industrial   specifications,   the   science   of   chemistry   permitted   the   creation   of   new   substances,  like  the  aniline  dyes,  of  fundamental  industrial  importance,  and  that   electricity  and  magnetism  were  harnessed  in  the  electric  dynamo  and  motor.  Until   that   period   science   probably   profited   more   from   industry   than   the   other   way   around.   It   was   the   steam   engine   that   posed   the   problems   that   led,   by   way   of   a   search   for   a   theory   of   steam   power,   to   the   creation   of   thermodynamics.   Most   importantly,  as  industry  required  ever  more  complicated  and  intricate  machinery,   the   machine   tool   industry   developed   to   provide   it   and,   in   the   process,   made   possible  the  construction  of  ever  more  delicate  and  refined  instruments  for  science.   As  science  turned  from  the  everyday  world  to  the  worlds  of  atoms  and  molecules,   electric   currents   and   magnetic   fields,   microbes   and   viruses,   and   nebulae   and   galaxies,  instruments  increasingly  provided  the  sole  contact  with  phenomena.  A   large  refracting  telescope  driven  by  intricate  clockwork  to  observe  nebulae  was  as   much  a  product  of  19th-­century  heavy  industry  as  were  the  steam  locomotive  and   the  steamship.     The   Industrial   Revolution   had   one   further   important   effect   on   the   development  of  modern  science.  The  prospect  of  applying  science  to  the  problems   of  industry  served  to  stimulate  public  support  for  science.  Governments,  in  varying   degrees  and  at  different  rates,  began  supporting  science  even  more  directly,  by   making   financial   grants   to   scientists,   by   founding   research   institutes,   and   by   bestowing   honors   and   official   posts   on   great   scientists.   By   the   end   of   the   19th   century  the  natural  philosopher  following  his  private  interests  had  given  way  to  the   professional  scientist  with  a  public  role.   10   The  main  features  involved  in  the  Industrial  Revolution  were  technological,   socioeconomic,  and  cultural.  The  technological  changes  included  the  following:  (1)   the   use   of   new   basic   materials,   chiefly   iron   and   steel,   (2)   the   use   of   new   energy   sources,   including   both   fuels   and   motive   power,   such   as   coal,   the  steam  engine,  electricity,  petroleum,  and  the  internal-­combustion  engine,  (3)   the  invention  of  new  machines,  such  as  the  spinning  jenny  and  the  power  loom  that   permitted  increased  production  with  a  smaller  expenditure  of  human  energy,  (4)  a   new   organization   of   work   known   as   the   factory   system,   which   entailed   increased   division   of   labor   and   specialization   of   function,   (5)   important   developments   in   transportation   and   communication,   including   the   steam  locomotive,  steamship,  automobile,  airplane,  telegraph,  and  radio,  and  (6)   the   increasing   application   of   science   to   industry.   These   technological   changes   made  possible  a  tremendously  increased  use  of  natural  resources  and  the  mass   production  of  manufactured  goods.         20th  Century  Science:  Physics  and  Information  Age     The  20th  century  was  an  important  century  in  the  history  of  the  sciences.  It   generated   entirely   novel   insights   in   all   areas   of   research   –   often   thanks   to   the   introduction  of  novel  research  methods  –  and  it  established  an  intimate  connection   between  science  and  technology.  With  this  connection,  science  is  dealing  now  with   the   complexity   of   the   real   world.   The   scientific   legacy   of   the   20th   Century   gave   proof   of   the   revolutionary   changes   in   many   areas   of   the   sciences   –   in   particular,  physics,  biology,  astronomy,  chemistry,  neurosciences  and  earth  and   environmental  sciences  –  and  how  they  contributed  to  these  changes.     The   epistemological   and   methodological   questions   as   well   as   the   interdisciplinary  aspects  become  ever  more  important  in  scientific  research.  The   common  denominator  of  the  sciences  is  the  notion  of  discovery,  and  discovery  is   an   organised   mode   of   observing   nature.   Twentieth   century   cosmology   greatly   improved   our   knowledge   of   the   place   that   man   and   his   planet   occupy   in   the   universe.   The   “wonder”   that   Plato   and   Aristotle   put   at   the   origin   of   thought,   today  extends  to  science  itself.  Questions  now  arise  on  the  origin  and  on  the  whole,   its  history  and  its  laws.       The  start  of  the  20th  century  was  strongly  marked  by  Einstein’s  formulation   of  the  theory  of  relativity  (1905)  including  the  unifying  concept  of  energy  related  to   mass  and  the  speed  of  light:  E  =  mc2  .  He  made  many  more  contributions,  notably   to  statistical  mechanics,  and  he  provided  a  great  inspiring  influence  for  many  other   physicists.       In  the  second  half  of  the  20th  century  several  branches  of  science  continued   to  make  great  progress  and  we  here  list  physics,  chemistry,  biology,  geology  and   astronomy.   For   example,   there   was   the   development   of   the   semi-­conductor   11 (transistor),   followed   by   developments   in   nanotechnology   that   led   to   great   advances  in  information  technology.  In  nuclear  physics  the  discovery  of  sub-­atomic   particles  provided  a  great  leap  forward.       Modern  physics  grew  in  the  20th  into  a  primary  discipline  contributing  to  all   today’s  basic  natural  sciences,  astronomy,  chemistry  and  biology.  Although  it  took   a  hundred  years  since  Clausius’s  time  for  it  to  be  fully  recognized  that  all  biological   processes  have  also  to  obey  the  laws  of  thermodynamics,  the  border  between  the   origin  of  the  living  and  the  non-­living  worlds  has  now  at  last  been  blurred.  The  year   1953   was   an   important   landmark   for   biology   with   the   description   by   Crick   and   Watson  of  the  structure  of  DNA,  the  carrier  of  genetic  information  (Rosch,  2014).     Physics  has  enabled  us  to  understand  the  basic  components  of  matter  and   we  are  well  on  the  way  to  an  ever  more  consistent  and  unitary  understanding  of   the  entire  structure  of  natural  reality,  which  we  discover  as  being  made  up  not  only   of  matter  and  energy  but  also  of  information  and  forms.  The  latest  developments   in  astrophysics  are  also  particularly  surprising:  they  further  confirm  the  great  unity   of  physics  that  manifests  itself  clearly  at  each  new  stage  of  the  understanding  of   reality.       Biology  too,  with  the  discovery  of  DNA  and  the  development  of  genetics,   allows  us  to  penetrate  the  fundamental  processes  of  life  and  to  intervene  in  the   gene  pool  of  certain  organisms  by  imitating  some  of  these  natural  mechanisms.   Information  technology  and  the  digital  processing  of  information  have  transformed   our  lifestyle  and  our  way  of  communicating  in  the  space  of  very  few  decades.  The   20th  century  has  seen  medicine  find  a  cure  for  many  life-­threatening  diseases  and   the  beginning  of  organ  transplants.       It   is   impossible   to   list   the   many   other   discoveries   and   results   that   have  broadened  our  knowledge  and  influenced  our  world  outlook:  from  progress   in   computational   logic   to   the   chemistry   of   materials,   from   the   neurosciences   to   robotics.  Scientific  research  not  only  gives  expression  to  the  strength  of  rationality   in   explaining   the   world   and   the   way   in   which   this   is   done.   The   application   of   scientific   knowledge   can   induce   changes   of   environmental   and   thus   living   conditions.  It  is  these  aspects,  the  interrelations  between  scientific  progress  and   social  development,  which  together  with  insights  into  the  epistemological  structure   and   the   ethical   implications   of   science   play   an   important   role   in   the   life   and   the   work  of  scientists.         Science  and  Technology  in  the  Fourth  Industrial  Revolution     The   Fourth   Industrial   Revolution   is   a   way   of   describing   the   blurring   of   boundaries   between   the   physical,   digital,   and   biological   worlds.   It’s   a   fusion   of   advances   in   artificial   intelligence   (AI),   robotics,   the   Internet   of   Things   (IoT),   3D   printing,  genetic  engineering,  quantum  computing,  and  other  technologies.  It’s  the   collective   force   behind   many   products   and   services   that   are   fast   becoming   12 indispensable  to  modern  life.  Think  GPS  systems  that  suggest  the  fastest  route  to   a  destination,  voice-­activated  virtual  assistants  such  as  Apple’s  Siri,  personalized   Netflix  recommendations,  and  Facebook’s  ability  to  recognize  your  face  and  tag   you   in   a   friend’s   photo   (https://www.salesforce.com/blog/2018/12/what-­is-­the-­ fourth-­industrial-­revolution-­4IR.html).     As   a   result   of   this   perfect   storm   of   technologies,   the   Fourth   Industrial   Revolution  is  paving  the  way  for  transformative  changes  in  the  way  we  live  and   radically   disrupting   almost   every   business   sector.   It’s   all   happening   at   an   unprecedented,  whirlwind  pace.       The easiest way to understand the Fourth Industrial Revolution is to focus on the technologies driving it. Artificial intelligence (AI) describes computers that can “think” like humans — recognizing complex patterns, processing information, drawing conclusions, and making recommendations. AI is used in many ways, from spotting patterns in huge piles of unstructured data to powering the autocorrect on your phone. New computational technologies are making computers smarter. They enable computers to process vast amounts of data faster than ever before, while the advent of the “cloud” has allowed businesses to safely store and access their information from anywhere with internet access, at any time. Quantum computing technologies now in development will eventually make computers millions of times more powerful. These computers will have the potential to supercharge AI, create highly complex data models in seconds, and speed up the discovery of new materials. Virtual reality (VR) offers immersive digital experiences (using a VR headset) that simulate the real world, while augmented reality merges the digital and physical worlds. Examples include L’Oréal’s makeup app, which allows users to digitally experiment with makeup products before buying them, and the Google Translate phone app, which allows users to scan and instantly translate street signs, menus, and other text. Biotechnology harnesses cellular and biomolecular processes to develop new technologies and products for a range of uses, including developing new pharmaceuticals and materials, more efficient industrial manufacturing processes, and cleaner, more efficient energy sources. Researchers in Stockholm, for example, are working on what is being touted as the strongest biomaterial ever produced. Robotics refers to the design, manufacture, and use of robots for personal and commercial use. While we’re yet to see robot assistants in every home, technological advances have made robots increasingly complex and sophisticated. They are used in fields as wide-ranging as manufacturing, health and safety, and human assistance. 3D printing allows manufacturing businesses to print their own parts, with less tooling, at a lower cost, and faster than via traditional processes. Plus, designs can be customized to ensure a perfect fit. 13 Innovative materials, including plastics, metal alloys, and biomaterials, promise to shake up sectors including manufacturing, renewable energy, construction, and healthcare. The IoT describes the idea of everyday items — from medical wearables that monitor users’ physical condition to cars and tracking devices inserted into parcels — being connected to the internet and identifiable by other devices. A big plus for businesses is that they can collect customer data from constantly connected products, allowing them to better gauge how customers use products and tailor marketing campaigns accordingly. There are also many industrial applications, such as farmers putting IoT sensors into fields to monitor soil attributes and inform decisions such as when to fertilize. Energy capture, storage, and transmission represent a growing market sector, spurred by the falling cost of renewable energy technologies and improvements in battery storage capacity.       Activity:         1.   List   down   the   scientific   discoveries   and   technological   breakthroughs   in   each   period.  You  may  conduct  additional  researches  and  share  what  you  have  found  in   the  class.     a.   Ancient  Times  to  600  BC   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     b.   Advent  of  Science  (600  BC  to  500  AD)   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     c.   Islamic  Golden  Age   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     d.   Ancient  China  and  the  Far  East   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________         14   e.   Renaissance   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     f.   Enlightenment  Period   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     g.   Industrial  Revolution   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     h.   20th  century   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________     i.   Fourth  Industrial  Revolution   __________________________     __________________________   __________________________     __________________________   __________________________     __________________________         2.   If  given  a  chance  to  live  back  in  time  and  considering  the  influence  of  science  and   technology   in   the   society   and   the   environment,   which   period   would   you   choose   and  why?  Would  you  prefer  a  less  technologically  driven  society  or  you  wouldn’t   trade  the  comforts  of  modern  life?       ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________     15   Assignment:       Film  Viewing.       1.   Watch   the   World’s   Greatest   Invention   (https://www.youtube.com/watch?v=IYYyfAl9Usc)   and   then   answer   the   following   guide  questions.   a.   Among  the  mentioned  greatest  invention  in  the  video,  which  do  you  think  created   the  most  impact  in  your  life  now?  Why?   ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________     b.   Name  one  invention  and  discuss  how  it  transformed  the  society.   ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________     2.   Watch   Stephen   Colbert’s   interview   with   Neil   Tyson   on   YouTube   (https://www.youtube.com/watch?v=YXh9RQCvxmg&noredirect=1)   and   then   answer  the  following  guide  questions.     Guide  Questions:     1.   Stephen  Colbert  starts  the  interview  by  asking  Dr.  Neil  de  Grasse  Tyson,  “Is  it   better  to  know  or  not  to  know?”  Ponder  on  this  question  and  decide  which  one   is  better.  Give  as  many  reasons  as  to  why.   ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________   16   2.   Enumerate  the  various  statements  that  Dr.  Neil  de  Grasse  Tyson  said  about   the  importance  of  science  literacy  and  its  relationship  to  society.   ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________                                                                         17 C.   Historical  Development  of  Science  and  Technology  in  the  Philippines     The  current  state  of  science  and  technology  in  the  country  can  be  traced  back  to  its   historical  development  and  the  latent  events  that  helped  shape  it  since  the  pre-­colonial   period   to   contemporary   time.   What   we   have   or   lack   today   in   terms   of   science   and   technology  is  very  much  an  effect  of  the  government  policies  that  had  been  enacted  by   past  public  officials  in  trying  to  develop  a  technological  society  that  is  responsive  to  the   needs  of  time.       Pre-­Spanish  Era.       There  is  not  much  written  about  the  Philippines  during  pre-­colonial  time  but  analysis   from   archeological   artifacts   revealed   that   the   first   inhabitants   in   the   archipelago   who   settled  in  Palawan  and  Batangas  around  40  000  years  ago  have  made  simple  tools  or   weapons   of   stone   which   eventually   developed   techniques   for   sawing,   drilling   and   polishing   hard   stones.   This   very   primitive   technology   was   brought   by   primal   needs   of   survival  by  hunting  wild  animals  and  gathering  fruits  and  vegetables  in  the  forest.  They   learned  that  by  polishing  hard  stones,  they  can  develop  sharp  objects  that  are  useful  in   their  day  to  day  activities.  From  this  early,  we  can  see  that  technology  was  developed   because  of  a  great  necessity.       Still  on  its  primitive  state,  the  first  inhabitants  in  the  country  are  learning  what  can   be  harnessed  from  the  environment.  They  have  come  to  understand  that  when  clay  is   mixed  with  2  water  and  then  shaped  into  something  before  sun  drying,  it  hardens  to  an   object  that  can  also  be  useful  to  them.  And  because  clay  is  moldable,  it  can  be  shaped   into  various  objects.       As  the  early  Filipinos  flourished,  they  have  learned  how  to  extract,  smelt  and  refine   metals  like  copper,  gold,  bronze  and  iron  from  nature  and  consequently  fashion  them  into   tools  and  implements.  At  this  point,  the  inhabitants  of  the  country  are  showing  a  deeper   understanding  of  their  nature  because  they  were  able  to  obtain  valuable  resources  from   nature.     As  the  inhabitants  shifted  from  wandering  from  one  place  to  another  and  learned  to   settle  in  areas  near  the  water  source,  they  also  learned  how  to  weave  cotton,  engaged   themselves  in  agriculture  and  are  knowledgeable  on  building  boats  for  coastal  trade.       From   the   above   mentioned   facts,   it   can   be   concluded   that   primitive   Filipinos   are   practicing   science   and   technology   in   their   everyday   lives.   The   ancient   crafts   of   stone   carving,  pottery  and  smelting  of  metals  involves  a  lot  of  science,  which  is  understanding   the  nature  of  matter  involved.  The  ingenuity  of  the  Ifugaos  in  building  the  Banaue  Rice   Terraces   The   smelting   of   metals   exhibited   the   primitive   Filipino’s   knowledge   on   the   composition   of   alloy   and   the   optimum   temperature   that   will   produce   the   metal   with   acceptable  tensile  strength.  All  in  all,  the  primitive  Filipinos  were  living  in  perfect  harmony   with  nature  and  they  obtain  from  it  what  is  just  needed  in  their  everyday  life  through  a  very   simple  science  of  understanding  how  mother  nature  operates   18   Spanish  Colonial  Era.       As  claimed  by  Caoili  (1983),  the  beginnings  of  modern  science  and  technology  in   the  country  can  be  traced  back  to  the  Spanish  regime  because  they  established  schools,   hospitals   and   started   scientific   research   that   had   important   consequences   in   the   development   of   the   country.   These   schools,   which   are   mostly   run   by   Spanish   friars,   formed  the  first  Filipino  professionals.  The  The  3  highest  institution  of  learning  during  this   time  was  the  Royal  and  Pontifical  University  of  Santo  Tomas.     But   the   very   strict   hold   of   the   church   among   citizens   and   its   intervention   and   meddling  to  the  government  propelled  by  fear  of  intellectual  awakening  among  Filipinos   have   greatly   hindered   the   progress   of   these   professionals   to   further   enhance   their   knowledge,   conduct   scientific   investigations   and   contribute   to   the   advancement   of   society.   But   a   few   of   persistent   Filipino   scientists   succeeded   by   educating   themselves   abroad.  One  notable  example  of  course  is  our  national  hero,  the  great  Dr.  Jose  P.  Rizal.   Dr.  Jose  Rizal  is  the  epitome  of  the  Renaissance  man  in  the  Philippine  context.  He  is  a   scientist,   a   doctor,   an   engineer   (he   designed   and   built   a   water   system   in   Dapitan),   a   journalist,  a  novelist,  an  urban  planner  and  a  hero.  Being  a  doctor  and  scientist,  he  had   extensive   knowledge   on   medicine   and   was   able   to   operate   his   mother’s   blinding   eye.   When   he   was   deported   in   Dapitan,   his   knowledge   on   science   and   engineering   was   translated   into   technology   by   creating   a   water   system   that   improved   the   sanitation   of   households  in  the  area.  Dr.  Jose       Dr.  Jose  Rizal  was  a  brilliant  man  and  his  life  stood  out  among  his  contemporaries.   But  it  cannot  be  said  that  there  is  no  contribution  to  science  and  technology  among  the   Filipino   men   and   women   during   the   Spanish   era.   The   charity   hospitals   became   the   breeding  ground  for  scientific  researches  on  pharmacy  and  medicine,  with  great  focus  on   problems  of  infectious  diseases,  their  causes  and  possible  remedies.  And  in  1887,  the   Laboratorio   Municipal   de   Ciudad   de   Manila   was   created   and   whose   functions   were   to   conduct  biochemical  analyses  for  public  health  and  to  undertake  specimen  examinations   for  clinical  and  medico-­legal  cases.  Its  publication,  probably  the  first  scientific  journal  in   the   country   was   titled   Cronica   de   Ciencias   Medicas   de   Filipinas   showed   the   studies   undertaken  during  that  time.     As  the  colonization  of  the  Spaniards  lengthened,  they  began  to  exploit  the  natural   resources   of   the   country   through   agriculture,   mining   of   metals   and   minerals   and   establishing   various   kinds   of   industries   to   further   promote   economic   growth.   As   such,   scientific  research  on  these  fields  were  encouraged  by  the  government.  By  the  nineteenth   century,   Manila   has   become   a   cosmopolitan   center   and   modern   amenities   were   introduced  to  the  city.  However,  little  is  known  about  the  accomplishments  of  scientific   bodies   commissioned   by   the   Spanish   government   during   this   time.   Because   of   limited   scientific   research   and   its   consequent   translation   to   technology   during   the   Spanish   regime,   none   of   the   industries   prosper.   The   Philippines   had   evolved   into   a   primary   agricultural  exporting  economy,  and  this  is  not  because  of  the  researches  undertaken  on   19 this  field,  but  was  largely  because  of  the  influx  of  foreign  capital  and  technology  which   brought  modernization  of  some  sectors,  notably  sugar  and  hemp  production.       American  Period     If   the   development   in   science   and   technology   was   very   slow   during   the   Spanish   regime,   the   Philippines   saw   a   rapid   growth   during   the   American   occupation   and   was   made  possible  by  the  government’s  extensive  public  education  system  from  elementary   to  tertiary  schools.  The  establishment  of  various  public  tertiary  schools  like  the  Philippine   Normal   School   and   University   of   the   Philippines   provided   the   needs   for   professionally   trained  Filipinos  in  building  the  government’s  organization  and  programs.  The  growth  and   application   of   science   were   still   concentrated   on   the   health   sector   in   the   form   of   biochemical  analyses  in  hospitals.  The  government  supported  basic  and  applied  research   in   the   medical,   agricultural   and   related   sciences.  The   University   of   the   Philippines   Los   Baños  opened  the  College  of  Agriculture  in  1909  while  the  University  of  the  Philippines  –   Diliman  opened  the  Colleges  of  Arts,  Engineering  and  Veterinary  Medicine  in  1910.  The   College  of  Medicine  was  opened  four  years  later.     During  this  time,  there  were  already  quite  a  number  of  qualified  Filipino  physicians   who   held   teaching   positions   in   the   College   of   Medicine,   whereas   most   of   the   early   instructors  and  professors  in  other  colleges  such  as  in  the  sciences  and  engineering  were   Americans   and   foreigners.   Capacity   building   programs   that   include   sending   qualified   Filipinos  abroad  for  advanced  training  were  conducted  to  eventually  fill  up  the  teaching   positions   in   Philippine   universities.   Moreover,   the   American   colonial   government   sent   Filipino   youths   to   be   educated   as   teachers,   engineers,   physicians   and   lawyers   in   American  colleges  to  further  capacitate  the  Filipinos  in  various  fields.       However,   there   was   difficulty   in   recruiting   students   for   science   and   technology   courses   like   veterinary   medicine,   engineering,   agriculture,   applied   sciences   and   industrial-­vocational   courses.   The   enrollment   in   these   courses   were   dismal   that   the   government   had   to   offer   scholarships   to   attract   students.   The   unpopularity   of   these   courses  stemmed  from  the  Filipinos’  disdain  toward  manual  work  that  developed  from  the   400  years  under  Spanish  colonization.  The  Filipinos  then  prefer  prestigious  professions   at  that  time  like  priesthood,  law  and  medicine.       The  government  provided  more  support  for  the  development  of  science  and  created   the  Bureau  of  Government  Laboratories  in  and  was  later  changed  to  Bureau  of  Science.   It  was  composed  of  a  biological  laboratory,  chemical  laboratory,  serum  laboratory  for  the   production   of   virus   vaccine,   serums   and   prophylactics,   and   a   library.   The   bureau   was   initially  managed  by  American  senior  scientists  but  as  more  Filipinos  were  trained  and   acquire  the  necessary  knowledge  and  skills,  they  eventually  took  over  their  positions.  The   Bureau  of  Science  served  as  the  primary  training  ground  for  Filipino  scientists  and  paved   the  way  for  pioneering  scientific  research,  most  especially  on  the  study  of  various  tropical   diseases   that   were   prevalent   during   those   times   like   leprosy,   tuberculosis,   cholera,   dengue  fever,  malaria  and  beri-­beri.  Another  great  contribution  of  the  Bureau  of  Science   to  the  development  of  science  and  technology  in  the  country  was  the  publication  of  the   20 Philippine  Journal  of  Science.  This  scientific  journal  published  researches  done  in  local   laboratories   and   reported   global   scientific   developments   that   had   relevance   to   the   Philippine   society.   The   Bureau   of   Science   became   the   primary   research   center   of   the   Philippines   until   World   War   II.   Lastly,   on   December   8,   1933,   the   National   Research   Council  of  the  Philippines  was  established.         Commonwealth  Period     When  the  Americans  granted  independence  and  the  Commonwealth  government   was   established,   the   Filipinos   were   busy   in   working   towards   economic   reliance   but   acknowledge  the  importance  and  vital  role  of  science  and  technology  for  the  economic   development  of  the  country  by  declaring  that  “The  State  shall  promote  scientific  research   and   invention…”   The   short-­lived   Commonwealth   Government   was   succeeded   by   the   Japanese  occupation  when  the  Pacific  war  broke  out  in  1941.  The  prevailing  situations   during   the   time   of   Commonwealth   period   to   the   Japanese   regime   had   made   developments  in  science  and  technology  practically  impossible.  This  is  also  true  when   World  War  II  ended  and  left  Manila,  the  country’s  capital,  in  ruins.  The  government  had   to  rebuild  again  and  normalize  the  operations  in  the  whole  country.       Science  and  Technology  since  Independence     In  1946  the  Bureau  of  Science  was  replaced  by  the  Institute  of  Science  and  was   placed  under  the  Office  of  the  President  of  the  Philippines.  However,  the  agency  faced   lack  of  financial  support  from  the  government  and  experienced  planning  and  coordination   problems.  In  a  report  by  the  US  Economic  Survey  to  the  Philippines  in  1950,  there  is  a   lack  of  basic  information  which  were  necessities  to  the  country's  industries,  lack  of  support   of   experimental   work   and   minimal   budget   for   scientific   research   and   low   salaries   of   scientists  employed  by  the  government.  In  1958,  during  the  regime  of  President  Carlos   P.  Garcia,  the  Philippine  Congress  passed  the  Science  Act  of  1958  which  established  the   National  Science  Development  Board  (NSDB).         The   Philippine   government   focused   on   science   and   technology   institutional   capacity-­building  which  were  undertaken  by  establishing  infrastructure-­support  facilities   such  as  new  research  agencies  and  development  trainings.  However  good  these  projects   were,   it   produced   insignificant   effects   because   of   lack   of   coordination   and   planning,   specifically  technology  planning,  between  concerned  agencies  which  hindered  them  from   performing  their  assigned  functions  effectively.  This  was  aptly  illustrated  in  the  unplanned   activities  of  the  researchers  within  the  agencies.  Most  areas  of  research  were  naively  left   to  the  discretion  of  the  researchers  under  the  assumption  that  they  were  working  for  the   interests   of   the   country.   They   were   instructed   to   look   for   technologies   and   scientific   studies  with  good  commercialization  potential.  Without  clear  research  policy  guidelines,   researches  were  done  for  their  own  sake,  leaving  to  chance  the  commercialization  of  the   results.   21   Likewise,  during  this  time,  rebuilding  the  country  involved  establishing  more  state   funded   manual   and   trading   schools   which   would   eventually   become   the   current   state   universities   and   colleges.   The   trade   schools   produced   craftsmen,   tradesmen   and   technicians  that  helped  in  shaping  a  more  technological  Philippines  while  still  being  an   agricultural  based  nation.  Eventually,  when  these  trade  schools  were  elevated  to  college   and  university  status,  they  produced  much  of  the  country’s  professionals,  although  there   was  a  great  disparity  on  the  low  proportion  of  those  in  agriculture,  medical  and  natural   sciences  with  those  from  teacher  training  and  commerce/business  administration  courses   which  had  higher  number  of  graduates.  The  increase  in  the  number  of  graduates  led  to   the   rise   of   professional   organizations   of   scientists   and   engineers.   These   organizations   were  formed  to  promote  professional  interests  and  create  and  monitor  the  standards  of   practice.       As   summarized   by   Caoili,   “There   has   been   little   innovation   in   the   education   and   training  of  scientists  and  engineers  since  independence  in  1946.  This  is  in  part  due  to  the   conservative   nature   of   self-­regulation   by   the   professional   associations.   Because   of   specialized   training,   vertical   organizations   by   disciplines   and   lack   of   liaison   between   professions,   professional   associations   have   been   unable   to   perceive   the   dynamic   relationship   between   science,   technology   and   society   and   the   relevance   of   their   training  to  Philippine  conditions.       Science  and  Technology  in  the  1960s  to  1990s     During   these   years,   the   government   gave   greater   importance   to   science   and   technology.  The  government  declared  in  Section  9(1)  of  the  1973  Philippine  Constitution   that   the   “advancement   of   science   and   technology   shall   have   priority   in   the   national   development.”         On  April  6,  1968,  Pres.  Ferdinand  Marcos  proclaimed  the  35-­hectare  land  in  Bicutan,   Taguig  as  the  site  of  the  Philippine  Science  Community.  Then  in  1969,  the  government   provided  funds  to  private  universities  to  encourage  them  to  conduct  research  and  create   courses  in  science  and  technology.  The  government  also  conducted  seminars  for  public   and  private  high  school  and  college  science  teachers,  training  programs  and  scholarships   for   graduate   and   undergraduate   science   scholars,   and   workshops   on   fisheries   and   oceanography.       In  the  1970s,  focus  on  science  and  technology  was  given  to  applied  research  and   the  main  objective  was  to  generate  products  and  processes  that  were  supposed  to  have   a  greater  beneficial  impact  to  the  society.  Relative  to  this,  several  research  institutes  were   established  under  the  National  Science  Development  Board  (NSDB)  which  includes  the   Philippine   Coconut   Research   Institute   and   Philippine   Textile   Research   Institute.   Moreover,   the   Philippine   Atomic   Energy   Commission,   another   agency   under   NSDB,   explored  the  uses  of  atomic  energy  for  economic  development.  To  prepare  the  pool  of   scientists   who   will   work   on   Philippine   Atomic   Commission,   Pres.   Marcos   assisted   107   22 institutions   in   undertaking   nuclear   energy   work   by   sending   scientists   abroad   to   study   nuclear  science  and  technology,  and  providing  basic  training  to  482  scientists,  doctors,   engineers   and   technicians.   Then   in   1972,   by   virtue   of   Presidential   Decree   No.   4,   the   National   Grains   Authority   was   created   and   it   was   tasked   to   improve   the   rice   and   corn   industry  and  thereby  help  in  the  economic  development  of  the  country.  This  was  followed   by  the  creation  of  Philippine  Council  for  Agricultural  Research  to  support  the  progressive   development   of   agriculture,   forestry,   and   fisheries   in   the   country.   The   Marcos   administration   also   established   the   Philippine   Atmospheric   Geophysical   and   Astronomical   Service   Administration   (PAGASA)   under   the   Department   of   National   Defense  to  provide  environmental  protection  and  to  utilize  scientific  knowledge  to  ensure   the  safety  of  the  people  through  Presidential  Decree  No.  78,  s.  1972.  On  the  following   year,  the  Philippine  National  Oil  Company  was  created  by  virtue  of  Presidential  Decree   No.  334,  s.  1973,  to  promote  industrial  and  economic  development  through  effective  and   efficient   use   of   energy   sources.   To   strengthen   the   scientific   culture   in   the   country,   the   National  Academy  of  Science  and  Technology  was  established  under  Presidential  Decree   No.  1003-­A,  s.  1976.  The  National  Academy  of  Science  and  Technology  was  composed   of   scientists   with   “innovative   achievement   in   the   basic   and   applied   sciences”   who   will   serve  as  the  reservoir  of  scientific  and  technological  expertise  for  the  country.     In  the  1980s,  science  and  technology  was  still  focused  on  applied  research.  In  1982,   NSDB  was  further  reorganized  into  a  National  Science  and  Technology  Authority  (NSTA)   composed  of  four  research  and  development  Councils;;  Philippine  Council  for  Agriculture   and  Resources  Research  and  Development  (PCARRD);;  Philippine  Council  for  Industry   and  Energy  Research  Development  (PCIERD);;  Philippine  Council  for  Health  Research   and   Development   (PCHRD)   and   the   National   Research   Council   of   the   Philippines   (NRCP).  NSTA  has  also  eight  research  and  development  institutes  and  support  agencies   under  it.  These  are  actually  the  former  organic  and  attached  agencies  of  NSDB  which   have  themselves  been  reorganized.     The   expanding   number   of   science   agencies   has   given   rise   to   a   demand   for   high   calibre  scientists  and  engineers  to  undertake  research  and  staff  universities  and  colleges.   Hence,   measures   have   also   been   taken   towards   the   improvement   of   the   country’s   science   and   manpower.   In   March   1983,   Executive   Order   No.   889   was   issued   by   the   President   which   provided   for   the   establishment   of   a   national   network   of   centers   of   excellence   in   basic   sciences.   As   a   consequence,   six   new   institutes   were   created:   The   National   Institutes   of   Physics,   Geological   Sciences,   Natural   Sciences   Research,   Chemistry,   Biology   and   Mathematical   Sciences.   Related   to   this   efforts   was   the   establishment  of  a  Scientific  Career  System  in  the  Civil  Service  by  Presidential  Decree   No.  901  on  19  July  1983.  This  is  designed  to  attract  more  qualified  scientists  to  work  in   government  and  encourage  young  people  to  pursue  science  degrees  and  careers.     In   1986,   under   the   Aquino   administration,   the   National   Science   and   Technology   Authority   was   replaced   by   the   Department   of   Science   and   Technology,   giving   science   and   technology   a   representation   in   the   cabinet.   Under   the   Medium   Term   Philippine   Development  Plan  for  the  years  1987-­1992,  science  and  technology's  role  in  economic   recovery   and   sustained   economic   growth   was   highlighted.   In   this   period,   science   and   23 technology   was   one   of   the   top   three   priorities   of   the   government   towards   economic   recovery.     With  the  agency's  elevation  to  full  cabinet  stature  by  virtue  of  Executive  Order  128   signed   on   30   January   1987,   the   functions   and   responsibilities   of   DOST   expanded   correspondingly  to  include  the  following:  (1)  Pursue  the  declared  state  policy  of  supporting   local   scientific   and   technological   effort;;   (2)   Develop   local   capability   to   achieve   technological  self-­reliance;;  (3)  Encourage  greater  private  sector  participation  in  research   and  development.  moreover,  funding  for  the  science  and  technology  sector  was  tripled   from  464  million  in  1986  to  1.7  billion  in  1992.       The  Department  of  Science  and  Technology  (DOST)  is  the  premiere  science  and   technology   body   in   the   country   charged   with   the   twin   mandate   of   providing   central   direction,  leadership  and  coordination  of  all  scientific  and  technological  activities,  and  of   formulating  policies,  programs  and  projects  to  support  national  development.  The  Science   and   Technology   Master   Plan   was   formulated   which   aimed   at   the   modernization   of   the   production   sector,   upgrading   research   activities,   and   development   of   infrastructure   for   science   and   technological   purposes.   A   Research   and   Development   Plan   was   also   formulated  to  examine  and  determine  which  areas  of  research  needed  attention  and  must   be  given  priority.  The  criteria  for  identifying  the  program  to  be  pursued  were,  development   of  local  materials,  probability  of  success,  potential  of  product  in  the  export  market,  and   the   its   strategic   nature.   The   grants   for   the   research   and   development   programs   was   included  in  the  Omnibus  Investment  Law.     During  President  Fidel  Ramos’s  term,  there  was  a  significant  increase  in  personnel   specializing  in  the  science  and  technology  field.  In  1998,  there  was  an  estimated  3,000   competent  scientists  and  engineers  in  the  Philippines.  Adding  to  the  increase  of  scientists   would  be  the  result  of  the  two  newly  built  Philippine  Science  High  Schools  in  Visayas  and   Mindanao   which   promotes   further   development   of   young   kids   through   advance   S&T   curriculum.  The  government  provided  3,500  scholarships  for  students  who  were  taking   up  professions  related  to  S&T.  Priority  for  S&T  personnel  increased  when  Magna  Carta   for   Science   and   Technology   Personnel   (Republic   Act   No.   8439)   was   established.   The   award  was  published  in  order  to  give  incentives  and  rewards  for  people  who  have  been   influential  in  the  field  of  S&T.       Still   under   the   Ramos   administration,   DOST   established   the   “Science   and   Technology  Agenda  for  National  Development  (STAND)”,  a  program  that  was  significant   to  the  field  of  S&T.  It  identified  seven  export  products,  11  domestic  needs,  three  other   supporting  industries,  and  the  coconut  industry  as  priority  investment  areas.  The  seven   identified  export  products  were  computer  software;;  fashion  accessories;;  gifts,  toys,  and   houseware;;  marine  products;;  metal  fabrications;;  furniture;;  and  dried  fruits.  The  domestic   needs   identified   were   food,   housing,   health,   clothing,   transportation,   communication,   disaster   mitigation,   defense,   environment,   manpower   development,   and   energy.   Three   additional   support   industries   were   included   in   the   list   of   priority   sectors,   namely,   packaging,  chemicals,  and  metals  because  of  their  linkages  with  the  above  sectors.       24 In  the  Gloria  Macapagal-­Arroyo  administration,  numerous  laws  and  projects  were   implemented  which  concerns  both  the  environment  and  science  to  push  technology  as  a   tool  to  increase  the  country’s  economic  level.  This  is  to  help  increase  the  productivity  from   Science,  Technology  and  Innovations  (STI)  and  help  benefit  the  poor  people.  Moreover,   the  term  “Filipinnovation”  was  the  coined  term  used  in  helping  the  Philippines  to  be  an   innovation  hub  in  Asia.     The  STI  was  developed  further  by  strengthening  the  schools  and  education  system   such   as   the   Philippine   Science   High   School   (PSHS),   which   focuses   in   science,   technology   and   mathematics   in   their   curriculum.   This   helps   schools   produce   get   more   involve  in  this  sector.  Private  sectors  were  also  encouraged  to  participate  in  developing   the  schools  through  organizing  events  and  sponsorships.  Future  Filipino  scientists  and   innovators  can  be  produced  through  this  system.     Recently,  the  Philippines  ranked  73rd  out  of  128  economies  in  terms  of  Science  and   Technology   and   Innovation   (STI)   index,   citing   the   country’s   strength   in   research   and   commercialization  of  STI  ideas  (DOST,  2018).  However,  a  study  by  the  Philippine  Institute   for  Development  Studies  highlighted  the  weak  ties  between  innovation-­driven  firms  and   the   government,   and   it   also   identified   the   country’s   low   expenditure   in   research   and   development  (R&D).  This  is  the  reason  the  government  is  now  extending  all  its  efforts  to   reach  out  with  the  private  sector,  explaining  that  STI  plays  an  important  role  in  economic   and  social  progress  and  is  a  key  driver  for  a  long-­term  growth  of  an  economy.  Technology   adoption  allows  a  country’s  firms  and  citizens  to  benefit  from  innovations  created  in  other   countries,  and  allows  it  to  catch  up  and  even  leap-­frog  obsolete  technologies.  Technology   adoption,  the  official  said,  allows  a  country’s  firms  and  citizens  to  benefit  from  innovations   created   in   other   countries,   and   allows   it   to   catch   up   and   even   leap-­frog   obsolete   technologies.   Hopes  in  Philippine  Science  and  Technology     Despite  the  many  inadequacies,  from  funding  to  human  capital,  there  are  some   science  and  technology-­intensive  research  and  capacity-­building  projects  which  resulted   in  products  which  are  currently  being  used  successfully  and  benefits  the  society.   One  of  these  is  the  micro-­satellite.  In  April  2016,  the  country  launched  into  space   its   first   micro-­satellite   called   Diwata-­1.   It   was   designed,   developed   and   assembled   by   Filipino  researchers  and  engineers  under  the  guidance  of  Japanese  experts.  The  Diwata   (deity   in   English)   satellite   provides   real-­time,   high-­resolution   and   multi-­color   infrared   images   for   various   applications,   including   meteorological   imaging,   crop   and   ocean   productivity   measurement   and   high-­resolution   imaging   of   natural   and   man-­made   features.   It   enables   a   more   precise   estimate   of   the   country’s   agricultural   production,   provides   images   of   watersheds   and   floodplains   for   a   better   understanding   of   water   available   for   irrigation,   power   and   domestic   consumption.   The   satellite   also   provides   accurate  information  on  any  disturbance  and  degradation  of  forest  and  upland  areas.   25 The  country  also  has  the  Nationwide  Operational  Assessment  of  Hazards  (NOAH),   which  uses  the  Lidar  (light  detection  and  ranging)  technology.  Project  NOAH  was  initiated   in  June  2012  to  help  manage  risks  associated  with  natural  hazards  and  disasters.  The   project  developed  hydromet  sensors  and  high-­resolution  geo-­hazard  maps,  which  were   generated  by  light  detection  and  ranging  technology  for  flood  modeling.  Noah  helps  the   government  in  providing  timely  warning  with  a  lead  time  of  at  least  six  hours  in  the  wake   of  impending  floods.  The  country  is  now  training  the  Cambodians  on  this  technology,  

Use Quizgecko on...
Browser
Browser