Fluid Mechanics 2 Notes PDF
Document Details

Uploaded by WinningZither8756
Universiti Malaya
2024
Tags
Summary
These are notes on Fluid Mechanics 2, specifically focusing on the derivation and application of the continuity equation in a differential form. The notes cover different aspects like mass conservation within control volumes, and common flow cases, providing an important theoretical framework for understanding fluid flow.
Full Transcript
MASS CONSERVATION FOR A FLOW SYSTEM Derivation of continuity equation in differential form: ๐๐ + โ ๐๐ = 0 ๐๐ก Describe the transport of a quantity (mass) Its derivation from an infinitesimal control volume. DIFFERENTIAL FORM OF MASS CONSERVATION...
MASS CONSERVATION FOR A FLOW SYSTEM Derivation of continuity equation in differential form: ๐๐ + โ ๐๐ = 0 ๐๐ก Describe the transport of a quantity (mass) Its derivation from an infinitesimal control volume. DIFFERENTIAL FORM OF MASS CONSERVATION Infinitesimal control volume From the general form of law of mass conservation for a control volume: ๐๐๐ก๐ ๐๐ ๐๐๐ ๐ ๐๐๐ก๐ ๐๐ ๐๐๐ ๐ ๐๐๐ก๐ ๐๐ ๐๐๐ ๐ ๐๐๐๐ข๐๐ข๐๐๐ก๐๐๐ + ๐๐ข๐ก ๐๐ ๐. ๐ฃ. โ =0 ๐๐๐ก๐ ๐. ๐ฃ. ๐ค๐๐กโ๐๐ ๐. ๐ฃ. ๐ ๐๐ ๐๐ฆ ๐๐๐ = ๐๐ฅ๐๐ฆ๐๐ง ๐๐ก ๐๐ก ๐ฆ ๐๐ง ๐ฆ ๐๐ฅ ๐ฅ ๐ฅ ๐ง ๐๐ = ๐๐ฅ๐๐ฆ๐๐ง DIFFERENTIAL FORM OF MASS CONSERVATION Infinitesimal control volume Mass flowrate: ๐๐๐๐ ๐๐ก๐ฆ ร ๐ฃ๐๐๐๐๐๐ก๐ฆ ร ๐๐๐๐ ๐๐ฆ ๐๐ง ๐๐ฅ At x: ๐ ๐ฃ๐ฅ แ ๐๐ฆ๐๐ง = (๐๐ฃ๐ฅ )๐ ๐๐ฆ๐๐ง ๐ โ ๐๐๐๐๐๐๐๐ ๐ At x + dx: ๐ ๐ฃ๐ฅ แ ๐๐ฆ๐๐ง = (๐๐ฃ๐ฅ )๐+๐ ๐ ๐๐ฆ๐๐ง ๐+๐ ๐ ๐๐ง ๐๐ฆ Net outflow of mass from control volume: ๐ฃ๐ฅ ๐ฃ๐ฅ x-direction : (๐๐ฃ๐ฅ )๐+๐ ๐ ๐๐ฆ๐๐ง โ (๐๐ฃ๐ฅ )๐ ๐๐ฆ๐๐ง ๐๐ฅ y-direction : (๐๐ฃ๐ฆ )๐+๐ ๐ ๐๐ฅ๐๐ง โ (๐๐ฃ๐ฆ )๐ ๐๐ฅ๐๐ง ๐ฅ ๐ฅ + ๐๐ฅ ๐ฆ z-direction : (๐๐ฃ๐ง )๐+๐ ๐ ๐๐ฅ๐๐ฆ โ (๐๐ฃ๐ง )๐ ๐๐ฅ๐๐ฆ ๐ฅ ๐ง DIFFERENTIAL FORM OF MASS CONSERVATION Infinitesimal control volume The inflow and outflow of mass towards ๐๐ฆ y-directions through y-surfaces: ๐๐ง ๐๐ฅ ๐ โ ๐๐๐๐๐๐๐๐ ๐ ๐ฃ๐ฆ แ ๐๐ฅ๐๐ง = (๐๐ฃ๐ฆ )๐ ๐๐ฅ๐๐ง ๐ ๐ โ ๐๐๐๐๐๐๐๐ ๐๐ฅ ๐ฃ๐ง ๐ ๐ฃ๐ฆ แ ๐๐ฅ๐๐ง = (๐๐ฃ๐ฆ )๐+๐ ๐ ๐๐ฅ๐๐ง ๐ฃ๐ฆ ๐+๐ ๐ ๐๐ฅ The inflow and outflow of mass towards z-directions ๐๐ง through z-surfaces: ๐ง ๐ฆ + ๐๐ฆ ๐๐ฆ ๐๐ง ๐ ๐ฃ๐ง แ ๐๐ฅ๐๐ฆ = (๐๐ฃ๐ง )๐ ๐๐ฅ๐๐ฆ ๐๐ฆ ๐ ๐ฆ ๐ฃ๐ง ๐ง + ๐๐ง ๐ฃ๐ฆ ๐ฆ ๐ ๐ฃ๐ง แ ๐๐ฅ๐๐ฆ = (๐๐ฃ๐ง )๐+๐ ๐ ๐๐ฅ๐๐ฆ ๐ฅ ๐+๐ ๐ ๐ง CONTINUITY EQUATION The sum of net outflow of mass flowrate within c.v.: ๐๐ฆ ๐๐ง ๐๐ฃ๐ฅ ๐+๐ ๐ โ ๐๐ฃ๐ฅ ๐ ๐๐ฆ๐๐ง + ๐๐ฃ๐ฆ โ ๐๐ฃ๐ฆ ๐๐ฅ๐๐ง + ๐๐ฃ๐ง ๐+๐ ๐ โ ๐๐ฃ๐ง ๐ ๐๐ฅ๐๐ฆ ๐๐ฅ ๐+๐ ๐ ๐ From the general form, the law of mass conservation in differential form: ๐๐ ๐๐ฅ๐๐ฆ๐๐ง + ๐๐ฃ๐ฅ ๐+๐ ๐ โ ๐๐ฃ๐ฅ ๐ ๐๐ฆ๐๐ง + ๐๐ฃ๐ฆ โ ๐๐ฃ๐ฆ ๐๐ฅ๐๐ง + ๐๐ฃ๐ง ๐+๐ ๐ โ ๐๐ฃ๐ง ๐ ๐๐ฅ๐๐ฆ = 0 ๐๐ก ๐+๐ ๐ ๐ Dividing by ๐๐ฅ๐๐ฆ๐๐ง and taking the limit of ๐๐ฅ โ 0, ๐๐ฆ โ 0 and ๐๐ง โ 0 : ๐ช๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐ ๐ ๐ ๐ ๐๐ + (๐๐ฃ๐ฅ ) + (๐๐ฃ๐ฆ ) + (๐๐ฃ๐ง ) = 0 + โ (๐๐) = 0 ๐๐ก ๐๐ฅ ๐๐ฆ ๐๐ง ๐๐ก Infinitesimal control volume for CONTINUITY EQUATION cylindrical polar coordinate. CYLINDRICAL COORDINATE SYSTEM ๐ ๐๐๐๐๐๐๐ ๐๐๐๐ ๐๐๐๐๐๐ ๐ฆ ๐ฃ๐ ๐ฃ๐ ๐ฆ ๐ ๐ฆ ๐ฃ๐ ๐ฃ๐ ๐ ๐ฅ Coordinate transformation ๐ฅ ๐ ๐ฃ๐ ๐ฅ ๐๐๐๐๐ ๐๐๐๐ ๐ โ ๐๐๐๐ ๐= ๐ฅ2 + ๐ฆ2 ๐ฆ = ๐ sin ๐ ๐ ๐ง ๐ฆ 2-DIMENSIONAL ๐ฅ = ๐ cos ๐ ๐ = tanโ1 ๐ฅ 3-DIMENSIONAL CONTINUITY EQUATION CYLINDRICAL COORDINATE SYSTEM Infinitesimal control volume for cylindrical polar coordinate. ๐๐ Rate of mass accumulation: ๐๐ก Net outflow of mass flowrate: 1 ๐ 1 ๐ ๐ โ ๐๐ = (๐๐๐ฃ๐ ) + (๐๐ฃ๐ ) + (๐๐ฃ๐ง ) ๐ ๐๐ ๐ ๐๐ ๐๐ง Continuity equation for cylindrical polar coordinate: ๐๐ 1 ๐ 1 ๐ ๐ + ๐๐๐ฃ๐ + ๐๐ฃ๐ + ๐๐ฃ๐ง = 0 ๐๐ ๐๐ก ๐ ๐๐ ๐ ๐๐ ๐๐ง + โ (๐๐) = 0 ๐๐ก ๐๐๐๐๐๐๐ ๐๐๐๐ CONTINUITY EQUATION COMMON FLOW CASES 1. Steady flow: No change of properties with time. 0 ๐๐ ๐ ๐ ๐ ๐ ๐ ๐ + (๐๐ฃ๐ฅ ) + (๐๐ฃ๐ฆ ) + (๐๐ฃ๐ง ) = 0 (๐๐ฃ๐ฅ ) + (๐๐ฃ๐ฆ ) + (๐๐ฃ๐ง ) = 0 ๐๐ก ๐๐ฅ ๐๐ฆ ๐๐ง ๐๐ฅ ๐๐ฆ ๐๐ง 2. Steady and incompressible flow: Steady with constant density. common form ๐ ๐ ๐ ๐ ๐ ๐ (๐๐ฃ๐ฅ ) + (๐๐ฃ๐ฆ ) + (๐๐ฃ๐ง ) = 0 (๐ฃ๐ฅ ) + (๐ฃ๐ฆ ) + (๐ฃ๐ง ) = 0 ๐๐ฅ ๐๐ฆ ๐๐ง ๐๐ฅ ๐๐ฆ ๐๐ง Cylindrical polar coordinate form 1 ๐ 1 ๐ ๐ ๐๐ฃ๐ + ๐ฃ๐ + ๐ฃ =0 ๐ ๐๐ ๐ ๐๐ ๐๐ง ๐ง CONTINUITY EQUATION SUMMARY In analyzing fluid problems, mathematical equations are derived from the laws of physics: ๐๐ Law of mass conservation: Continuity equation. + โ (๐๐) = 0 ๐๐ก ๐๐ Newtonโs second law of motion: Equations of motion. ๐ + ๐ โ๐ = ๐๐ โ โ๐ + โ ฯ Cauchyโs equation ๐๐ก ๐๐ Navier-Stokes equation ๐ = ๐๐ โ โ๐ + ๐โ2 ๐ ๐๐ก