# Grade 10 Mathematics: Algebraic Expressions Overview

UnwaveringSiren
·

Start Quiz

Study Flashcards

## 12 Questions

### Which of the following is true about algebraic expressions?

Terms in algebraic expressions can be connected by addition, subtraction, multiplication, or division

### What are like terms in algebraic expressions?

Terms that have the same variable(s) raised to the same exponent(s)

-5

### Which of the following is not an algebraic expression?

4^2 + 2x

### What is a constant in algebraic expressions?

Numbers that do not change

### How are terms combined in algebraic expressions?

By addition, subtraction, multiplication, or division

### What is the result of simplifying the expression $4x + 2x - 3x$?

$3x$

### Which property of algebra is demonstrated by the expression $2(x + 3)$?

Distributive Property

### What is the first step in evaluating the expression $5(4 + 2) - 3$ following the Order of Operations?

Simplify inside parentheses

No, never

### Which application of algebraic expressions involves rewriting them in different forms?

Algebraic manipulation

### In the expression $2x + 5$, if $x = -3$, what is the value of the expression?

$-1$

## Grade 10 Mathematics: Algebraic Expressions

In Grade 10 mathematics, you'll encounter algebraic expressions, which are an essential foundational component of algebra and problem-solving. In this section, we'll dive into what algebraic expressions are, their properties, and how they are used to solve problems.

### Definition

An algebraic expression consists of a finite number of terms, each containing variables and coefficients. The terms are connected by addition, subtraction, or, more generally, by operations such as multiplication and division. For example, x + 3y - 5z is an algebraic expression.

### Terminology and Construction

Terms are individual parts of an expression, such as x, 3y, or 5z in the example above. Terms are combined using the operations of addition and subtraction.

Coefficients are the constants that multiply variables in expressions. For instance, the coefficient of x in the expression 2x - 5y + z is 2.

Variables are symbols that represent unknown values, such as x, y, or z.

Constants are numbers that do not change, like 3 or -5.

Like terms are terms that have the same variable(s) raised to the same exponent(s). For example, 2x and 3x are like terms, but 2x and x^2 are not like terms.

### Properties and Manipulation

Algebraic expressions have several properties that allow us to simplify or combine them.

Combining like terms involves adding or subtracting terms that have the same variable(s) raised to the same exponent(s). For example, 2x + 3x + 4x = 9x.

Distributive Property states that a * (b + c) = a * b + a * c, where a, b, and c are numbers or variables.

Order of Operations is crucial when evaluating algebraic expressions. This standard guides us to perform operations in a specific order: parentheses, exponents, multiplication and division (from left to right), and addition or subtraction (from left to right).

### Applications

Algebraic expressions are used in various ways, such as:

• Problem-solving: We use expressions to represent relationships between quantities and solve problems by finding the values of variables that make the expression true.
• Graphing: By graphing algebraic expressions, we can visualize their relationships and make predictions about their behavior.
• Algebraic manipulation: By manipulating expressions, we can simplify them, rewrite them in different forms, or solve equations involving them.

### Practice Problems

1. Simplify the expression 3x - 5 + 2x + 7.
2. Write an expression that represents the area of a rectangle with width w and length l.
3. Solve the equation 2x + 3 = 7 for x.
4. Rearrange the expression 3x + 2(y - z) to only have y terms.
5. Graph the expression y = 3x + 2 on a coordinate plane.

These problems will provide you with an opportunity to practice and build confidence in your understanding of algebraic expressions. With patience and consistent practice, you'll develop a strong foundation in Grade 10 mathematics, setting the stage for success in your future math courses.

Explore the fundamental concepts of algebraic expressions in Grade 10 mathematics. Learn about terms, coefficients, variables, like terms, and properties such as combining like terms and the distributive property. Enhance your problem-solving skills and algebraic manipulation through practice problems and applications.

## Make Your Own Quizzes and Flashcards

Convert your notes into interactive study material.

## More Quizzes Like This

Use Quizgecko on...
Browser
Information:
Success:
Error: