Which of the following is an imaginary number? i^24; The simplest form of the imaginary number i^45; i^30; (1/i) ^199; i^26+i^28; (1/i) ^15; 5i^7+4i^-1.

Question image

Understand the Problem

The question consists of multiple-choice problems related to complex numbers and imaginary numbers, asking for simplifications and identities of complex expressions.

Answer

1. 1; 2. $i$; 3. $-1$; 4. $i$; 5. zero; 6. $i$; 7. $-9i$.
Answer for screen readers
  1. (a) 1
  2. (b) i
  3. (c) -1
  4. (c) i
  5. (c) zero
  6. (c) i
  7. (b) -9 i

Steps to Solve

  1. Understanding the Powers of $i$

The imaginary unit $i$ is defined such that $i^2 = -1$. The powers of $i$ repeat every four terms:

  • $i^1 = i$
  • $i^2 = -1$
  • $i^3 = -i$
  • $i^4 = 1$

We can reduce higher powers of $i$ to these values by taking the exponent modulo 4.

  1. Calculating Each Expression
  • (1) For $i^{24}$:

    Calculate $24 \mod 4 = 0 \Rightarrow i^{24} = i^0 = 1$.

  • (2) For $i^{45}$:

    Calculate $45 \mod 4 = 1 \Rightarrow i^{45} = i^1 = i$.

  • (3) For $i^{30}$:

    Calculate $30 \mod 4 = 2 \Rightarrow i^{30} = i^2 = -1$.

  • (4) For $\left(\frac{1}{i}\right)^{199}$:

    Use $\frac{1}{i} = -i$, so $\left(-i\right)^{199}$. Calculate $199 \mod 4 = 3 \Rightarrow (-i)^{3} = -i^{3} = -(-i) = i$.

  • (5) For $i^{26} + i^{28}$:

    Calculate $26 \mod 4 = 2 \Rightarrow i^{26} = -1$ and $28 \mod 4 = 0 \Rightarrow i^{28} = 1$. So, $-1 + 1 = 0$.

  • (6) For $\left(\frac{1}{i}\right)^{15}$:

    Similar to step 4, $\left(-i\right)^{15}$: $15 \mod 4 = 3 \Rightarrow (-i)^{3} = -i^{3} = -(-i) = i$.

  • (7) For $5i^7 + 4i^{-1}$:

    Calculate $7 \mod 4 = 3 \Rightarrow i^{7} = -i$ and $i^{-1} = -i$. Therefore, $5(-i) + 4(-i) = -5i - 4i = -9i$.

  1. Compiling Results

After calculating, we summarize:

  • (1) $1$
  • (2) $i$
  • (3) $-1$
  • (4) $i$
  • (5) $0$
  • (6) $i$
  • (7) $-9i$
  1. (a) 1
  2. (b) i
  3. (c) -1
  4. (c) i
  5. (c) zero
  6. (c) i
  7. (b) -9 i

More Information

The only imaginary number here is represented in the forms of $i$, $-i$, and their multiples. An imaginary number can be expressed as a multiple of $i$. This highlights that the manipulation of powers of $i$ is crucial for simplifying complex expressions.

Tips

  • Forgetting to apply the modulo operation when simplifying powers of $i$.
  • Confusing $i^{3}$ with its negative counterpart.
Thank you for voting!
Use Quizgecko on...
Browser
Browser