Document Details

WinningZither8756

Uploaded by WinningZither8756

Universiti Malaya

2024

Tags

fluid mechanics continuity equation mass conservation differential equations

Summary

These are notes on Fluid Mechanics 2, specifically focusing on the derivation and application of the continuity equation in a differential form. The notes cover different aspects like mass conservation within control volumes, and common flow cases, providing an important theoretical framework for understanding fluid flow.

Full Transcript

MASS CONSERVATION FOR A FLOW SYSTEM Derivation of continuity equation in differential form: ๐œ•๐œŒ + โˆ‡ ๐œŒ๐’— = 0 ๐œ•๐‘ก Describe the transport of a quantity (mass) Its derivation from an infinitesimal control volume. DIFFERENTIAL FORM OF MASS CONSERVATION...

MASS CONSERVATION FOR A FLOW SYSTEM Derivation of continuity equation in differential form: ๐œ•๐œŒ + โˆ‡ ๐œŒ๐’— = 0 ๐œ•๐‘ก Describe the transport of a quantity (mass) Its derivation from an infinitesimal control volume. DIFFERENTIAL FORM OF MASS CONSERVATION Infinitesimal control volume From the general form of law of mass conservation for a control volume: ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ ๐‘  ๐‘Ž๐‘๐‘๐‘ข๐‘š๐‘ข๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› + ๐‘œ๐‘ข๐‘ก ๐‘œ๐‘“ ๐‘. ๐‘ฃ. โˆ’ =0 ๐‘–๐‘›๐‘ก๐‘œ ๐‘. ๐‘ฃ. ๐‘ค๐‘–๐‘กโ„Ž๐‘–๐‘› ๐‘. ๐‘ฃ. ๐œ• ๐œ•๐œŒ ๐‘‘๐‘ฆ ๐œŒ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง ๐œ•๐‘ก ๐œ•๐‘ก ๐‘ฆ ๐‘‘๐‘ง ๐‘ฆ ๐‘‘๐‘ฅ ๐‘ฅ ๐‘ฅ ๐‘ง ๐‘‘๐‘‰ = ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง DIFFERENTIAL FORM OF MASS CONSERVATION Infinitesimal control volume Mass flowrate: ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ร— ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ร— ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘‘๐‘ฆ ๐‘‘๐‘ง ๐‘‘๐‘ฅ At x: ๐œŒ ๐‘ฃ๐‘ฅ แ‰š ๐‘‘๐‘ฆ๐‘‘๐‘ง = (๐œŒ๐‘ฃ๐‘ฅ )๐’™ ๐‘‘๐‘ฆ๐‘‘๐‘ง ๐’™ โˆ’ ๐’”๐’–๐’“๐’‡๐’‚๐’„๐’†๐’” ๐’™ At x + dx: ๐œŒ ๐‘ฃ๐‘ฅ แ‰š ๐‘‘๐‘ฆ๐‘‘๐‘ง = (๐œŒ๐‘ฃ๐‘ฅ )๐’™+๐’…๐’™ ๐‘‘๐‘ฆ๐‘‘๐‘ง ๐’™+๐’…๐’™ ๐‘‘๐‘ง ๐‘‘๐‘ฆ Net outflow of mass from control volume: ๐‘ฃ๐‘ฅ ๐‘ฃ๐‘ฅ x-direction : (๐œŒ๐‘ฃ๐‘ฅ )๐’™+๐’…๐’™ ๐‘‘๐‘ฆ๐‘‘๐‘ง โˆ’ (๐œŒ๐‘ฃ๐‘ฅ )๐’™ ๐‘‘๐‘ฆ๐‘‘๐‘ง ๐‘‘๐‘ฅ y-direction : (๐œŒ๐‘ฃ๐‘ฆ )๐’š+๐’…๐’š ๐‘‘๐‘ฅ๐‘‘๐‘ง โˆ’ (๐œŒ๐‘ฃ๐‘ฆ )๐’š ๐‘‘๐‘ฅ๐‘‘๐‘ง ๐‘ฅ ๐‘ฅ + ๐‘‘๐‘ฅ ๐‘ฆ z-direction : (๐œŒ๐‘ฃ๐‘ง )๐’›+๐’…๐’› ๐‘‘๐‘ฅ๐‘‘๐‘ฆ โˆ’ (๐œŒ๐‘ฃ๐‘ง )๐’› ๐‘‘๐‘ฅ๐‘‘๐‘ฆ ๐‘ฅ ๐‘ง DIFFERENTIAL FORM OF MASS CONSERVATION Infinitesimal control volume The inflow and outflow of mass towards ๐‘‘๐‘ฆ y-directions through y-surfaces: ๐‘‘๐‘ง ๐‘‘๐‘ฅ ๐’› โˆ’ ๐’”๐’–๐’“๐’‡๐’‚๐’„๐’†๐’” ๐œŒ ๐‘ฃ๐‘ฆ แ‰š ๐‘‘๐‘ฅ๐‘‘๐‘ง = (๐œŒ๐‘ฃ๐‘ฆ )๐’š ๐‘‘๐‘ฅ๐‘‘๐‘ง ๐’š ๐’š โˆ’ ๐’”๐’–๐’“๐’‡๐’‚๐’„๐’†๐’” ๐‘‘๐‘ฅ ๐‘ฃ๐‘ง ๐œŒ ๐‘ฃ๐‘ฆ แ‰š ๐‘‘๐‘ฅ๐‘‘๐‘ง = (๐œŒ๐‘ฃ๐‘ฆ )๐’š+๐’…๐’š ๐‘‘๐‘ฅ๐‘‘๐‘ง ๐‘ฃ๐‘ฆ ๐’š+๐’…๐’š ๐‘‘๐‘ฅ The inflow and outflow of mass towards z-directions ๐‘‘๐‘ง through z-surfaces: ๐‘ง ๐‘ฆ + ๐‘‘๐‘ฆ ๐‘‘๐‘ฆ ๐‘‘๐‘ง ๐œŒ ๐‘ฃ๐‘ง แ‰š ๐‘‘๐‘ฅ๐‘‘๐‘ฆ = (๐œŒ๐‘ฃ๐‘ง )๐’› ๐‘‘๐‘ฅ๐‘‘๐‘ฆ ๐‘‘๐‘ฆ ๐’› ๐‘ฆ ๐‘ฃ๐‘ง ๐‘ง + ๐‘‘๐‘ง ๐‘ฃ๐‘ฆ ๐‘ฆ ๐œŒ ๐‘ฃ๐‘ง แ‰š ๐‘‘๐‘ฅ๐‘‘๐‘ฆ = (๐œŒ๐‘ฃ๐‘ง )๐’›+๐’…๐’› ๐‘‘๐‘ฅ๐‘‘๐‘ฆ ๐‘ฅ ๐’›+๐’…๐’› ๐‘ง CONTINUITY EQUATION The sum of net outflow of mass flowrate within c.v.: ๐‘‘๐‘ฆ ๐‘‘๐‘ง ๐œŒ๐‘ฃ๐‘ฅ ๐’™+๐’…๐’™ โˆ’ ๐œŒ๐‘ฃ๐‘ฅ ๐’™ ๐‘‘๐‘ฆ๐‘‘๐‘ง + ๐œŒ๐‘ฃ๐‘ฆ โˆ’ ๐œŒ๐‘ฃ๐‘ฆ ๐‘‘๐‘ฅ๐‘‘๐‘ง + ๐œŒ๐‘ฃ๐‘ง ๐’›+๐’…๐’› โˆ’ ๐œŒ๐‘ฃ๐‘ง ๐’› ๐‘‘๐‘ฅ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ ๐’š+๐’…๐’š ๐’š From the general form, the law of mass conservation in differential form: ๐œ•๐œŒ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง + ๐œŒ๐‘ฃ๐‘ฅ ๐’™+๐’…๐’™ โˆ’ ๐œŒ๐‘ฃ๐‘ฅ ๐’™ ๐‘‘๐‘ฆ๐‘‘๐‘ง + ๐œŒ๐‘ฃ๐‘ฆ โˆ’ ๐œŒ๐‘ฃ๐‘ฆ ๐‘‘๐‘ฅ๐‘‘๐‘ง + ๐œŒ๐‘ฃ๐‘ง ๐’›+๐’…๐’› โˆ’ ๐œŒ๐‘ฃ๐‘ง ๐’› ๐‘‘๐‘ฅ๐‘‘๐‘ฆ = 0 ๐œ•๐‘ก ๐’š+๐’…๐’š ๐’š Dividing by ๐‘‘๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ง and taking the limit of ๐‘‘๐‘ฅ โ†’ 0, ๐‘‘๐‘ฆ โ†’ 0 and ๐‘‘๐‘ง โ†’ 0 : ๐‘ช๐’๐’๐’•๐’Š๐’๐’–๐’Š๐’•๐’š ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’ ๐œ•๐œŒ ๐œ• ๐œ• ๐œ• ๐œ•๐œŒ + (๐œŒ๐‘ฃ๐‘ฅ ) + (๐œŒ๐‘ฃ๐‘ฆ ) + (๐œŒ๐‘ฃ๐‘ง ) = 0 + โˆ‡ (๐œŒ๐’—) = 0 ๐œ•๐‘ก ๐œ•๐‘ฅ ๐œ•๐‘ฆ ๐œ•๐‘ง ๐œ•๐‘ก Infinitesimal control volume for CONTINUITY EQUATION cylindrical polar coordinate. CYLINDRICAL COORDINATE SYSTEM ๐’…๐’Š๐’”๐’•๐’‚๐’๐’„๐’† ๐’‡๐’“๐’๐’Ž ๐’๐’“๐’Š๐’ˆ๐’Š๐’ ๐‘ฆ ๐‘ฃ๐œƒ ๐‘ฃ๐‘Ÿ ๐‘ฆ ๐‘Ÿ ๐‘ฆ ๐‘ฃ๐œƒ ๐‘ฃ๐‘Ÿ ๐œƒ ๐‘ฅ Coordinate transformation ๐‘ฅ ๐‘Ÿ ๐‘ฃ๐‘ ๐‘ฅ ๐’‚๐’๐’ˆ๐’๐’† ๐’‡๐’“๐’๐’Ž ๐’™ โˆ’ ๐’‚๐’™๐’Š๐’” ๐‘Ÿ= ๐‘ฅ2 + ๐‘ฆ2 ๐‘ฆ = ๐‘Ÿ sin ๐œƒ ๐œƒ ๐‘ง ๐‘ฆ 2-DIMENSIONAL ๐‘ฅ = ๐‘Ÿ cos ๐œƒ ๐œƒ = tanโˆ’1 ๐‘ฅ 3-DIMENSIONAL CONTINUITY EQUATION CYLINDRICAL COORDINATE SYSTEM Infinitesimal control volume for cylindrical polar coordinate. ๐œ•๐œŒ Rate of mass accumulation: ๐œ•๐‘ก Net outflow of mass flowrate: 1 ๐œ• 1 ๐œ• ๐œ• โˆ‡ ๐œŒ๐’— = (๐‘Ÿ๐œŒ๐‘ฃ๐‘Ÿ ) + (๐œŒ๐‘ฃ๐œƒ ) + (๐œŒ๐‘ฃ๐‘ง ) ๐‘Ÿ ๐œ•๐‘Ÿ ๐‘Ÿ ๐œ•๐œƒ ๐œ•๐‘ง Continuity equation for cylindrical polar coordinate: ๐œ•๐œŒ 1 ๐œ• 1 ๐œ• ๐œ• + ๐‘Ÿ๐œŒ๐‘ฃ๐‘Ÿ + ๐œŒ๐‘ฃ๐œƒ + ๐œŒ๐‘ฃ๐‘ง = 0 ๐œ•๐œŒ ๐œ•๐‘ก ๐‘Ÿ ๐œ•๐‘Ÿ ๐‘Ÿ ๐œ•๐œƒ ๐œ•๐‘ง + โˆ‡ (๐œŒ๐’—) = 0 ๐œ•๐‘ก ๐’„๐’๐’Ž๐’‘๐’‚๐’„๐’• ๐’‡๐’๐’“๐’Ž CONTINUITY EQUATION COMMON FLOW CASES 1. Steady flow: No change of properties with time. 0 ๐œ•๐œŒ ๐œ• ๐œ• ๐œ• ๐œ• ๐œ• ๐œ• + (๐œŒ๐‘ฃ๐‘ฅ ) + (๐œŒ๐‘ฃ๐‘ฆ ) + (๐œŒ๐‘ฃ๐‘ง ) = 0 (๐œŒ๐‘ฃ๐‘ฅ ) + (๐œŒ๐‘ฃ๐‘ฆ ) + (๐œŒ๐‘ฃ๐‘ง ) = 0 ๐œ•๐‘ก ๐œ•๐‘ฅ ๐œ•๐‘ฆ ๐œ•๐‘ง ๐œ•๐‘ฅ ๐œ•๐‘ฆ ๐œ•๐‘ง 2. Steady and incompressible flow: Steady with constant density. common form ๐œ• ๐œ• ๐œ• ๐œ• ๐œ• ๐œ• (๐œŒ๐‘ฃ๐‘ฅ ) + (๐œŒ๐‘ฃ๐‘ฆ ) + (๐œŒ๐‘ฃ๐‘ง ) = 0 (๐‘ฃ๐‘ฅ ) + (๐‘ฃ๐‘ฆ ) + (๐‘ฃ๐‘ง ) = 0 ๐œ•๐‘ฅ ๐œ•๐‘ฆ ๐œ•๐‘ง ๐œ•๐‘ฅ ๐œ•๐‘ฆ ๐œ•๐‘ง Cylindrical polar coordinate form 1 ๐œ• 1 ๐œ• ๐œ• ๐‘Ÿ๐‘ฃ๐‘Ÿ + ๐‘ฃ๐œƒ + ๐‘ฃ =0 ๐‘Ÿ ๐œ•๐‘Ÿ ๐‘Ÿ ๐œ•๐œƒ ๐œ•๐‘ง ๐‘ง CONTINUITY EQUATION SUMMARY In analyzing fluid problems, mathematical equations are derived from the laws of physics: ๐œ•๐œŒ Law of mass conservation: Continuity equation. + โˆ‡ (๐œŒ๐’—) = 0 ๐œ•๐‘ก ๐œ•๐’— Newtonโ€™s second law of motion: Equations of motion. ๐œŒ + ๐’— โˆ‡๐’— = ๐œŒ๐’ˆ โˆ’ โˆ‡๐‘ƒ + โˆ‡ ฯ„ Cauchyโ€™s equation ๐œ•๐‘ก ๐‘‘๐’— Navier-Stokes equation ๐œŒ = ๐œŒ๐’ˆ โˆ’ โˆ‡๐‘ƒ + ๐œ‡โˆ‡2 ๐’— ๐‘‘๐‘ก

Use Quizgecko on...
Browser
Browser